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Infinity Laplacian on a graph:

∆∞u(x) =
1

2

(
inf
y∼x

u(y) + sup
y∼x

u(y)
)
−u(x)

Infinity Laplacian in Rn:

∆∞u(x) =

∑
uxiuxixjuxj

|∇u|2 =

“2nd derivative of u in the

gradient direction”



More definitions...

We say u is infinity harmonic if ∆∞u = 0 (in

the viscosity sense). Infinity harmonic func-

tions are limits of p-harmonic functions (i.e.,

minimizers of
∫ |∇u(x)|pdx given boundary data)

as p →∞. The p-harmonic functions solve the

Euler Lagrange equation

div(|∇u|p−2∇u) = 0

which can be rewritten as:

p|∇u|p−2
(
p−1∆1u + (1− p−1)∆∞u

)
= 0,

where ∆1 = ∆−∆∞. We write

∆pu := p−1∆1 + q−1∆∞

where p−1 + q−1 = 1.



Tug of war with noise

Variant of ε-step tug of war in a bounded do-

main of Rd:

whenever player moves by the vector v, a ran-

dom “noise vector” is added in a direction or-

thogonal to v.

THEOREM: As ε → 0, the value function for

noisy tug of war converges to the p-harmonic

extension of the boundary values (provided do-

main and boundary data are sufficiently regu-

lar). (Peres, S.)



Questions we can answer

1. Is there a natural probabilistic interpreta-

tion of what a p-harmonic extension is when

p 6= 2? Does the answer also make sense

for discontinuous boundary data?

2. Is the notion of ∞-harmonic in some sense

well defined on general metric spaces (not

just subsets of Rn)?

3. (Manfredi) Suppose that U is the unit disc

in R2 and that boundary conditions are 1 on

an arc of length a and 0 elsewhere. Does

the value of the infinity harmonic extension

at 0 have a power law decay as a → 0?

Generalization: what if we replace the arc

with an a-neighborhood of a Cantor set?



Some other known answers

1. Given continuous boundary conditions on

the boundary of a smooth closed domain,

there exists a unique p-harmonic extension

for each p ∈ (1,∞].

2. When 1 < p < ∞, a p-harmonic function u

is everywhere differentiable. It is real ana-

lytic except at those points where ∇u van-

ishes.

3. An ∞-harmonic function is continuous but

may not be C2. For example, in two di-

mensions, |x|4/3−|y|4/3 is ∞-harmonic. On

two dimensional domains, an ∞-harmonic

function is necessarily C1 (Savin).



Questions we can’t yet answer (but
can at least rephrase in terms of
game theory)

1. DIFFERENTIABILITY: Are∞-harmonic

functions everywhere differentiable in di-

mensions greater than two? (See the par-

tial results in this direction by Crandall and

Evans.)

2. STRICT MONOTONICITY IN BOUND-

ARY DATA: (Manfredi) Suppose p ∈ (1,∞)

and functions u1 and u2 are p-harmonic on

an open set U and satisfy u1 ≥ u2 on U and

u1 = u2 on an open subset of U . Does it

follow that u1 = u2 throughout U?



3. UNIQUE CONTINUATION: (Manfredi)

Suppose p ∈ (1,∞) and u1 and u2 are p-

harmonic on U . If u1 = u2 on an open

subset of U , does it follow that u1 = u2

throughout u?

4. BOUNDARY DATA: For what boundary

data is the p-harmonic extension uniquely

defined?



Discrete value existence

theorem

THEOREM: The payoff function F , defined

on a subset Y of the vertices of an undirected

graph is bounded between two constants, A

and B, then there is a function u which is:

1. The value of the game.

2. The unique bounded infinity harmonic func-

tion with the given boundary values.

3. The unique bounded AM extension of F .



Three Steps of the Proof:

1. Existence of a bounded infinity harmonic

function u.

2. Use u-based strategy to show it is AM.

3. Payoff of u achievable for either player,

i.e., given any bounded infinity harmonic u,

V1 ≥ u and V2 ≥ −u.

From this, we conclude that the value function

V = V1 = −V2 exists, and it is the unique

bounded infinity harmonic function.



1. Value existence

Define un to be the best player one can do

in a game modified so that if the boundary is

not reached in n steps, player one gets A (the

lowest possible value). Observe that u0(x) = A

on non-terminal states and

un(x) =
1

2

(
sup
y∼x

un−1(y) + inf
y∼x

un−1(y)

)

The un’s are increasing and bounded between

A and B. By induction, each un is infinity sub-

harmonic and the supremum u is clearly in-

finity superharmonic (otherwise it would get

bigger after another step), so u is infinity har-

monic.

Clearly, V1 ≥ u, and since player two can play in

such a way that u is a supermartingale, V1 ≤ u.

Hence u = V1.



2. Increasing increment sizes

and extensions

Suppose graph is locally finite and u is bounded
and infinity harmonic and players play the nat-
ural strategy suggested by u, i.e., player 1
always moves to where u is maximal, player 2
to where u is minimal.

If both players play this way and xn is game
position after n steps, u(xn) is a martingale
with non-decreasing increment sizes, i.e.,

|u(xn+1)− u(xn)| ≥ |u(xn)− u(xn−1)|.

Thus, for any edge e = (x, y) with u(y)−u(x) =
δ > 0 and any induced subgraph X ′ of X con-
taining e, there is a path from y to the bound-
ary of ∂X ′ on which u increases by at least δ
at each step, and path from x to ∂X ′ on which
u decreases by at least δ at each step. Con-
clusion: Lipschitz norm of u in X is at most
the Lipschitz norm of u in ∂X ′. Thus u is an
optimal extension.



3. Value is achievable:

Suppose graph is locally finite, x0 is starting
point, and there is a δ > 0 and a y neighboring
x0 with |y − x0| ≥ δ. Let Vδ be the collection
of all vertices on which u differs by δ or more
from its neighbors.

STRATEGY: when player two leaves Vδ, player
one can always “backtrack” until returning to
Vδ. Let vn be the last vertex of Vδ visited dur-
ing the first n moves; let yn be the number of
surplus turns player two has had since the last
visit to Vδ. Then observe:

u(vn)− δyn

is a submartingale which at each step goes up
by at least δ with probability 1/2. Convergence
follows from martingale convergence theorem,
and thus the game must end.



Tug of war with running payoffs

If g is fixed, solutions to ∆∞u = g have mean-

ing as the values of games in which player one

collects g(x) from player two each time x is

visited.

If g is positive some places and negative other

places, the game may not have a value. The

reason is that it may turn out that neither

player has an incentive to end the game—and

each player has to “waste” one or more valu-

able turns in order to force the game to end.



Fixed targets and comparison

with cones

Suppose player one begins the game with a
“target a single point” strategy. That is, player
one picks a fixed point x0 and a set S of states
and at each turn moves in a way that decreases
the distance to x0 by 1—stopping when game
position either reaches x0 or exits S. Play-
ing in this way makes distance to x0 a su-
permartingale, and this leads to an inequal-
ity. Namely, for any constants a > 0, b, if
u(x) ≥ aδ(x, x0)+b on the boundary of S\{x},
then u(x) ≥ aδ(x, x0) + b throughout S.

A function satisfying these inequalities and the
corresponding inequalities for player two is said
to satisfy comparison with cones. It is well
known and easy to show that on a length
space, satisfying comparison with cones is
equivalent to being an optimal Lipschitz
extension.



Value for continuum game

Tug of war variant: player-one-ε-target tug

of war.

At each step, player one targets a point y up
to ε units away. Then with probability 1/2,
player one reaches y (or hits the boundary at
a place within B2ε(y)) and with probability 1/2
the game state moves to a point in B2ε(y) of
the second player’s choice. If the game does
not terminate in n steps, player one receives A,
the lowest possible payoff. Denote by vn

ε the
value function for this game.

OBSERVE: vε = sup vn
ε is smaller than or equal

to any function which is bounded below by A

and satisfies comparison with cones. Define wε

using second player and we have:

Any bounded optimal extension u satisfies

vε ≤ u ≤ wε.



Sandwich argument

CLAIM: |vε − uε| = O(ε) and |wε − uε| = O(ε)

where uε is value of ordinary ε-step tug of war.

The claim implies wε − vε = O(ε). Since any

optimal u satisfies vε ≤ u ≤ wε, letting ε go to

zero gives uniqueness.

PROOF OF CLAIM: When game position is

more than 2ε away from the boundary, one way

to think of the game is that player one always

takes one step, and then with probability 1/2

player two gets two steps.

Now, suppose every time player two gets one of

these two-step strings, player one uses the next

step to backtrack the latter of player two’s

moves. Then this reduces the game to ordi-

nary ε tug of war, with an error of O(ε) that

comes from what happens near the boundary.


