On the Euclidean, Affine & Projective invariants of the supercircle, and their associated cocycles

Christian DUVAL CPT & UM

Joint work with J.-P. MICHEL (CPT)

UBC, 29 July 2009

Christian DUVAL CPT & UM (Aix-Marseille II On the three geometries of the supercircle

Introduction

- Contact structure of the supercircle $S^{1|1}$
- Euclidean, affine and projective invariants of $S^{1|1}$
 - Orthosymplectic group & Euclidean and affine subgroups
 - Notion of p|q-transitivity
 - Main result

4 Euclidean, affine and projective K(1)-cocycles of $S^{1|1}$

- The Cartan formula
- Main result
- Determination of $H^1(K(1), \mathcal{M})$ for $\mathcal{M} = \mathcal{F}_{\lambda}, \Omega^1, \mathcal{Q}$
- 5 Case of the supercircle $S^{1|N}$
 - Perspectives

• Find super geometric versions of the Euclidean, affine, and projective invariants of *S*¹. Super cross-ratio?

- Find super geometric versions of the Euclidean, affine, and projective invariants of *S*¹. Super cross-ratio?
- What are then the 1- cocycles associated with these super extensions of Diff₊(S¹)? Super Schwarzian derivative?

- Find super geometric versions of the Euclidean, affine, and projective invariants of *S*¹. Super cross-ratio?
- What are then the 1- cocycles associated with these super extensions of Diff₊(S¹)? Super Schwarzian derivative?
- How can one relate theses new (super) geometric objects?

- Find super geometric versions of the Euclidean, affine, and projective invariants of *S*¹. Super cross-ratio?
- What are then the 1- cocycles associated with these super extensions of Diff₊(S¹)? Super Schwarzian derivative?
- How can one relate theses new (super) geometric objects?
- Towards a classification of the geometries of the supercircle?

Diagrammatic representation : Geometries of $S^{1|1}$

Bibliographical landmarks

Super cross-ratio (even and odd)

- Aoki ['88] Super-Riemann surfaces
- Nelson ['88] Superstrings
- Uehara & Yasui ['90] WP on Super-Teichmueller
- Manin ['91] NCG
- Giddings ['92] Punctured Super-Riemann surfaces
- ▶ ...
- Super-Schwarzian
 - Friedan ['86] (N=1) CFT
 - Radul ['86] (N=1,2,3) Super-Bott cocycle
 - Cohn ['87](N=2) Super-Riemann surfaces
 - Gieres & Theisen ['93] Superconformally covariant operators

▶ ...

4 E N 4 E N

Invariants of $E(1) \subset Aff_+(1) \subset PSL(2, \mathbb{R}) \subset Diff_+(S^1)$

• Euclidean invariant (translations): distance¹

$$[x_1, x_2] = x_2 - x_1$$

Affine invariant (homotheties, translations): distance ratio

$$[x_1, x_2, x_3] = \frac{[x_1, x_3]}{[x_1, x_2]}$$

Projective invariant (homographies): cross-ratio

$$[x_1, x_2, x_3, x_4] = \frac{[x_1, x_3][x_2, x_4]}{[x_2, x_3][x_1, x_4]}$$

¹One deals effectively with $\mathbb{R}P^1$

Christian DUVAL CPT & UM (Aix-Marseille II On the three geometries of the supercircle

The associated $Diff_+(S^1)$ 1-cocycles

• Euclidean cocycle $\mathcal{E} : \text{Diff}_+(S^1) \to C^{\infty}(S^1)$:

 $\mathcal{E}(\varphi) = \log(\varphi')$

• Affine cocycle $\mathcal{A} : \mathrm{Diff}_+(S^1) \to \Omega^1(S^1)$:

 $\mathcal{A}(\varphi) = \mathcal{dE}(\varphi)$

• Projective cocycle: Schwarzian derivative S : Diff₊(S¹) $\rightarrow Q(S^1)$:

$$\begin{aligned} \mathcal{S}(\varphi) &= \left(\frac{\varphi'''}{\varphi'} - \frac{3}{2}\left(\frac{\varphi''}{\varphi'}\right)^2\right) dx^2 \\ &= dx \otimes L_{\partial_x} \mathcal{A}(\varphi) - \frac{1}{2} \mathcal{A}(\varphi)^2 \end{aligned}$$

- 14

イベト イモト イモト

The associated $Diff_+(S^1)$ 1-cocycles (cont'd)

The Schwarzian $S(\varphi)$ measures, at each point x, the shift between a diffeomorphism $\varphi \in \text{Diff}(S^1)$ and its approximating homography, $h \in \text{PGL}(2, \mathbb{R}),^2$

$$\mathcal{S}(\varphi)(x) = (\widehat{h}^{-1} \circ \varphi)'''(x)$$

- It is a PSL(2, ℝ)-differential invariant for Diff₊(S¹): S(φ) = S(ψ) iff φ = A ∘ ψ where A ∈ PSL(2, ℝ).
- It is a non trivial 1-cocycle of Diff₊(S¹) with values in the module of quadratic differentials Q(S¹):

$$\mathcal{S}(arphi \circ \psi) = \psi^* \mathcal{S}(arphi) + \mathcal{S}(\psi)$$

for al $\varphi, \psi \in \text{Diff}_+(S^1)$. It has kernel $\text{PSL}(2\mathbb{R})$.

²s.t. $\hat{h}^{-1} \circ \varphi$ has the 2-jet of Id at x

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative and commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, the sections of which are) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$.

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative and commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, the sections of which are) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$.

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$f(x,\xi) = f_0(x) + \xi f_1(x),$$
 where $f_0, f_1 \in C^{\infty}(S^1)$

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative and commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, the sections of which are) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$.

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$f(x,\xi) = f_0(x) + \xi f_1(x),$$
 where $f_0, f_1 \in C^{\infty}(S^1)$

- Parity: $p(f_0) = 0$, $p(\xi f_1) = 1$.

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative and commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, the sections of which are) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$.

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$f(x,\xi) = f_0(x) + \xi f_1(x),$$
 where $f_0, f_1 \in C^{\infty}(S^1)$

- Parity:
$$p(f_0) = 0$$
, $p(\xi f_1) = 1$.

- Projection: $\pi : C^{\infty}(S^{1|1}) \to C^{\infty}(S^1)$ where ker (π) : ideal generated by nilpotent elements.

The supercircle $S^{1|1}$: the circle S^1 , endowed with (a sheaf of associative and commutative $\mathbb{Z}/(2\mathbb{Z})$ -graded algebras, the sections of which are) the superfunctions $C^{\infty}(S^{1|1}) = C^{\infty}(S^1)[\xi]$ where $\xi^2 = 0$.

- If (x, ξ) are local coordinates of (affine) superdomain, every superfunction writes

$$f(x,\xi) = f_0(x) + \xi f_1(x),$$
 where $f_0, f_1 \in C^{\infty}(S^1)$

- Parity:
$$p(f_0) = 0$$
, $p(\xi f_1) = 1$.

- Projection: $\pi : C^{\infty}(S^{1|1}) \to C^{\infty}(S^1)$ where ker (π) : ideal generated by nilpotent elements.

- Group of diffeomorphisms: Diff(S^{1|1}) = Aut($C^{\infty}(S^{1|1})$). For practical purposes: a diffeomorphism is a pair $\Phi = (\varphi, \psi)$ of superfunctions s.t. $(\varphi(x,\xi), \psi(x,\xi))$ are new coordinates on S^{1|1}.

Vector fields & 1-forms of the supercircle

Vector fields $Vect(S^{1|1}) = SuperDer(C^{\infty}(S^{1|1}))$. Every Vector field is written locally as

$$X = f(x,\xi)\partial_x + g(x,\xi)\partial_\xi$$
 where $f,g \in C^\infty(\mathrm{S}^{1|1})$

NB: Vect(S^{1|1}) is a $C^{\infty}(S^{1|1})_L$ -module locally generated by $(\partial_x, \partial_\xi)$ where $p(\partial_x) = 0$, $p(\partial_\xi) = 1$. It is also a Lie superalgebra with Lie bracket $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$.

A THE A THE

Vector fields & 1-forms of the supercircle

Vector fields $Vect(S^{1|1}) = SuperDer(C^{\infty}(S^{1|1}))$. Every Vector field is written locally as

$$X = f(x,\xi)\partial_x + g(x,\xi)\partial_\xi$$
 where $f,g \in C^\infty(\mathrm{S}^{1|1})$

NB: Vect(S^{1|1}) is a $C^{\infty}(S^{1|1})_L$ -module locally generated by $(\partial_x, \partial_\xi)$ where $p(\partial_x) = 0$, $p(\partial_\xi) = 1$. It is also a Lie superalgebra with Lie bracket $[X, Y] = XY - (-1)^{p(X)p(Y)}YX$.

Differential 1-forms $\Omega^1(S^{1|1}) = C^{\infty}(S^{1|1})_R$ -module locally generated by dual basis $(dx, d\xi)$ where p(dx) = 0, $p(d\xi) = 1$. The module $\Omega^*(S^{1|1})$ of differential forms is bigraded (cohomology degree $|\cdot|$, parity p); our choice of *Sign Rule*:

$$\alpha \wedge \beta = (-1)^{|\alpha||\beta| + p(\alpha)p(\beta)}\beta \wedge \alpha$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\alpha = d\mathbf{x} + \xi d\xi$$

We have

$$d\alpha = \beta \wedge \beta$$
 where $\beta = d\xi$

A .

$$\alpha = \mathbf{d}\mathbf{x} + \xi \mathbf{d}\xi$$

We have

$$d\alpha = \beta \wedge \beta$$
 where $\beta = d\xi$

- SUSY contact distribution, $ker(\alpha)$, generated by "covariant derivative"

 $\boldsymbol{D}=\partial_{\boldsymbol{\xi}}+\boldsymbol{\xi}\partial_{\boldsymbol{X}}$

$$\alpha = \mathbf{d}\mathbf{x} + \xi \mathbf{d}\xi$$

We have

$$d\alpha = \beta \wedge \beta$$
 where $\beta = d\xi$

- SUSY contact distribution, $ker(\alpha)$, generated by "covariant derivative"

 $\boldsymbol{D}=\partial_{\boldsymbol{\xi}}+\boldsymbol{\xi}\partial_{\boldsymbol{X}}$

- Reeb vector field: $\partial_x = D^2$

$$\alpha = \mathbf{d}\mathbf{x} + \xi \mathbf{d}\xi$$

We have

$$d\alpha = \beta \wedge \beta$$
 where $\beta = d\xi$

- SUSY contact distribution, $ker(\alpha)$, generated by "covariant derivative"

$$D = \partial_{\xi} + \xi \partial_{x}$$

- Reeb vector field: $\partial_x = D^2$
- Contactomorphisms: the automorphisms of $(S^{1|1}, [\alpha])$:

$$K(1) = \{ \Phi \in \operatorname{Diff}(S^{1|1}) \, | \, \Phi^* \alpha = \boldsymbol{E}_{\Phi} \, \alpha \}$$

One shows that $\Phi = (\varphi, \psi) \in K(1) \Leftrightarrow \boxed{D\varphi = \psi D\psi}$ and

 $E_{\Phi} = (D\psi)^2$

- The $C^{\infty}(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et β .

- The $C^{\infty}(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et β . - The $C^{\infty}(S^{1|1})_R$ -module $\mathcal{Q}(S^{1|1})$ of quadratic differentials is generated by $\alpha^2 = \alpha \otimes \alpha$ et $\alpha\beta = \frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha)$.

- The $C^{\infty}(S^{1|1})_R$ -module $\Omega^1(S^{1|1})$ of 1-forms is generated by α et β . - The $C^{\infty}(S^{1|1})_R$ -module $Q(S^{1|1})$ of quadratic differentials is generated by $\alpha^2 = \alpha \otimes \alpha$ et $\alpha\beta = \frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha)$.

Proposition

Both $\Omega^1(S^{1|1})$ and $Q(S^{1|1})$ are K(1)-modules; they admit the decomposition into K(1)-submodules:^{*a*}

$$\Omega^{1}(S^{1|1}) \cong \mathcal{F}_{\frac{1}{2}} \oplus \mathcal{F}_{1}, \qquad \qquad \mathcal{Q}(S^{1|1}) \cong \mathcal{F}_{\frac{3}{2}} \oplus \mathcal{F}_{2}$$

The projections $\Omega^1(S^{1|1}) \to \mathcal{F}_{\frac{1}{2}}$ (resp. $\mathcal{Q}(S^{1|1}) \to \mathcal{F}_{\frac{3}{2}}$) are given by $\alpha^{\frac{1}{2}} \langle D, \cdot \rangle$, and the corresponding sections by $\alpha^{\frac{1}{2}} L_D$ (resp. $\frac{2}{3} \alpha^{\frac{1}{2}} L_D$).

^aCf. the decomposition: $Vect(S^{1|1}) \cong \mathcal{F}_{-1} \oplus \mathcal{F}_{-\frac{1}{2}}$ [Gargoubi-Mellouli-Ovsienko].

The Orthosymplectic group, its Euclidean and affine subgroups

It is the subgroup $\operatorname{SpO}(2|1) \subset \operatorname{GL}(2|1)$ of symplectomorphisms of $\mathbb{R}^{2|1}$, with symplectic form $d\varpi$ where $\varpi = \frac{1}{2}(pdq - qdp + \theta d\theta)$; its elements are of the form

$$h = \begin{pmatrix} a & b & \gamma \\ c & d & \delta \\ \alpha & \beta & e \end{pmatrix}$$

where

 $ad - bc - \alpha\beta = 1, e^2 + 2\gamma\delta = 1, \alpha e - a\delta + c\gamma = 0, \beta e - b\delta + d\gamma = 0.$ The group SpO(2|1) also preserving the 1-forme $\varpi = \frac{1}{2}p^2\alpha$ (where $p \neq 0$), it acts by contactomorphisms via the projective action of S^{1|1}:

$$\widehat{h}(x,\xi) = \left(rac{ax+b+\gamma\xi}{cx+d+\delta\xi},rac{lpha x+eta+e\xi}{cx+d+\delta\xi}
ight)$$

The Berezinian is $Ber(h) = e + \alpha\beta e^{-1}$ and $SpO_+(2|1) = Ber^{-1}(1)$ is a super-extension of $Sp(2, \mathbb{R}) = SL(2, \mathbb{R})$.

Le orthosymplectic group (cont'd)

One has the local factorization

$$\operatorname{SpO}_{+}(2|1) \ni h = \begin{pmatrix} 1 & 0 & 0 \\ \tilde{c} & 1 & \tilde{\delta} \\ \tilde{\delta} & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} \tilde{a} & 0 & 0 \\ 0 & \tilde{a}^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\operatorname{Aff}(1|1)} \underbrace{\begin{pmatrix} \epsilon & \tilde{b} & -\tilde{\beta} \\ 0 & \epsilon & 0 \\ 0 & \epsilon\tilde{\beta} & 1 \end{pmatrix}}_{\operatorname{Aff}(1|1)}$$

where $(\tilde{a}, \tilde{b}, \tilde{c}, \tilde{\beta}, \tilde{\delta}) \in \mathbb{R}^{3|2}$, with $\epsilon^2 = 1$, $\tilde{a} > 0$.

Le orthosymplectic group (cont'd)

One has the local factorization

$$\operatorname{SpO}_{+}(2|1) \ni h = \begin{pmatrix} 1 & 0 & 0 \\ \tilde{c} & 1 & \tilde{\delta} \\ \tilde{\delta} & 0 & 1 \end{pmatrix} \underbrace{\begin{pmatrix} \tilde{a} & 0 & 0 \\ 0 & \tilde{a}^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\operatorname{Aff}(1|1)} \underbrace{\begin{pmatrix} \epsilon & \tilde{b} & -\tilde{\beta} \\ 0 & \epsilon & 0 \\ 0 & \epsilon\tilde{\beta} & 1 \end{pmatrix}}_{\operatorname{Aff}(1|1)}$$

where $(\tilde{a}, \tilde{b}, \tilde{c}, \tilde{\beta}, \tilde{\delta}) \in \mathbb{R}^{3|2}$, with $\epsilon^2 = 1$, $\tilde{a} > 0$.

- The subgroup E(1|1) is the group of those $\Phi \in Diff(S^{1|1})$ s.t. $\Phi^* \alpha = \alpha$ and $\Phi^* \beta = \epsilon \beta$.

- One also has $\operatorname{Aff}(1|1) = \{ \Phi \in K(1) | \Phi^*\beta = F_{\Phi}\beta \}.$

Notion of *p*|*q*-transitivity

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and $p_0 \& p_1$ its canonical projections. Two *n*-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E* are said p|q-equivalent, $s \stackrel{p|q}{=} t$, where $n = \max(p, q)$, if $p_0(s_i) = p_0(t_i)$ $\forall i = 1, \ldots, p$ and $p_1(s_i) = p_1(t_i) \forall i = 1, \ldots, q$.³

³The *n*|*n*-equivalence is an . . . equality!

Christian DUVAL CPT & UM (Aix-Marseille II On the three geometries of the supercircle

Notion of *p*|*q*-transitivity

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and $p_0 \& p_1$ its canonical projections. Two *n*-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E* are said p|q-equivalent, $s \stackrel{p|q}{=} t$, where $n = \max(p, q)$, if $p_0(s_i) = p_0(t_i)$ $\forall i = 1, \ldots, p$ and $p_1(s_i) = p_1(t_i) \forall i = 1, \ldots, q$.³

The action of group *G* on *E* is said (simply) p|q-transitive if for all $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E*, there exists a (unique) $g \in G$ s.t. $\hat{g}(t) \stackrel{p|q}{=} s$.

³The *n*|*n*-equivalence is an . . . equality!

Christian DUVAL CPT & UM (Aix-Marseille II On the three geometries of the supercircle

Notion of *p*|*q*-transitivity

Extension of the notion of *n*-transitivity to supergroup actions.

Consider $E = E_0 \times E_1$ and $p_0 \& p_1$ its canonical projections. Two *n*-uplets $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E* are said p|q-equivalent, $s \stackrel{p|q}{=} t$, where $n = \max(p, q)$, if $p_0(s_i) = p_0(t_i)$ $\forall i = 1, \ldots, p$ and $p_1(s_i) = p_1(t_i) \forall i = 1, \ldots, q$.³

The action of group *G* on *E* is said (simply) p|q-transitive if for all $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$ of distinct points of *E*, there exists a (unique) $g \in G$ s.t. $\hat{g}(t) \stackrel{p|q}{=} s$.

Example: The PGL(2, \mathbb{R})-action on S¹ is simply 3-transitive.

³The n|n-equivalence is an ... equality!

Construction of the invariants

Theorem

Let the group *G* act simply p|q-transitively on $E = E_0 \times E_1$, and *m* be an *n*-uplet, $n = \max(p, q)$, of distinct points of *E*. The n + 1 point-function $I_{[m]}$ of *E* with values in *E* defined by

$$I_{[m]}(t_1,\ldots,t_{n+1})=\widehat{h}(t_{n+1})$$

where $\hat{h}(t) \stackrel{p|q}{=} m$, and $t = (t_1, \dots, t_n) \in E^n \setminus \Gamma$ enjoys the properties: **1** $I_{[m]}$ is *G*-invariant **1** $f \Phi \in E!$ preserves $I_{[m]}$, then $\Phi = \hat{g}$ where $g \in G$ **1** f n = p > q, the *n*-point functions with values in E_1

$$J_{[m],j}(t) = p_1(\widehat{h}(t_j)) \qquad (j = q+1,\ldots,n)$$

are *G*-invariant. the $I_{[m]}$ and $J_{[m],j}$ generate all invariants with n + 1 and *n* points.

Theorem I

• Euclidean invariant: $I_{e}(t_{1}, t_{2}) = ([t_{1}, t_{2}], \{t_{1}, t_{2}\})$ with

$$[t_1, t_2] = x_2 - x_1 - \xi_2 \xi_1, \qquad \{t_1, t_2\} = \xi_2 - \xi_1$$

• Affine invariant, $I_a(t_1, t_2, t_3) = ([t_1, t_2, t_3], \{t_1, t_2, t_3\})$, where, if $x_1 < x_2$,

$$[t_1, t_2, t_3] = \frac{[t_1, t_3]}{[t_1, t_2]}, \qquad \{t_1, t_2, t_3\} = [t_1, t_2, t_3]^{\frac{1}{2}} \frac{\{t_1, t_3\}}{[t_1, t_3]^{\frac{1}{2}}}$$

• Projective invariant, $I_p(t_1, t_2, t_3, t_4) = ([t_1, t_2, t_3, t_4], \pm \{t_1, t_2, t_3, t_4\})$, i.e., super cross-ratio, where, if $ord(t_1, t_2, t_3) = 1$,

$$\begin{bmatrix} t_1, t_2, t_3, t_4 \end{bmatrix} = \frac{[t_1, t_3][t_2, t_4]}{[t_2, t_3][t_1, t_4]},$$

$$\{t_1, t_2, t_3, t_4\} = [t_1, t_2, t_3, t_4]^{\frac{1}{2}} \frac{\{t_2, t_4\}[t_1, t_2] - \{t_1, t_2\}[t_2, t_4]}{([t_1, t_2][t_2, t_4][t_1, t_4])^{\frac{1}{2}}}$$

Theorem I (cont'd)

- If a bijection Φ de S^{1|1} preserves I_e , or I_a , or I_p , then $\Phi = \hat{h}$ for h in $E_+(1|1)$, or Aff_+(1|1), or SpO_+(2|1), respectively.
- If a contactomorphism $\Phi \in K(1)$ preserves the even part of I_e , or I_a , or I_p , then $\Phi = \hat{h}$ for h in E(1|1), or Aff(1|1), or $SpO_+(2|1)$, respectively.

Sketch of proof: One shows that the $\text{SpO}_+(2|1)$ -action is 3|2-transitive.⁴ The projective invariant I_p stems from the general theorem via the triple

$$p = ((\infty, 0), (0, 0), (1, \zeta))$$

Now for every oriented triple of "points" $t = (t_1, t_2, t_3)$ there exist two elements $h_{\pm} \in \text{SpO}_+(2|1)$ linking *t* to the class p = [p]; \Rightarrow the odd invariant is defined up to an overall sign.

In fact: $\hat{h}_{\pm}(t_1) = (\infty, 0), \hat{h}_{\pm}(t_2) = (0, 0), \hat{h}_{\pm}(t_3) = (1, \pm \zeta_3)$ where

$$\zeta_3 = \frac{\{t_2, t_4\}[t_1, t_2] - \{t_1, t_2\}[t_2, t_4]}{([t_1, t_2][t_2, t_4][t_1, t_4])^{\frac{1}{2}}}$$

is uniquely determined by t_1 , t_2 , t_3 . Hence

$$I_{p}(t_{1}, t_{2}, t_{3}, t_{4}) = \hat{h}_{\pm}(t_{4})$$

⁴More precisely that of the group generated by $\text{SpO}_+(2|1)$ and $(x,\xi) \mapsto (-x,\xi)$.

The Cartan formula

Consider $\Phi \in \text{Diff}(S^1)$, the flow $\phi_{\varepsilon} = \text{Id} + \varepsilon X + O(\varepsilon^2)$ of a vector field *X*, and 4 points t_1 , $t_2 = \phi_{\varepsilon}(t_1)$, $t_3 = \phi_{2\varepsilon}(t_1)$, $t_4 = \phi_{3\varepsilon}(t_1)$.

The Schwarzian derivative of Φ is defined, via the cross-ratio, as the quadratic differential $S(\Phi) \in Q(S^1)$ appearing in

$$\frac{\Phi^*[t_1, t_2, t_3, t_4]}{[t_1, t_2, t_3, t_4]} - 1 = \langle \varepsilon X \otimes \varepsilon X, \mathcal{S}(\Phi) \rangle + O(\varepsilon^3)$$

This formula (and its avatar for $\mathcal{A}(\Phi)$) admits a prolongation to the case of the supercircle; it leads to the following result:

A B A A B A

Theorem II

The even Euclidean, affine and projective invariants \Rightarrow three 1-cocycles of K(1), with kernel E(1|1), Aff(1|1) et $SpO_+(2|1)$ resp.:

• the Euclidean cocycle $\mathcal{E}: K(1) \to \mathcal{F}_0(S^{1|1})$:

$$\mathcal{E}(\Phi) = \log E_{\Phi} = \log(D\psi)^2$$

• the affine cocycle $\mathcal{A} : \mathcal{K}(1) \to \Omega^1(S^{1|1})$:

$$\mathcal{A}(\Phi) = d\mathcal{E}(\Phi)$$

• the projective cocycle (superSchwarzian) $S : K(1) \rightarrow Q(S^{1|1})$:

$$\mathcal{S}(\Phi) = \frac{2}{3} \alpha^{\frac{1}{2}} L_D \, \mathrm{S}(\Phi)$$

where

$$\mathrm{S}(\Phi) = \frac{1}{4} \left(\frac{D^3 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{D E_{\Phi} D^2 E_{\Phi}}{E_{\Phi}^2} \right) \alpha^{3/2}$$

Christian DUVAL CPT & UM (Aix-Marseille II On the three geometries of the supercircle

Theorem II (cont'd)

Using the projections of $Q(S^{1|1})$ to summands of densities, one obtains two new affine and projective 1-cocycles:

• the projection of the affine cocycle $A: \mathcal{K}(1) \to \mathcal{F}_{\frac{1}{2}}(S^{1|1})$:

$$\mathbf{A}(\Phi) = \alpha^{\frac{1}{2}} \langle \boldsymbol{D}, \mathcal{A}(\Phi) \rangle = \frac{\boldsymbol{D} \boldsymbol{E}_{\Phi}}{\boldsymbol{E}_{\Phi}} \alpha^{\frac{1}{2}}$$

• the projection of the Schwarzian cocycle $S : K(1) \rightarrow \mathcal{F}_{3/2}(S^{1|1})$:

$$S(\Phi) = \alpha^{\frac{1}{2}} \langle D, S(\Phi) \rangle = \frac{1}{4} \left(\frac{D^3 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{D E_{\Phi} D^2 E_{\Phi}}{E_{\Phi}^2} \right) \alpha^{3/2}$$

This expression is due to Radul.

< 回 > < 三 > < 三 >

Alternative formulae for the superSchwarzian

A >

Alternative formulae for the superSchwarzian

Let us point out the following expression

 $S(\Phi) = \frac{1}{6}\alpha^2 D\widetilde{S}(\Phi) + \frac{1}{2}\alpha\beta\widetilde{S}(\Phi)$ where $\widetilde{S}(\Phi) = S(\Phi)\alpha^{-3/2}$

which duly returns, via projection $\pi : C^{\infty}(S^{1|1}) \to C^{\infty}(S^{1})$, the classical Schwarzian derivative (in contrast to $S(\Phi)$ (!)).

Alternative formulae for the superSchwarzian

Let us point out the following expression

 $S(\Phi) = \frac{1}{6}\alpha^2 D\widetilde{S}(\Phi) + \frac{1}{2}\alpha\beta\widetilde{S}(\Phi)$ where $\widetilde{S}(\Phi) = S(\Phi)\alpha^{-3/2}$

which duly returns, via projection $\pi : C^{\infty}(S^{1|1}) \to C^{\infty}(S^{1})$, the classical Schwarzian derivative (in contrast to $S(\Phi)$ (!)).

Notice the alternative formulae

$$S(\Phi) = \frac{1}{4} \alpha^{\frac{1}{2}} \langle D, (\alpha^{\frac{1}{2}} L_D)^2 \mathcal{A}(\Phi) - \frac{1}{2} \mathcal{A}(\Phi)^2 \rangle$$
$$= -\frac{1}{2} E_{\Phi}^{\frac{1}{2}} D^3 (E_{\Phi}^{-\frac{1}{2}}) \alpha^{3/2}$$

yielding the Schwarzian [Radul] in terms of the affine cocycle A & the multiplier *E*.

くぼう くほう くほう

Determination of $H^1(K(1), \mathcal{M})$ for $\mathcal{M} = \mathcal{F}_{\lambda}, \Omega^1, \mathcal{Q}$

The 1-cocycles of k(1) (Lie superalgebra hamiltonian vector fields of $(S^{1|1}, \alpha)$) associated with \mathcal{E} , A et S are trivially the $c_i : k(1) \to \mathcal{F}_{i/2}$:

$$c_i(X_f) = (D^{i+2}f) \alpha^{i/2}$$
 (i = 0, 1, 3)

These are the 3 out of 4 generators of $H^1(k(1), \mathcal{F}_{\lambda})$ [Agrebaoui & Ben Fraj], the only ones which integrate as (non trivial) K(1)-cocycles.

Theorem

The cohomology spaces

$$H^1(\mathcal{K}(1),\mathcal{F}_\lambda(\mathrm{S}^{1|1})) = \left\{egin{array}{cc} \mathbb{R} & ext{si } \lambda = 0, \, rac{1}{2}, \, rac{3}{2} \ \{0\} & ext{sinon} \end{array}
ight.$$

are resp. generated by $\mathcal{E},\,A$ et S. The cohomology spaces

 $H^{1}(K(1), \Omega^{1}(S^{1|1})) = \mathbb{R}$ et $H^{1}(K(1), \mathcal{Q}(S^{1|1})) = \mathbb{R}$

are resp. generated by \mathcal{A} et \mathcal{S} .

Case of the supercircle $S^{1|N}$

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$\alpha = d\mathbf{x} + \sum_{i,j=1}^{N} \delta_{ij} \, \xi^i d\xi^j$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $\text{SpO}_+(2|N)$ retain th same form as for N = 1. However, the odd invariant $(I_p)_1$ is no longer determined up to a sign (mod O(1)), but up to the action of O(N).

Case of the supercircle $S^{1|N}$

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$\alpha = d\mathbf{x} + \sum_{i,j=1}^{N} \delta_{ij} \, \xi^i d\xi^j$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $SpO_+(2|N)$ retain th same form as for N = 1. However, the odd invariant $(I_p)_1$ is no longer determined up to a sign (mod O(1)), but up to the action of O(N).

Remark: In the Cartan formula [\Rightarrow 1-cocycles of K(N)], $\Phi^*[t_1, t_2]$ is *no more* proportional to $[t_1, t_2]$, up to $O(\varepsilon^3)$, for $N \ge 3$. The Schwarzian, $S(\Phi)$, is no longer given by the Cartan formula if $N \ge 3$.

Case of the supercircle $S^{1|N}$

For the supercircle $S^{1|N}$, endowed with the contact 1-form

$$\alpha = d\mathbf{x} + \sum_{i,j=1}^{N} \delta_{ij} \, \xi^i d\xi^j$$

the invariants of $E_+(1|N)$, $A_+(1|N)$ and $SpO_+(2|N)$ retain th same form as for N = 1. However, the odd invariant $(I_p)_1$ is no longer determined up to a sign (mod O(1)), but up to the action of O(N).

Remark: In the Cartan formula [\Rightarrow 1-cocycles of K(N)], $\Phi^*[t_1, t_2]$ is *no more* proportional to $[t_1, t_2]$, up to $O(\varepsilon^3)$, for $N \ge 3$. The Schwarzian, $S(\Phi)$, is no longer given by the Cartan formula if $N \ge 3$.

But ...

A (1) A (1) A (1) A (1) A (1)

Theorem

One deduces, from the even cross-ratio $(I_p)_0$ and the Cartan formula, the projective 1-cocycle $S: K(2) \to Q(S^{1|2})$

$$S = \frac{1}{6}\alpha^2 \left(D_1 D_2 S_{12} + \frac{1}{2}S_{12}^2 \right) + \frac{1}{2}\alpha(\beta^1 D_2 + \beta^2 D_1)S_{12} + \beta^1\beta^2 S_{12}$$

with $S_{12} = 2 S \alpha^{-1}$ where

$$S(\Phi) = \left(\frac{D_2 D_1 E_{\Phi}}{E_{\Phi}} - \frac{3}{2} \frac{D_2 E_{\Phi} D_1 E_{\Phi}}{E_{\Phi}^2}\right) c$$

The projection of quadratic differentials to 1-densities of $S^{1|2}$ returns the above Schwarzian derivative $S : \mathcal{K}(2) \to \mathcal{F}_1(S^{1|2})$.

The kernels of these cocycles coincide and are isomorphic to PC(2|2).

Perspectives

- Classification of the geometries of (S^{1|2}, [α]) see [Ben Fraj & Salem]
- Construction of the Bott cocycle of K(1) and K(2) via the cup product of *E* and *A*.
- Detailed study of the Möbius supercircle S^{1|1}.⁵
- Superization of the Lorentzian hyperboloid of one sheet *H*^{1,1} ⊂ sl(2, ℝ) whose conformal geometry is holographically related to the projective geometry of conformal infinity, *S*¹ — [Kostant-Sternberg, Guieu-ChD].

⁵Its superfunctions are defined as the smooth superfunctions of $\mathbb{R}^{1|1}$ invariant under $(x,\xi) \mapsto (x+2\pi,-\xi)$.

Vancouver, 29-07-2009

27/29

Christian DUVAL CPT & UM (Aix-Marseille II On the three geometries of the supercircle

Reference

J.-P. Michel & ChD, On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative, http://xxx.lanl.gov/abs/0710.1544v2 International Mathematics Research Notices (2008): article ID rnn054

4 3 5 4 3 5 5

Intermezzo: Supermanifolds

- A supermanifold of dim n|N is a pair $\mathcal{M} = (M, \mathcal{O}_M)$ with M a n-dimensional smooth manifold and \mathcal{O}_M a sheaf of commutative superalgebras, locally isomorphic to a superdomain of dim n|N.
- A superdomain is a triple $\mathcal{U} = (U, \mathcal{A}(U), ev)$ where $U \subset \mathbb{R}^n$ open, $\mathcal{A}(U) = C^{\infty}(U) \otimes \Lambda(\xi_1, \dots, \xi_N)$, and for all $x \in U$, evaluation map $ev_x : \mathcal{A}(U) \to \mathbb{R}$ defined by $ev_x(f \otimes 1) = f(x)$ & $ev_x(1 \otimes \xi_i) = 0$ is a morphism of superalgebras.
- A morphism between superdomains Φ : U₁ → U₂ is a pair (φ, χ) where φ ∈ C[∞](U₁, U₂) and χ : A(U₂) → A(U₁) is a morphism of superalgebras s.t. ev_x(χ(f)) = ev_{φ(x)}(f).
- A morphism of supermanifolds Φ : M₁ → M₂ is a pair (φ, χ) where φ ∈ C[∞](M₁, M₂) and χ : O_{M2} → φ_{*}O_{M1} is a morphism of sheaves, inducing locally a morphism of superdomains.
- A diffemorphism of supermanifolds is a morphism $\Phi : \mathcal{M}_1 \to \mathcal{M}_2$ s.t. $\Phi^{-1} : \mathcal{M}_2 \to \mathcal{M}_1$ exists and is a morphism.

3

イロト 不得 トイヨト イヨト