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I. Introduction



Motivation

We model the delegated management of a profitable but risky

activity that involves infrequent “accidents” of a large magnitude

– A firm can take precautions against industrial hazards

– A hospital can take steps to prevent medical errors

– A bank can enhance the credit worthiness of its loans

Because of limited liability, one cannot make agents liable for the

full cost of such risks. When prevention efforts are unobservable,

there is a tension between limited liability and incentives



Modelling Strategy

In contrast with day-to-day operations, accidents in our model

are rare and dramatic events

Accidents occur according to a Poisson process whose intensity

depends on the level of risk prevention

Our focus on downside risk makes the size of operations a key

variable for the structure of incentives

The model allows not only for downsizing, but also for size

growth, subject to adjustment costs



Related Literature I : Dynamic Moral Hazard

Model with risk-averse agents (Rogerson 1985, Holmström and

Milgrom 1987, Spear and Srivastava 1987, Phelan and Townsend

1991, Sannikov 2003)

Models with risk-neutral agents and limited liability (Clementi

and Hopenhayn 2006, DeMarzo and Sannikov 2006, DeMarzo

and Fishman 2007, Biais, Mariotti, Plantin and Rochet 2007)

Models with Brownian outcomes (Holmström and Milgrom 1987,

Sannikov 2003, DeMarzo and Sannikov 2006, Biais, Mariotti,

Plantin and Rochet 2007)



Related Literature II : Poisson Models

Unlike in Shapiro and Stiglitz 1984, effort makes accidents less

likely but does not eliminate them altogether

Sannikov 2005 studies a Poisson model of dynamic moral hazard

with upside risk in which there is no use for downsizing

Myerson 2007 considers the same model as we do, but with

equally patient principal and agent. Only ε–optimal contracts

exist with exogenous bounds on the agent’s continuation utility



II. The Model



Agents

Time is continuous and indexed by t ∈ [0,∞)

There are two players

– A principal with discount rate r

– An agent with discount rate ρ > r

Both the principal and the agent are risk-neutral

The agent has limited liability



Technology

The agent runs a project of varying size X

Size can be decreased at no cost (downsizing)

Size can increase at most at rate γ < r (growth)

Accidents occur according to a Poisson process N

The intensity of N is λ if the agent works, λ + ∆λ if she shirks



Payoffs

The liquidation value of assets is 0

A size increase dX ∈ [0, γXdt] comes at a cost cdX

The project generates operating profits µX per unit of time

The principal bears the costs CX of accidents

The agent enjoys a private benefit BX from shirking



Some Parameter Restrictions

The expected instantaneous net output flow is positive if the

agent works

µ > λC

The private benefit from shirking is lower than the social cost of

increased accident risk

C∆λ > B



Contracts and Strategies

A contract Γ = (X, L) states downsizing/growth decisions and
non-negative transfers as functions of the public history

The size process X = X0 + Xd + Xg is predictable, non-negative
and of bounded variation, with initial condition X0 ≤ X0−

The downsizing process Xd is decreasing, and the growth process
Xg is absolutely continuous with density at most γX

The cumulative transfer process L is adapted, non-negative and
non-decreasing, reflecting the agent’s limited liability

A strategy for the agent is a predictable process Λ that takes its
values in {λ, λ + ∆λ}



Continuation Utilities

For the agent

Wt(Γ,Λ) = EΛ
t

[∫ ∞

0
e−ρ(s−t)(dLs + 1{Λs=λ+∆λ}BXsds)

]

For the principal

Ft(Γ,Λ) = EΛ
t

[∫ ∞

0
e−r(s−t)[(µds− CdNs)Xs − cdXg

s − dLs]
]



The Optimal Contracting Problem

An optimal long-term contract solves

max(Γ,Λ) {F0(Γ,Λ)}

s.t. Wt(Γ,Λ) ≥ Wt(Γ,Λ′) ∀(t,Λ′)

W0(Γ,Λ) ≥ W0−

We focus on the case where it is optimal to always induce effort

Λt = λ ∀t



III. Incentive Compatibility



A Martingale Representation of Utility (Sannikov 2003)

Consider the agent’s total utility evaluated at date t

Ut = EΛ
t

[∫ ∞

0
e−ρs(dLs + 1{Λs=λ+∆λ}BXsds)

]

=
∫ t

0
e−ρs(dLs + 1{Λs=λ+∆λ}BXsds) + e−ρtWt

There exists a predictable process H such that

dUt = −e−ρtHt(dNt − Λtdt)

Therefore the agent’s continuation utility evolves as

dWt = (ρWt − 1{Λs=λ+∆λ}BXt)dt−Ht(dNt − Λtdt)− dLt



Inducing Effort

Exerting effort at date t is incentive compatible if and only if

dWt |Λt=λ+∆λ ≥ dWt |Λt=λ or Ht ≥
B

∆λ
Xt ≡ bXt

The agent’s utility must decrease by at least bXt after an accident



Limited Liability and Incentive Compatibility

Satisfying both constraints at date t requires

Wt− ≥ Ht ≥ bXt

Satisfying both constraints at date t+ after an accident requires

Wt = Wt− −Ht ≥ Ht+ ≥ bXt+ ≡ bxtXt

Downsizing must occur after an accident at date t if Wt−/Xt < 2b

xt ≤
Wt− −Ht

bXt
≤

Wt−

bXt
− 1 < 1



IV. The Optimal Contract



A Reformulation of the Optimal Contracting Problem

An optimal long-term contract that always induces effort solves

F (X0, W0−) = maxΓ

{
Eλ

0

[∫ ∞

0
e−rt

[
(µdt− CdNt)Xt − cdX

g
t − dLt

]]}

s.t. dWt = (ρWt + λHt)dt−HtdNt − dLt ∀t

Wt− ≥ Ht ≥ bXt ∀t



State and Control Variables

It is useful to think of some variables in size-adjusted terms

wt =
Wt−

Xt
, ht =

Ht

Xt
, xt =

Xt+

Xt

Incentive compatibility requires ht ≥ b

The downsizing policy must satisfy xt ≤ min{(wt − ht)/b ,1}

Size growth is given by dX
g
t = gtXtdt with gt ≤ γ

W.l.o.g. let transfers be given by dLt = lt1{dNt=0}dt with lt ≥ 0



The Principal’s Value Function

Using the dynamics of X and W yields the HJB equation

rF (Xt, Wt−) = (µ− λC)Xt

+ max{−lt + (ρWt− + λhtXt − lt)FW (Xt, Wt−)

+ [FX(Xt, Wt−)− c]gtXt

−λ[F (Xt, Wt−)− F (xtXt, Wt− − htXt)]}

where the maximization is with respect to admissible (ht, xt, gt, lt)



Two Simple Guesses

Because of constant returns to scale, F is homogenous

F (X, W−) = Xf

(
W−

X

)
= Xf(w)

The size-adjusted value function is concave, and linear over [0, b]

f(w) =
f(b)

b
w ∀w ∈ [0, b]



Optimality Conditions : Transfers

The FOC with respect to lt yields

FW (Xt, Wt−) = f ′(wt) ≥ −1 with equality if lt > 0

The optimal transfer policy is characterized by a threshold wm



Optimality Conditions : Growth

The FOC with respect to gt yields

gt = γ if FX(Xt, Wt−) = f(wt)− wtf
′(wt) ≥ c ; gt = 0 otherwise

The optimal growth policy is characterized by a threshold wg



Optimality Conditions : Downsizing

The FOC with respect to xt yields

xt = min
{

wt − ht

b
,1

}
after an accident

Downsizing is used only as a last resort



Optimality Conditions : Sensitivity to Accidents

The FOC with respect to ht yields

ht = b

It is optimal to minimize the agent’s exposure to risk



The Size-Adjusted Value Function

For w ∈ [b, wg] one has

rf(w) = µ− λC + (ρw + λb)f ′(w)− λ[f(w)− f(w − b)]

For w ∈ [wg, wm] one has

(r−γ)f(w) = µ−λC−γc+[(ρ−γ)w+λb]f ′(w)−λ[f(w)−f(w−b)]

At the boundary w = wm one has

f ′(wm) = −1 and f ′′(wm) = 0



The Verification Argument

One first shows that there exists a size-adjusted value function

that satisfies this free boundary problem. The probation region

[b, wg] is empty if c is low enough, while the growth region [wg, wm]

is empty if c is high enough

One then shows that F (X0, W0−) = X0f(w0) is greater than the

utility derived by the principal from any contract Γ that induces

the agent to exert effort, and that there exists such a contract

that attains this upper bound



The Optimal Contract given (X0, W0−)

The size of the firm is given by

Xt = X0

Nt∏
n=1

min
{

wτn − b

b
,1

}
exp

(∫ t

0
γ1{ws≥wg} ds

)

The transfer process is given by

Lt = max{W0− −X0wm,0}+
∫ t

0
(ρwm + λb)Xs1{Ws=wmXs} ds



The Determination of (X0, W0−)

It depends on the relative bargaining power of the players. In the

case where the principal is competitive, one has to solve

max(X0,w0)
{[f(w0) + w0]X0}

s.t. f(w0)X0 ≥ 0

w0 ≥ 0

X0− ≥ X0

At the optimum X0 = X0− and f ′(w0) = −1/(1 + η). When

f(wm) ≥ 0, η = 0 and w0 = wm, otherwise w0 < wm



When Is It Optimal to Induce Effort ?

Inducing effort is optimal if

rf(w) ≥ µ− (λ + ∆λ)C + (ρw −B)f ′(w)

+ max{[f(w)− wf ′(w)− c]g}

Using the HJB equation, a sufficient condition for this to hold is

∆λ[C + bf ′(w)] ≥ λ[f(w)− f(w − b)− bf ′(w)]

Since C > b and f ′ ≥ −1, this is satisfied for all w > b when ∆λ

is high enough, and B is adjusted so as to keep b constant



V. The Dynamics of Firm Size



Low Investment Costs

Since f is not differentiable at b, one can choose c such that

f(b)− bf ′+(b) > c

Then it is optimal to always let firm size grow at rate γ, and

Xt = X0−

Nt∏
n=1

min
{

wτn − b

b
,1

}
exp(γt)



The Law of Large Numbers (Breiman 1960)

Let µ be the invariant measure of the Markov process {wτn}n∈N

Taking logarithms yields

ln(Xt) = ln(X0−) + Nt

 γt

Nt
+

1

Nt

Nt∑
n=1

ln
(
min

{
wτn − b

b
,1

})

∼∞ ln(X0−) + Nt

[
γ

λ
+

∫ 2b

b
ln

(
w − b

b

)
µ(dw)

]
a.s.



Decline versus Expansion

It is easy to construct lower and upper bounds to µ in the FOSD

sense that are uniform in γ

These bounds imply that Xt → 0 with probability 1 if γ is low,

while Xt →∞ with probability 1 if γ is high



VI. Implementation and Testable Implications (γ = 0)



Cash Reserves

The firm holds cash reserves Mt− = Wt− that earn interest r

Changes in this account reflect

– Operating cash-flow

– Transfers to the insurance company and the manager

– Earned interest income

One can interpret wt as a liquidity ratio



Insurance Contract

The insurance company is liable for (C−b)Xt per accident, while

the firm pays the deductible b out of its cash reserves

The instantaneous premium πt has two components

– An actuarially fair component πa
t = λ(C − b)Xt

– An incentive component πi
t = −(ρ− r)Wt−

Downsizing covenant xt = min{Mt/(bXt),1} if liquidity is too low,

or if the ratio of risk exposure to inside equity is too high



Bonds and Managerial Compensation

At date 0, the firm issue a bond with coupon ξt = (µ− λC)Xt

The issuance proceeds allow to hoard cash reserves M0− and pay

a commitment fee to the insurance company

The manager gets paid when the liquidity ratio Mt/Xt = wt+

reaches the target wm

Cash reserves evolve as

dMt− = (µ + rMt− − πt − ξt)dt− bXtdNt − dLt



Moral Hazard, Deductibles and Insurance Premia

Severe moral hazard implies large deductibles, and highly volatile

insurance premia, decreasing significantly as long as no accident

occurs, and increasing sharply after accidents

One can estimate b, λ and ρ by observing deductibles, accident

rates and the evolution of cash reserves. The evolution of the

incentive component of the risk premium over periods without

accidents yield a further empirical restriction that allows one in

principle to test the model



Pricing Credit Risk

The size adjusted price of bonds d(w) satisfies the same equation

as f(w), with a different boundary condition d′(wm) = 0. Because

of downsizing, bonds incur credit risk

The credit yield spread on zero-coupon bonds is always positive,

even when the maturity goes to zero. The credit yield spread at

zero maturity decreases with the liquidity ratio

yt(wt)− r = λmin
{
2−

wt

b
,0

}



VII. Concluding Remarks



Summary

We offer a model of large risk prevention in which, because of

downside risk, size is crucial for the provision of incentives

Investment and compensation are tied to past performance, while

downsizing must occur after poor performance

The immiseration result is robust to the possibility of increasing

the scale of operations

Our implementation in terms of insurance and financial contracts

has implications for credit risk



Applications

The model can be applied to study a large variety of situations

with dynamic moral hazard

– Prevention of industrial risk

– Design of contracts for medical liability insurance

– Allocation of position limits within investment banks

– Remuneration of fund managers


