Analytical and numerical solutions of the regularized 13 moment equations for rarefied gases

Henning Struchtrup

University of Victoria, Canada

Manuel Torrilhon

ETH Zürich

Peyman Taheri

University of Victoria, Canada

The task of finding continuum approximations

conservation laws for mass, momentum, energy

 \implies 5 equations for ho, v_i , heta=RT

$$\frac{D\rho}{Dt} + \rho \frac{\partial v_k}{\partial x_k} = 0$$

$$\rho \frac{Dv_i}{Dt} + \rho \frac{\partial \theta}{\partial x_i} + \theta \frac{\partial \rho}{\partial x_i} + \left[\frac{\partial \sigma_{ik}}{\partial x_k}\right] = 0$$
$$\frac{3}{2}\rho \frac{D\theta}{Dt} + \rho \theta \frac{\partial v_k}{\partial x_k} + \left[\frac{\partial q_k}{\partial x_k} + \sigma_{kl} \frac{\partial v_k}{\partial x_l}\right] = 0$$

closure problem

find additional equations for pressure deviator σ_{ij} and heat flux q_i

Boltzmann equation and moments

Boltzmann equation

$$\frac{\partial f}{\partial t} + c_k \frac{\partial f}{\partial x_k} = \frac{1}{\mathbf{Kn}} \mathcal{S}\left(f\right) \quad \text{e.g. BGK-model: } \mathcal{S}(f) = -\frac{1}{\tau} (f - f_M)$$

some moments

mass density momentum density $\rho v_i = m \int c_i f \, d\mathbf{c}$ energy density pressure tensor heat flux vector general moments

 $\rho = m \int f \, d\mathbf{c}$ $\rho u = \frac{3}{2}\rho\theta = \frac{m}{2}\int C^2 f \,d\mathbf{c}$ $p_{ij} = p\delta_{ij} + \sigma_{ij} = m \int C_i C_j f d\mathbf{c}$ $q_i = \frac{m}{2} \int C^2 C_i f d\mathbf{c}$ $u^a_{i_1\cdots i_n} = m \int C^{2a} C_{\langle i_1} \cdots C_{i_n \rangle} f d\mathbf{c}$

ideal gas law: $p = \rho \theta$ peculiar velocity: $C_i = c_i - v_i$

equilibrium phase density (Maxwell): $f_{|E} = \frac{\rho}{m} \sqrt{\frac{1}{2\pi\theta}^3} \exp\left[-\frac{C^2}{2\theta}\right]$

 $Kn = \frac{\text{mean tree path } l_0}{\text{macroscopic length scale } L}$: Knudsen number $\hat{=}$ smallness parameter

Bulk reduction methods

 $Kn = \frac{\text{mean free path}}{\text{macroscopic length scale}}$

goal: Replace Boltzmann eq with simplified models for Knudsen number Kn < 1

- Chapman-Enskog expansion in powers of Kn
 - \implies Euler, Navier-Stokes-Fourier [Enskog 1917, Chapman 1916/17]
 - \implies Burnett, super-Burnett (*unstable*) [Burnett 1935, Bobylev 1981]
 - \implies augmented Burnett (*stable*) [Zhong et al. 1993]
 - \implies hyperbolic Burnett (*stable*) [Bobylev 2007/08]
- Grad's moment method (choice of moments not related to Kn) [Grad 1949]
 - \implies Euler, 13 moments, 26 moments, etc. (*discontinuous shocks*)
- Regularization of 13 moment equations (based on Kn orders)
 - \implies linear **R13 eqs** [Karlin et al. 1998]
 - \implies Regularized Burnett [Jin & Slemrod 2001]
 - \implies Consistent order ET [Müller et al. 2003]
 - \implies Combined Grad/CE \implies R13 eqs [HS & M. Torrilhon 2003/04]
 - \implies Order of magnitude method \implies R13 eqs [HS 2004]

R13 equations (non-linear) [HS & MT 2003, HS 2004] (Euler / NSF / Grad13 / R13)

$$\frac{D\rho}{Dt} + \rho \frac{\partial v_k}{\partial x_k} = 0$$

$$\rho \frac{Dv_i}{Dt} + \rho \frac{\partial \theta}{\partial x_i} + \theta \frac{\partial \rho}{\partial x_i} + \left[\frac{\partial \sigma_{ik}}{\partial x_k}\right] = \rho G_i$$

$$\frac{3}{2} \rho \frac{D\theta}{Dt} + \rho \theta \frac{\partial v_k}{\partial x_k} + \left[\frac{\partial q_k}{\partial x_k} + \sigma_{kl} \frac{\partial v_k}{\partial x_l}\right] = 0$$

$$\left[\frac{D\sigma_{ij}}{Dt} + \frac{4}{5} \frac{\partial q_{\langle i}}{\partial x_{\rangle}} + 2\sigma_{k\langle i} \frac{\partial v_j}{\partial x_k} + \sigma_{ij} \frac{\partial v_k}{\partial x_k}\right] + \left[\frac{\partial u_{ijk}^0}{\partial x_k}\right] = -\rho \theta \left[\frac{\sigma_{ij}}{\mu} + 2\frac{\partial v_{\langle i}}{\partial x_{j\rangle}}\right]$$

$$\left[\frac{Dq_i}{Dt} + \frac{5}{2} \sigma_{ik} \frac{\partial \theta}{\partial x_k} - \sigma_{ik} \theta \frac{\partial \ln \rho}{\partial x_k} + \theta \frac{\partial \sigma_{ik}}{\partial x_k} + \frac{7}{5} q_i \frac{\partial v_k}{\partial x_k} + \frac{7}{5} q_k \frac{\partial v_i}{\partial x_k} + \frac{2}{5} q_k \frac{\partial v_k}{\partial x_i}\right]$$

$$+ \left[-\frac{\sigma_{ij}}{\varrho} \frac{\partial \sigma_{jk}}{\partial x_k} + \frac{1}{2} \frac{\partial w_{ik}^1}{\partial x_k} + \frac{1}{6} \frac{\partial w^2}{\partial x_i} + u_{ijk}^0 \frac{\partial v_j}{\partial x_k}\right] = -\frac{5}{2} \rho \theta \left[\frac{q_i}{\kappa} + \frac{\partial \theta}{\partial x_k}\right]$$

$$\begin{split} w^{2} &= -\frac{\sigma_{ij}\sigma_{ij}}{\rho} - 12\frac{\mu}{p} \left[\theta \frac{\partial q_{k}}{\partial x_{k}} + \frac{5}{2}q_{k}\frac{\partial \theta}{\partial x_{k}} - \theta q_{k}\frac{\partial \ln\rho}{\partial x_{k}} + \theta \sigma_{ij}\frac{\partial v_{i}}{\partial x_{k}} \right] \\ u^{0}_{ijk} &= -2\frac{\mu}{p} \left[\theta \frac{\partial \sigma_{\langle ij}}{\partial x_{k\rangle}} - \sigma_{\langle ij}\frac{\partial \ln\rho}{\partial x_{k\rangle}} + \frac{4}{5}q_{\langle i}\frac{\partial v_{j}}{\partial x_{k\rangle}} \right] \\ w^{1}_{ij} &= -\frac{4}{7}\frac{\sigma_{k\langle i}\sigma_{j\rangle k}}{\rho} - \frac{24}{5}\frac{\mu}{p} \left[\theta \frac{\partial q_{\langle i}}{\partial x_{j\rangle}} + q_{\langle i}\frac{\partial \theta}{\partial x_{j\rangle}} - \theta q_{\langle i}\frac{\partial \ln\rho}{\partial x_{j\rangle}} + \frac{5}{7}\theta \left(\sigma_{k\langle i}\frac{\partial v_{j\rangle}}{\partial x_{k}} + \sigma_{k\langle i}\frac{\partial v_{k}}{\partial x_{j\rangle}} - \frac{2}{3}\sigma_{ij}\frac{\partial v_{k}}{\partial x_{k}} \right) \right] \end{split}$$

Chapman-Enskog expansion of R13 \Rightarrow Euler / NSF / Burnett / super-Burnett

R13 equations (linear, dimensionless) [HS & MT 2003] (Euler / NSF / Grad13 / R13)

$$\frac{\partial \rho}{\partial t} + \frac{\partial v_k}{\partial x_k} = 0$$

$$\frac{\partial v_i}{\partial t} + \frac{\partial \rho}{\partial x_i} + \frac{\partial \theta}{\partial x_i} + \frac{\partial \sigma_{ik}}{\partial x_k} = G_i$$

$$\frac{3}{2}\frac{\partial\theta}{\partial t} + \frac{\partial v_k}{\partial x_k} + \frac{\partial q_k}{\partial x_k} = 0$$

$$\frac{\partial \sigma_{ij}}{\partial t} + \frac{4}{5} \frac{\partial q_{\langle i}}{\partial x_{j\rangle}} - 2 \mathrm{Kn} \frac{\partial}{\partial x_k} \frac{\partial \sigma_{\langle ij}}{\partial x_{k\rangle}} + 2 \frac{\partial v_{\langle i}}{\partial x_{j\rangle}} = -\frac{\sigma_{ij}}{\mathrm{Kn}}$$

$$\frac{\partial q_i}{\partial t} + \frac{\partial \sigma_{ik}}{\partial x_k} - \frac{12}{5} \operatorname{Kn} \frac{\partial}{\partial x_k} \frac{\partial q_{\langle i}}{\partial x_k \rangle} - 2 \operatorname{Kn} \frac{\partial}{\partial x_i} \frac{\partial q_k}{\partial x_k} + \frac{5}{2} \frac{\partial \theta}{\partial x_i} = -\frac{2}{3} \frac{q_i}{\operatorname{Kn}}$$

Semi-linearized R13 for shear flow (dimless) [PT, MT & HS 2009]

include quadratic contributions in σ_{12} , $\frac{dv_1}{dx_2}$

velocity problem

$$\frac{2}{5}\frac{dq_1}{dx_2} - \frac{16}{15}\mathrm{Kn}\frac{d^2\sigma_{12}}{dx_2^2} + \frac{dv_1}{dx_2} = -\frac{1}{\mathrm{Kn}}\sigma_{12}$$
$$\frac{d\sigma_{12}}{d\tilde{x}_2} - \frac{6}{5}\mathrm{Kn}\frac{d^2q_1}{dx_2^2} = -\frac{2}{3}\frac{1}{\mathrm{Kn}}q_1$$

 $\frac{d\sigma_{12}}{dx_1} = G_1$

temperature problem

$$\frac{dq_2}{dx_2} = -\sigma_{12}\frac{dv_1}{dx_2}$$
$$\frac{d\sigma_{12}}{dx_2} - \frac{13}{7}\sigma_{12}\frac{d\sigma_{12}}{dx_2} - \frac{67}{105}\operatorname{Kn}\frac{d\sigma_{12}}{dx_2}\frac{dv_1}{dx_2} + \frac{36}{35}\operatorname{Kn}\sigma_{12}\frac{d^2v_1}{dx_2^2} + \frac{5}{2}\frac{d\theta}{dx_2} = -\frac{2}{3}\frac{1}{\mathrm{Kn}}q_2$$
$$-\frac{6}{5}\sigma_{12}\frac{dv_1}{dx_2} - \frac{6}{5}\operatorname{Kn}\frac{d^2\sigma_{22}}{dx_2^2} - \frac{12}{25}\operatorname{Kn}^2\frac{d}{dx_2}\left(\frac{d\sigma_{12}}{dx_2}\frac{dv_1}{dx_2}\right) = -\frac{1}{\mathrm{Kn}}\sigma_{22}$$

the rest

$$\frac{d(\rho + \theta + \sigma_{22})}{dx_2} = 0$$

$$\frac{8}{5}\sigma_{12}\frac{dv_1}{dx_2} - \frac{2}{3}\mathrm{Kn}\frac{d^2\sigma_{11}}{dx_2^2} + \frac{4}{15}\mathrm{Kn}\frac{d^2\sigma_{22}}{dx_2^2} + \frac{16}{25}\mathrm{Kn}^2\frac{d}{dx_2}\left(\frac{d\sigma_{12}}{dx_2}\frac{dv_1}{dx_2}\right) = -\frac{1}{\mathrm{Kn}}\sigma_{11}$$

Boundary conditions for moments [MT & HS 2008]

kinetic BC for odd fluxes (at left and right boundary)

$$\begin{aligned} \text{slip} \quad \sigma_{nt} &= -\frac{\chi}{2-\chi} \sqrt{\frac{2}{\pi\theta}} \left[PV_t + \frac{1}{5}q_t + \frac{1}{2}u_{tnn}^0 \right] \\ \text{jump} \quad q_n &= -\frac{\chi}{2-\chi} \sqrt{\frac{2}{\pi\theta}} \left[2P\left(\theta - \theta_W\right) + \frac{5}{28}w_{nn} + \frac{1}{15}w_{kk} + \frac{1}{2}\theta\sigma_{nn} - \frac{1}{2}PV_t^2 \right] \\ w_{tn} &= -\frac{\chi}{2-\chi} \sqrt{\frac{2}{\pi\theta}} \left[P\theta V_t - \frac{1}{2}\theta u_{tnn}^0 - \frac{11}{5}\theta q_t - PV_t^3 + 6P\left(\theta - \theta_W\right)V_t \right] \\ u_{nnn}^0 &= -\frac{\chi}{2-\chi} \sqrt{\frac{2}{\pi\theta}} \left[\frac{2}{5}P\left(\theta - \theta_W\right) - \frac{1}{14}w_{nn} + \frac{1}{75}w_{kk} - \frac{7}{5}\sigma_{nn} - \frac{3}{5}PV_t^2 \right] \\ u_{ttn}^0 + \frac{1}{2}u_{nnn}^0 &= -\frac{\chi}{2-\chi} \sqrt{\frac{2}{\pi\theta}} \left[\theta\left(\sigma_{tt} + \frac{1}{2}\sigma_{nn}\right) + \frac{1}{14}\left(w_{tt} + \frac{1}{2}w_{nn}\right) - \frac{1}{2}PV_t^2 \right] \end{aligned}$$

with $V_t = v_t - v_t^W$, $P = \left(\rho\theta + \frac{1}{2}\sigma_{nn} - \frac{1}{28}\frac{w_{nn}}{\theta} - \frac{1}{120}\frac{w_{kk}}{\theta}\right)$

indices n, t indicate normal/tangential components

mass conservation

$$M = \int_{-L/2}^{L/2} \rho dx$$

Semi-linear channel flow \implies well-posed problem!

kinetic BC for R13 pioneered by [Gu&Emerson 2007], but too many BC lead to spurious wall layers H-Theorem at wall in linear case [HS & MT 2007] Analytical solution for Couette flow [PT, MT & HS 2008] velocity problem

$$v_1 = -\frac{\mathsf{C}_1}{\mathrm{Kn}}x_2 - \frac{2}{5}q_1$$

$$\sigma_{12} = \mathsf{C}_1$$

$$q_1 = \mathsf{C}_2 \sinh\left[\frac{\sqrt{5}}{3\mathrm{Kn}}x_2\right]$$

temperature problem

$$\theta = \mathsf{C}_3 - \frac{2\mathsf{C}_1^2}{15\mathrm{Kn}^2} x_2^2 - \frac{2\mathsf{C}_4}{5} \cosh\left[\frac{\sqrt{5}x_2}{\sqrt{6}\mathrm{Kn}}\right] + \frac{32\mathsf{C}_2}{35\sqrt{5}} \sigma_{12} \cosh\left[\frac{\sqrt{5}x_2}{3\mathrm{Kn}}\right]$$

$$\sigma_{22} = \mathsf{C}_4 \cosh\left[\frac{\sqrt{5}x_2}{\sqrt{6}\mathrm{Kn}}\right] - \frac{6\mathsf{C}_1^2}{5} - \frac{12\mathsf{C}_2}{5\sqrt{5}}\sigma_{12}\cosh\left[\frac{\sqrt{5}x_2}{3\mathrm{Kn}_0}\right]$$
$$q_2 = \frac{\mathsf{C}_1^2}{\mathrm{Kn}}x_2 + \frac{2\mathsf{C}_2}{5}\sigma_{12}\sinh\left[\frac{\sqrt{5}x_2}{3\mathrm{Kn}}\right]$$

superpositions of **bulk** and **Knudsen layer** contributions

Analytical solution for Couette flow: R13 vs. DSMC [PT, MT & HS 2008]

Analytical solution for Poiseuille flow [PT, MT & HS 2008] **velocity problem**

$$v_1 = \mathsf{C}_1 - \frac{G_1}{2\mathrm{Kn}_0}x_2^2 - \frac{2}{5}q_1$$

$$\sigma_{12} = G_1 x_2$$

$$q_1 = -\frac{3G_1 \mathrm{Kn}}{2} + \mathsf{C}_2 \cosh\left[\frac{\sqrt{5}x_2}{3\mathrm{Kn}}\right]$$

temperature problem

$$\theta = \mathsf{C_4} - \frac{G_1^2 x_2^4}{45 \mathrm{Kn}^2} + \frac{488 G_1^2 x_2^2}{525} - \frac{2\mathsf{C_3}}{5} \cosh\left[\frac{\sqrt{5}x_2}{\sqrt{6}\mathrm{Kn}}\right] + \frac{956 G_1 \mathrm{Kn} \mathsf{C_2}}{375} \cosh\left[\frac{\sqrt{5}x_2}{3\mathrm{Kn}}\right] + \frac{32\mathsf{C_2}}{35\sqrt{5}}\sigma_{12} \sinh\left[\frac{\sqrt{5}x_2}{3\mathrm{Kn}}\right]$$

$$q_{2} = \frac{G_{1}^{2} x_{2}^{3}}{3 \text{Kn}} - \frac{6G_{1} \text{Kn} \text{C}_{2}}{5\sqrt{5}} \sinh\left[\frac{\sqrt{5}x_{2}}{3 \text{Kn}}\right] + \frac{2\text{C}_{2}}{5}\sigma_{12} \cosh\left[\frac{\sqrt{5}x_{2}}{3 \text{Kn}}\right]$$

$$\sigma_{22} = -\frac{6G_1^2}{5}x_2^2 - \frac{84G_1^2 \text{Kn}^2}{25} - \frac{152G_1 \text{Kn}\text{C}_2}{25}\cosh\left[\frac{\sqrt{5}x_2}{3\text{Kn}}\right] + \text{C}_3\cosh\left[\frac{\sqrt{5}x_2}{\sqrt{6}\text{Kn}}\right] - \frac{12\text{C}_2}{5\sqrt{5}}\sigma_{12}\sinh\left[\frac{\sqrt{5}x_2}{3\text{Kn}}\right]$$

superpositions of **bulk** and **Knudsen** layer contributions

Force driven Poiseuille flow [PT, MT & HS 2008]

R13 equations exhibit temperature dip [Tij & Santos 1994/98, Xu 2003]

R13 to 2nd order in the bulk (shear flow geometry) [HS & MT 2008]

conservation laws + Navier-Stokes-Fourier

$$\frac{\partial \tilde{\sigma}_{12}}{\partial y} = \rho \tilde{G}_1 \quad , \quad \frac{\partial \left(p + \mathrm{Kn}^2 \tilde{\sigma}_{22} \right)}{\partial y} = 0 \quad , \quad \frac{\partial \tilde{q}_2}{\partial y} = -\tilde{\sigma}_{12} \frac{\partial v}{\partial y} \quad , \quad \tilde{\sigma}_{12} = -\mu \frac{\partial v_1}{\partial y} \quad , \quad \tilde{q}_2 = -\frac{15}{4} \mu \frac{\partial \theta}{\partial y}$$

second order contributions

$$\tilde{\sigma}_{11} = \frac{8}{5} \frac{\tilde{\sigma}_{12} \tilde{\sigma}_{12}}{p} \quad , \quad \tilde{\sigma}_{22} = -\frac{6}{5} \frac{\tilde{\sigma}_{12} \tilde{\sigma}_{12}}{p} \quad , \quad \tilde{q}_1 = -\frac{3}{2} \frac{\mu \theta}{p} \frac{\partial \tilde{\sigma}_{12}}{\partial y} + \frac{7}{2} \frac{\tilde{\sigma}_{12} \tilde{q}_2}{p}$$

 $\tilde{\Delta} = -12\frac{\mu\theta}{p}\frac{\partial\tilde{q}_2}{\partial y} + \frac{56}{5}\frac{\tilde{q}_2\tilde{q}_2}{p} + 10\frac{\theta}{p}\tilde{\sigma}_{12}\tilde{\sigma}_{12} \quad , \quad \tilde{R}_{22} = -\frac{16}{5}\frac{\mu\theta}{p}\frac{\partial\tilde{q}_2}{\partial y} + \frac{128}{75}\frac{\tilde{q}_2\tilde{q}_2}{p} + \frac{20}{21}\frac{\theta}{p}\tilde{\sigma}_{12}\tilde{\sigma}_{12} \quad , \quad \tilde{m}_{122} = -\frac{16}{15}\frac{\mu\theta}{p}\frac{\partial\tilde{\sigma}_{12}}{\partial y} + \frac{32}{45}\frac{\tilde{\sigma}_{12}\tilde{q}_2}{p}$

jump and slip BC

$$\mathcal{V} = \frac{v_i - v_i^W}{\mathrm{Kn}} = -\frac{2 - \chi_1}{\chi_1} \sqrt{\frac{\pi \theta}{2}} \frac{\tilde{\sigma}_{12}}{p} n_2 - \frac{1}{5} \mathrm{Kn} \frac{\tilde{q}_1}{p} - \frac{1}{2} \mathrm{Kn} \frac{\tilde{m}_{122}}{p}$$
$$\mathcal{T} = \frac{\theta - \theta_W}{\mathrm{Kn}} = -\frac{2 - \chi_2}{\chi_2} \sqrt{\frac{\pi \theta}{2}} \frac{\tilde{q}_2}{2p} n_2 + \frac{1}{4} \mathrm{Kn} \mathcal{V}^2 - \frac{1}{4} \theta \mathrm{Kn} \frac{\tilde{\sigma}_{22}}{p} - \frac{1}{60} \mathrm{Kn} \frac{\tilde{\Delta}}{p} - \frac{5}{56} \mathrm{Kn} \frac{\tilde{R}_{22}}{p}$$

second order jump and slip BC combine the above

$$\begin{aligned} v_{i} - v_{i}^{W} &= -\frac{2 - \chi_{1}}{\chi_{1}} \mathrm{Kn} \sqrt{\frac{\pi \theta}{2}} \frac{\tilde{\sigma}_{12}}{p} n_{2} + \frac{5}{6} \mathrm{Kn}^{2} \frac{\mu \theta}{p^{2}} \frac{\partial \tilde{\sigma}_{12}}{\partial y} - \frac{19}{18} \mathrm{Kn}^{2} \frac{\tilde{\sigma}_{12} \tilde{q}_{2}}{p^{2}} \\ \theta - \theta_{W} &= -\frac{2 - \chi_{2}}{\chi_{2}} \mathrm{Kn} \sqrt{\frac{\pi \theta}{2}} \frac{\tilde{q}_{2}}{2p} n_{2} + \frac{17}{35} \mathrm{Kn}^{2} \frac{\mu \theta}{p^{2}} \frac{\partial \tilde{q}_{2}}{\partial y} + \mathrm{Kn}^{2} \left[\frac{\pi}{8} \left(\frac{2 - \chi_{1}}{\chi_{1}} \right)^{2} + \frac{71}{1470} \right] \theta \frac{\tilde{\sigma}_{12} \tilde{\sigma}_{12}}{p^{2}} - \mathrm{Kn}^{2} \frac{178}{525} \frac{\tilde{q}_{2} \tilde{q}_{2}}{p^{2}} \end{aligned}$$

Force driven Poiseuille flow — Knudsen minimum [HS & MT 2008]

linearized Navier-Stokes with 2nd order slip (values for α and β vary between authors)

$$\frac{\partial \sigma_{12}}{\partial y} = G_1 \quad , \quad \sigma_{12} = -\frac{\partial v}{\partial y} \quad , \quad v - v_W = \alpha \mathrm{Kn} \sqrt{\frac{\pi}{2}} \frac{\partial v}{\partial y} n_2 - \beta \mathrm{Kn}^2 \frac{\partial^2 v}{\partial y^2}$$

comparison suggests $\alpha = 1.046$, $\beta = 0.823$

Absorption heating (similar to Knudsen minimum) [HS & MT 2008]

gas heated by radiation: gas at rest, walls at θ_W , energy absorbed S

average relative temperature $E = \int \frac{\theta - \theta_W}{S} dy$

Fourier and R13 (second order jump condition)

Thermal transpiration flow [PT & HS 2009]

flow driven by *T*-gradient in wall Kn = 0.09, 0.18, 0.35, 0.53mass flow, heat flux, velocity : R13, linear Boltzmann [Ohwada, Aoki]

Thermal transpiration flow [PT & HS 2009]

temperature profile and other non-linear effects: R13 prediction

Thermal transpiration flow [PT & HS 2009]

half space problem influence of accommodation coefficient χ NSF / linearized Boltzmann / R13

Cylindrical flows [PT & HS 2009]

velocity problem (linear)

$$\frac{\partial \sigma_{r\phi}}{\partial r} + 2\frac{\sigma_{r\phi}}{r} = 0$$
$$\frac{\partial}{\partial r} \left[\frac{2}{5} \frac{q_{\phi}}{r} + \frac{v_{\phi}}{r} \right] = -\frac{1}{\mathrm{Kn}} \frac{\sigma_{r\phi}}{r}$$
$$\frac{\partial}{\partial r} \left[\frac{\partial q_{\phi}}{\partial r} + \frac{q_{\phi}}{r} \right] = \frac{5}{9 \mathrm{Kn}^2} q_{\phi}$$

analytical solution

$$v_{\phi} = \frac{\mathsf{C}_{1}}{2 \operatorname{Kn} r} \frac{1}{r} + \mathsf{C}_{4}r - \frac{2}{5}q_{\phi}$$

$$\sigma_{r\phi} = \frac{\mathsf{C}_{1}}{r^{2}}$$

$$q_{\phi} = \mathsf{C}_{2}\mathcal{I}_{1}\left[\frac{\sqrt{5}r}{3 \operatorname{Kn}}\right] + \mathsf{C}_{3}\mathcal{K}_{1}\left[\frac{\sqrt{5}r}{3 \operatorname{Kn}}\right]$$

Knudsen layers are Bessel functions

Cylindrical flows [PT & HS 2009]

velocity problem Kn = 0.08, Kn = 0.447, accommodation coefficients χ [Aoki, Garcia]

Cylindrical flows [PT & HS 2009]

temperature problem Kn = 0.03, Kn = 0.2 (numerical solution)

Oscillating Poiseuille flow [PT, AR, MT & HS 2009]

Dispersion and Damping [HS & MT 2003]

phase speed and damping measured by Meyer and Sessler

proper Knudsen number for oscillation

$$\operatorname{Kn}_{\Omega} = \omega$$

 \Rightarrow R13 allows proper description close to natural limit $Kn_{\Omega}=1$

Shocks: Comparison with DSMC results [MT & HS 2004]

Success of R13

Switching criteria for hybrid codes [D.Lockerby, J.Reese, HS 2009] hybrid Boltzmann/NSF solvers:

use NSF for "small" Kn, Boltzmann for "large" Kn

requires local Knudsen number to distinguish domains

usual choice: gradient Knudsen number (mean free path λ)

$$\operatorname{Kn}_{G} = \frac{\lambda}{\rho} \left| \frac{d\rho}{dx} \right|$$

not too bad: for strongly non-linear flow (steep gradients, shocks etc.) **problem:** $Kn_G \rightarrow 0$ for linear flow (microflows, ultrasound)

goal: local Knudsen number for linear and non-linear regime

Switching criteria for hybrid codes [D.Lockerby, J.Reese, HS 2009] Switch Boltzmann/R13 \implies NSF

Step 1:

compute $\rho, v_i, \theta, \sigma_{ij}$, q_i from Boltzmann/R13

Step 2:

compute $\sigma_{ij}^{(NSF)} = -\mu \frac{\partial v_{\langle i}}{\partial x_{j\rangle}}$, $q_i^{(NSF)} = -\kappa \frac{\partial \theta}{\partial x_i}$ from Boltzmann/R13 Step 3:

local Knudsen number as deviation from NSF

$$\mathrm{Kn}_{\sigma} = \frac{\left\| \sigma_{ij} - \sigma_{ij}^{(NSF)} \right\|}{\left\| \sigma_{ij}^{(NSF)} \right\|} \quad , \quad \mathrm{Kn}_{q} = \frac{\left\| q_{i} - q_{i}^{(NSF)} \right\|}{\left\| q_{i}^{(NSF)} \right\|}$$

with

$$\|q_i\| = \sqrt{q_i q_i} = \sqrt{q_1^2 + q_2^2 + q_3^2}$$

$$\|\sigma_{ij}\| = \sqrt{\frac{1}{2} |\sigma_{ii}\sigma_{jj} - \sigma_{ij}\sigma_{ij}|} = \sqrt{\frac{1}{2} |\sigma_{ij}\sigma_{ij}|} = \sqrt{|\sigma_{11}^2 + \sigma_{11}\sigma_{22} + \sigma_{22}^2 + \sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2|}$$

Switching criteria for hybrid codes [D.Lockerby, J.Reese, HS 2009] Switch Boltzmann/R13 \implies NSF

Example I: Shock structure with Burnett/R13

NSF and Burnett/R13 in shock (leading term)

$$\sigma_{11}^{(NSF)} = -\frac{4}{3}\mu \frac{dv}{dx} , \quad \sigma_{11}^{(B)} = \frac{A\mu^2}{p} \left(\frac{dv}{dx}\right)^2$$

local Knudsen number

$$\operatorname{Kn}_{\sigma}^{(\mathsf{shock})} = \frac{\sqrt{\frac{3}{4}}\sigma_{11}^{(B)}}{\sqrt{\frac{3}{4}}\sigma_{11}^{(NSF)}} = \left|\frac{\frac{A\mu^2}{p}\left(\frac{dv}{dx}\right)^2}{\frac{4}{3}\mu\left(\frac{dv}{dx}\right)}\right| = \left|\frac{3}{4}\frac{A}{p}\mu\frac{dv}{dx}\right| = \alpha \operatorname{Ma}\frac{\lambda}{\rho}\left|\frac{d\rho}{dx}\right|$$

similar to gradient Knudsen number

Switching criteria for hybrid codes [Lockerby, Reese, HS 2009] Switch Boltzmann/R13 \implies NSF

Example II: Nonlinear shear flow with second order hydrodynamics

R13/Burnett (to second order in Kn)

$$\sigma_{12} = -\mu \frac{dv}{dy} \ , \ \sigma_{11} = \frac{8}{5} \frac{\sigma_{12} \sigma_{12}}{p} \ , \ \sigma_{22} = -\frac{6}{5} \frac{\sigma_{12} \sigma_{12}}{p} \ , \ q_1 = \frac{7}{2} \frac{\sigma_{12} q_2}{p} \ , \ q_2 = -\frac{15}{4} \mu \frac{d\theta}{dy}$$

local Knudsen numbers

$$\operatorname{Kn}_{\sigma}^{(\mathsf{shear})} = \sqrt{\frac{52}{25}} \left| \frac{\sigma_{12}}{p} \right| = \hat{\alpha} \operatorname{Ma} \frac{\lambda}{v} \left| \frac{dv}{dy} \right|$$

$$\operatorname{Kn}_{q}^{(\mathsf{shear})} = \frac{7}{2} \left| \frac{\sigma_{12}}{p} \right| = \check{\alpha} \operatorname{Ma} \frac{\lambda}{v} \left| \frac{dv}{dy} \right|$$

similar to gradient Knudsen number

Switching criteria for hybrid codes [Lockerby, Reese, HS 2009] Switch Boltzmann/R13 \implies NSF

Example III: Linear Poiseuille flow with R13 equations

R13 (driving force F, global Knudsen number Kn)

$$\sigma_{12} = Fy \quad , \quad v = F\left[\frac{1}{2\mathrm{Kn}}\left(\frac{1}{4} - y^2\right) + \frac{1}{2}\sqrt{\frac{\pi}{2}} + \frac{5}{6}\mathrm{Kn} + \frac{\frac{3}{25}\left(1 + 5\mathrm{Kn}\right)\left(\frac{1}{2} - \frac{\mathrm{cosh}\left[\sqrt{\frac{5}{9}\frac{y}{\mathrm{Kn}}}\right]}{\mathrm{cosh}\left[\frac{\sqrt{5}}{6\mathrm{Kn}}\right]}\right)}{1 + \frac{12}{5\sqrt{5}}\tanh\left[\frac{\sqrt{5}}{6\mathrm{Kn}}\right]}\right]$$

local Knudsen number

$$\mathrm{Kn}_{\sigma} = \frac{\left\|\sigma_{ij} - \sigma_{ij}^{(NS)}\right\|}{\left\|\sigma_{ij}^{(NS)}\right\|} \quad \text{with} \quad \sigma_{12}^{(NSF)} = -\mathrm{Kn}\frac{\partial v}{\partial y} = Fy + F\frac{\frac{1}{5\sqrt{5}}\left(1 + 5\mathrm{Kn}\right)}{1 + \frac{12}{5\sqrt{5}}\tanh\left[\frac{\sqrt{5}}{6\mathrm{Kn}}\right]} \frac{\sinh\left[\sqrt{\frac{5}{9}\frac{y}{\mathrm{Kn}}}\right]}{\cosh\left[\frac{\sqrt{5}}{6\mathrm{Kn}}\right]}$$

Switching criteria for hybrid codes [D.Lockerby, J.Reese, HS 2009] Switch NSF \implies Boltzmann/R13

Step 1: compute $\rho^{(NSF)}$, $v_i^{(NSF)}$, $\theta^{(NSF)}$, and $\sigma_{ij}^{(NSF)}$, $q_i^{(NSF)}$ from NSF Step 2:

insert NSF result into R13 to compute mismatch

$$\sigma_{ij}^{(R13)} = -\frac{\mu}{p} \left[2p \frac{\partial v_{\langle i}}{\partial x_{j \rangle}} + \frac{D\sigma_{ij}}{Dt} + \sigma_{ij} \frac{\partial v_k}{\partial x_k} + \frac{4}{5} \frac{\partial q_{\langle i}}{\partial x_{j \rangle}} + 2\sigma_{k \langle i} \frac{\partial v_{j \rangle}}{\partial x_k} + \frac{\partial m_{ijk}}{\partial x_k} \right]^{(NSF)}$$

$$q_i^{(R13)} = -\frac{3\mu}{2p} \left[\frac{5}{2} p \frac{\partial \theta}{\partial x_i} + \frac{Dq_i}{Dt} + \frac{5}{2} \sigma_{ik} \frac{\partial \theta}{\partial x_k} + \theta \frac{\partial \sigma_{ik}}{\partial x_k} - \theta \sigma_{ik} \frac{\partial \ln \rho}{\partial x_k} + \frac{7}{5} q_k \frac{\partial v_i}{\partial x_k} + \cdots \right]^{(NSF)}$$

Step 3:

local Knudsen number as deviation from NSF

$$Kn_{\sigma} = \frac{\left\| \sigma_{ij}^{(R13)} - \sigma_{ij}^{(NS)} \right\|}{\left\| \sigma_{ij}^{(NS)} \right\|} , \quad Kn_{q} = \frac{\left\| q_{i}^{(R13)} - q_{i}^{(F)} \right\|}{\left\| q_{i}^{(F)} \right\|}$$

identifies non-linear rarefaction effects identifies linear bulk effects, can't identify Knudsen layers, Switching criteria for hybrid codes [Lockerby, Reese, HS 2009] Switch NSF \implies Boltzmann/R13

Example: linear shear flow with driving force F

NSF reduce to

$$\frac{d\sigma_{12}^{(NS)}}{dy} = F \quad , \quad \sigma_{12}^{(NS)} = -\mathrm{Kn}\frac{dv}{dy}$$

R13 reduce to

$$\frac{d\sigma_{12}^{(R13)}}{dy} = F \quad , \quad \sigma_{12}^{(R13)} = -\mathrm{Kn}\frac{dv}{dy} + \frac{52}{15}\mathrm{Kn}^2\frac{d^2\sigma_{12}}{dy^2} + \frac{9}{5}\mathrm{Kn}^3\frac{d^3v}{dy^3} - \frac{48}{25}\mathrm{Kn}^4\frac{d^4\sigma_{12}}{dy^4}$$

feed NSF into R13

$$\sigma_{12}^{(R13)} = -\mathrm{Kn}\frac{dv}{dy} - \frac{5}{3}\mathrm{Kn}^3\frac{d^3v}{dy^3} + \frac{48}{25}\mathrm{Kn}^5\frac{d^5v}{dy^5} = \sigma_{12}^{(NS)} + \frac{5}{3}\mathrm{Kn}^2\frac{dF}{dy} - \frac{48}{25}\mathrm{Kn}^4\frac{d^3F}{dy^3} + \frac{1}{25}\mathrm{Kn}^5\frac{d^5v}{dy^5} = \sigma_{12}^{(NS)} + \frac{5}{3}\mathrm{Kn}^2\frac{dF}{dy} - \frac{48}{25}\mathrm{Kn}^4\frac{d^3F}{dy^3} + \frac{1}{25}\mathrm{Kn}^5\frac{dF}{dy^5} = \sigma_{12}^{(NS)} + \frac{5}{3}\mathrm{Kn}^2\frac{dF}{dy} - \frac{48}{25}\mathrm{Kn}^4\frac{d^3F}{dy^3} + \frac{1}{25}\mathrm{Kn}^5\frac{dF}{dy^5} = \sigma_{12}^{(NS)} + \frac{5}{3}\mathrm{Kn}^2\frac{dF}{dy^5} + \frac{1}{25}\mathrm{Kn}^4\frac{dF}{dy^5} + \frac{1}{25}\mathrm{Kn}^4\frac{dF}{dy$$

local Knudsen number

$$\mathrm{Kn}_{\sigma} = \mathrm{Kn}^{2} \frac{\left|\frac{5}{3}\frac{dF}{dy} - \frac{48}{25}\mathrm{Kn}^{2}\frac{d^{3}F}{dy^{3}}\right|}{\int F dy}$$

Regularized 13 moment equations

- rational derivation from Boltzmann equation
- third order in Knudsen number (\equiv super-Burnett)
- linearly stable
- phase speeds and damping of ultrasound waves agree to experiments
- \bullet smooth shock structures for all Ma, agree to DSMC for $\mathrm{Ma} < 3$
- H-theorem for linear case, including boundary conditions
- theory of boundary conditions
- Knudsen boundary layers in good agreement to DSMC
- accurate Poiseuille flow, second order slip conditions
- accurate thermal transpiration flow
- define local Knudsen number

Future work

- 2-D/3-D/transient simulations
- increased understanding of BC for non-linear case
- RXY equations for polyatomic gases and mixtures