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Tug of war

On a graph G: Let X be vertex set of G. Fix

a terminal subset Y ⊂ X, a terminal payoff

function F : Y → R.

Game token is initially placed at a vertex x0.

At kth turn, players toss a coin and the winner

is allowed to choose an xk adjacent to xk−1.

Game ends the first time xk ∈ Y , and player

one’s payoff is F (xk).

On a metric space X: Fix a Lipschitz ter-

minal payoff function F on a subset Y of a

metric space X.

Game token is initially placed at a vertex x0. At

kth turn, players toss a coin and the winner is

allowed to choose an xk with d(xk−1, xk) ≤ ε.

Game ends the first time xk ∈ Y , and player

one’s payoff is F (xk).



is good for

1. Infinity Laplacian problem: existence and

uniqueness of solutions to ∆∞u = g on

general metric spaces.

2. Optimal Lipschitz extension problem: when

does a Lipschitz function on a metric space

have a unique “tautest” extension?

3. Political and economic modeling?



PART ONE:

THE INFINITY LAPLACIAN



Infinity Laplacian on a graph:

∆∞u(x) =
1

2

(
inf
y∼x

u(y) + sup
y∼x

u(y)
)
−u(x)

Infinity Laplacian in Rn:

∆∞u(x) =

∑
uxiuxixjuxj

|∇u|2 =

“2nd derivative of u in the

gradient direction”



Infinity Laplacian: what is it?

On a graph G:

∆∞u(x) =

(
inf
y∼x

u(y) + sup
y∼x

u(y)

)
− 2u(x)

In Rn:

∆∞u(x) =

∑
uxiuxixjuxj

|∇u|2 =

“2nd derivative of u in the gradient direction”

Convention: ∆∞u(x) undefined in general when

∇u(x) = 0, but if 2nd derivative of u in every

direction is λ, ∆∞u(x) = λ.



More definitions...

We say u is infinity harmonic if ∆∞u = 0 (in

the viscosity sense). Infinity harmonic func-

tions are limits of p-harmonic functions (i.e.,

minimizers of
∫ |∇u(x)|pdx given boundary data)

as p →∞. The p-harmonic functions solve the

Euler Lagrange equation

div(|∇u|p−2∇u) = 0

which can be rewritten as:

p|∇u|p−2
(
p−1∆1u + (1− p−1)∆∞u

)
= 0,

where ∆1 = ∆−∆∞. We write

∆pu := p−1∆1 + q−1∆∞

where p−1 + q−1 = 1.



Infinity Laplacian and tug of

war

On a graph, when the game starts at v, player

one’s value, denoted V1(v), is the

supremum, over all player one strategies, of

the

infimum, over all player two strategies, of the

expected payoff for player one when the play-

ers use those strategies (which we set equal to

−∞ if game does not end almost surely).

Define V2(v) similarly. Say game has a value

function V if V1 = V2. The functions V1 and

V2 are infinity harmonic.
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Games without values
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Tug of War Application One:

Let uε be the value function of ε tug of war.

When the limit u := limε→0 uε exists point-

wise, we call u the continuum value (CV) of

the quadruple (X, Y, F ). We define the con-

tinuum value for player one (or two) analo-

gously. We prove the following:

THEOREM: Suppose X is a length space,

Y ⊂ X is non-empty, F : Y → R is Lipschitz and

bounded below. Then the continuum value u

exists and |u − uε|∞ = O(ε). In a sense we

define, this u is the unique viscosity solution

to ∆∞u = 0 with boundary conditions F .



What is a viscosity solution?

As a degenerate elliptic operator, ∆∞ has a

monotonicity property: if u1, u2 ∈ C2, u1(x) =

u2(x), and u1 ≥ u2 in neighborhood of x, then

∆∞u1 ≥ ∆∞u2.

We say u is a viscosity solution (definition due

to Crandall and Lions, 1983) to ∆∞u = g in an

open set U if it is continuous and there exists

no x ∈ U and C2 function φ for which φ(x) =

u(x) AND EITHER u ≥ φ in neighborhood of x

and ∆∞φ(x) > g(x) OR u ≤ φ in neighborhood

of x and ∆∞φ(x) < g(x).

EQUIVALENT: replace “C2 function” with

“quadratic function” or with “a quadratic func-

tion of path-distance from a fixed point z.”

The latter makes sense for any metric space.

If g = 0 then affine functions of distance (cones)

suffice.



PART TWO:

OPTIMAL LIPSCHITZ
EXTENSIONS



Optimal (“tautest”)

Lipschitz Extension Problem

Given a Lipschitz function u, defined on a sub-
set Y of a metric space X with metric δ, what
is the “tautest” Lipschitz extension of u to all
of X?

If “tautest” means merely “minimizing Lips-
chitz norm”

Lip(u, X) := sup
x,y∈X

|u(x)− u(y)|
δ(x, y)

,

then (noting that Lip(u, X) ≥ Lip(u, Y )) the
McShane-Whitney extensions (1934) would
are the largest and smallest minimizers:

inf
y∈Y

(u(y) + Lip(u, Y )|x− y|)

sup
y∈Y

(u(y)− Lip(u, Y )|x− y|)



A notion of “tautest”

Say u : X → R is an absolutely minimizing

(AM) extension of its values on Y if Lip(u, U) =

Lip(u, ∂U) for all open U ⊂ X\Y .

Theorem [Aronsson, Jensen]: When X is a

bounded, closed subset of Rn, Y = ∂X, and

F is a Lipschitz function on Y , there exists a

unique AM extension u of F to X. This is also

the unique continuous extension of F that is

infinity harmonic (i.e., a viscosity solution to

∆∞ = 0) on X\Y .

AM/Infinity Harmonic equivalence: We show

that on any rectifiable-path-connected metric

space, a bounded function is infinity harmonic

if and only if it is AM (w.r.t. path-distance

metric).



AMLE Model

Caselles, Masnou, Morel, and Sbert. Image

Interpolation Seminaire de l’Ecole Polytech-

nique, Palaiseau, Paris, 1998.



Infinity harmonic/AM history

EXISTENCE PROOF: G. Aronsson (1967)
proves existence when X is bounded subset of
Rn, also shows that all C2 solutions are infinity
harmonic.

EXISTENCE EXTENSION: Juutinen (2002)
extends existence to case that X is a separa-
ble length space.

UNIQUENESS PROOF 1: Jensen (1993),
also shows that u is AM iff if infinity harmonic.

UNIQUENESS PROOF 2: Barles and Busca
(2001)

UNIQUENESS PROOF 3: Crandall, Aron-
sson, and Juutinen (2004): generalizes X to
uniformly convex norms on Rn.

We prove existence and uniqueness for all
length spaces using Tug of War.



Tug of War Application

Two:

THEOREM Let X be a length space, Y ⊂ X,

and F : Y → R. If F is Lipschitz and positive,

then the continuum value described above is

an AM extension of F . If F is Lipschitz and

bounded, then it is the unique AM extension

of F .

COUNTEREXAMPLES: AM extension need

not be unique when F is merely bounded be-

low, even though the continuum value exists

uniquely in that setting.



PART THREE:

SOME PROOF SKETCHES



Discrete value existence

theorem

THEOREM: The payoff function F , defined

on a subset Y of the vertices of an undirected

graph is bounded between two constants, A

and B, then there is a function u which is:

1. The value of the game.

2. The unique bounded infinity harmonic func-

tion with the given boundary values.

3. The unique bounded AM extension of F .



Three Steps of the Proof:

1. Existence of a bounded infinity harmonic

function u.

2. Use u-based strategy to show it is AM.

3. Payoff of u achievable for either player,

i.e., given any bounded infinity harmonic u,

V1 ≥ u and V2 ≥ −u.

From this, we conclude that the value function

V = V1 = −V2 exists, and it is the unique

bounded infinity harmonic function.



1. Existence

Define un to be the best player one can do

in a game modified so that if the boundary is

not reached in n steps, player one gets A (the

lowest possible value). Observe that u0(x) = A

on non-terminal states and

un(x) =
1

2

(
sup
y∼x

un−1(y) + inf
y∼x

un−1(y)

)

The un’s are increasing and bounded between

A and B. By induction, each un is infinity sub-

harmonic and the supremum u is clearly in-

finity superharmonic (otherwise it would get

bigger after another step), so u is infinity har-

monic.

Clearly, V1 ≥ u, and since player two can play in

such a way that u is a supermartingale, V1 ≤ u.

Hence u = V1.



2. Increasing increment and

AM extensions

Suppose graph is locally finite and u is bounded
and infinity harmonic and players play the nat-
ural strategy suggested by u, i.e., player 1
always moves to where u is maximal, player 2
to where u is minimal.

If both players play this way and xn is game
position after n steps, u(xn) is a martingale
with non-decreasing increment sizes, i.e.,

|u(xn+1)− u(xn)| ≥ |u(xn)− u(xn−1)|.

Thus, for any edge e = (x, y) with u(y)−u(x) =
δ > 0 and any induced subgraph X ′ of X con-
taining e, there is a path from y to the bound-
ary of ∂X ′ on which u increases by at least δ

at each step, and path from x to ∂X ′ on which
u decreases by at least δ at each step. Con-
clusion: Lipschitz norm of u in X is at most
the Lipschitz norm of u in ∂X ′. Thus u is AM.



3. Value is achievable:

Suppose graph is locally finite, x0 is starting
point, and there is a δ > 0 and a y neighboring
x0 with |y − x0| ≥ δ. Let Vδ be the collection
of all vertices on which u differs by δ or more
from its neighbors.

STRATEGY: when player two leaves Vδ, player
one can always “backtrack” until returning to
Vδ. Let vn be the last vertex of Vδ visited dur-
ing the first n moves; let yn be the number of
surplus turns player two has had since the last
visit to Vδ. Then observe:

u(vn)− δyn

is a submartingale which at each step goes up
by at least δ with probability 1/2. Convergence
follows from martingale convergence theorem,
and thus the game must end.



Value for continuum game

Tug of war variant: player-one-ε-target tug
of war.

At each step, player one targets a point y up
to ε units away. Then with probability 1/2,
player one reaches y (or hits the boundary at
a place within B2ε(y)) and with probability 1/2
the game state moves to a point in B2ε(y) of
the second player’s choice. If the game does
not terminate in n steps, player one receives A,
the lowest possible payoff. Denote by vn

ε the
value function for this game.

OBSERVE: vε = sup vn
ε is smaller than or equal

to any function which is bounded below by A

and satisfies comparison with distance func-
tions. Define wε using second player and we
have:

Any bounded AM extension u satisfies vε ≤
u ≤ wε.



Sandwich argument

CLAIM: |vε − uε| = O(ε) and |wε − uε| = O(ε)

where uε is value of ordinary ε-step tug of war.

The claim implies wε − vε = O(ε). Since any

bounded AM u satisfies vε ≤ u ≤ wε, letting ε

go to zero gives uniqueness.

PROOF OF CLAIM: When game position is

more than 2ε away from the boundary, one way

to think of the game is that player one always

takes one step, and then with probability 1/2

player two gets two steps.

Now, suppose every time player two gets one of

these two-step strings, player one uses the next

step to backtrack the latter of player two’s

moves. Then this reduces the game to ordi-

nary ε tug of war, with an error of O(ε) that

comes from what happens near the boundary.


