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The Set-Up

Family of Oscillatory Nonlocal Equations:
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The Set-Up

Family of Oscillatory Nonlocal Equations:

F(us,;—():0 in D
=g on R"\ D

Translation Invariant Limit Nonlocal Equations

GOAL

Prove there is a unique nonlocal operator F so that u® will be very close
to U as € — 0. (Homogenization takes place.)
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The Set-Up

Family of Oscillatory Nonlocal Equations:

F(us,g) =0 inD
g on R"\ D

X
F
(U, c

) =

inf sup {fo‘ﬁ(g) ~l—/ (u(x+y)+ u(x—y)—2u(x ))K"‘ﬂ o y)dy}.
(0% B n
<Think of a more familiar 2nd order equation:

F(D?u, g) = igfsgp {f‘lﬁ(g) + Iﬂjﬁ(s)uxi)g(x)}>



The Set-Up

Periodic Nonlocal Operator G
forall z € Z"
G(U7X +Z) = G(U( + Z),X)
Our F will be periodic when f®% and K®? are periodic in x.
Translation Invariant Nonlocal Operator G

G is translation invariant if for any y € R”,

G(u,x+y)=G(u(- +y),x).



Main Theorem

Theorem (S. ‘08; Homogenization of Nonlocal Equations)

If F is periodic and uniformly elliptic, plus technical assumptions, then
there exists a translation invariant elliptic nonlocal operator F with the
same ellipticity as F, such that u® — u locally uniformly and u is the
unique solution of

F(a,x)=0 inD
g on R"\ D.



Interpretations and Applications

e Linear Case— Determine effective dynamics of Lévy Process in
inhomogeneous media

A+ [ (uloet )+ = y) = 2ub)KCE )y

e Optimal Control Case— Determine an effective optimal cost of
control of Lévy Processes in inhmogeneous media

nf {75+ [ (e y) + ulox = ) = 206Ky}

e Two Player Game Case— Determine an effective value of a two
player game of a Lévy Process in inhomogeneous media

inf sup {faﬁ(§

op {750+ [ (wlcty) 4wt ) = 200K )y}
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The Set-Up— Assumptions on F

“Ellipticity”
A A
— s <KY(xy) < —
Iy|™" ™
Scaling
KB (x, \y) = A "7KB(x, y).
Symmetry

K (x,—y) = K*(x,y)



Recent Background— Nonlocal Elliptic Equations
Existence/Uniqueness (Barles-Chasseigne-Imbert)
Given basic assumptions on K® and fo‘_ﬁ, there exist unique solutions to
the Dirichlet Problems F(u®, x/¢) =0, F(a,x) = 0.
Regularity (Silvestre, Caffarelli-Silvestre)

u® are Holder continuous, depending only on A, A, ||f*?||, dimension,
and g. (In particular, continuous uniformly in ¢.)

Nonlocal Ellipticity (Caffarelli-Silvestre)

If uand v are C1! at a point, x, then

M~ (u—v)(x) < F(u,x) — F(v,x) < MT(u— v)(x).

Tu(x) = |nf{Laﬂ (x )} and M+u(x):sup{Laﬂu(x)}.

af



Recent Background— 2nd Order Homogenization
The “Corrector” Equation (Caffarelli-Souganidis-Wang)

For each matrix, @, fixed, F(Q) is the unique constant such that the
solutions, v¢, of

F(Q+ D?v¢,%) =F(Q) in B
ve(x) =0 on 0B,

satisfy the decay property as ¢ — 0, ||v®||oc — 0.



Recent Background— 2nd Order Homogenization
The “Corrector” Equation (Caffarelli-Souganidis-Wang)

For each matrix, @, fixed, F(Q) is the unique constant such that the
solutions, v¢, of

F(Q+ D?v¢,%) =F(Q) in B

ve(x) =0 on 0B,
satisfy the decay property as ¢ — 0, ||v®||oc — 0.
This generalizes the notion of the

True Corrector Equation (Lions-Papanicolaou-Varadhan, 1st order
HJE)

F(Q) is the unique constant such that there is a global periodic solution
of

F(Q+ D?v,y) = F(Q) in R".



Perturbed Test Function Method

) All information is in
Need to Determine = original operator
Effective operator F(g’ x/2) p: 0
N g
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F(¢,x) >0 = F(¢+v°,x/e)=F >0



Perturbed Test Function Method

_ All information is in
Need to Determine - original operator
Effective operator F(-,x/e) =0

N ;.
~ 7 A n + NT
y :v _.—' rl .E— w \
/ N W =
l/ : ) C < Loq \
I vV —~ Can we perturb aauE ‘L — :__ - E\—
$to ¢+ v o
to COMPARE
WITH wu®???
F(¢,X0)ZO = F(¢+VE’X/8):F20

To go BACK from comparison of ¢ + v and u®
TO comparison of ¢ and u NEED

[v¥] —0 as ¢ —0



Strategy

e Most of the arguments for 2nd order homogenization are based on
COMPARISON + REGULARITY

e Nonlocal equations have good COMPARISON + REGULARITY
properties

=—> We should try to modify techniques of the 2nd order setting to the
nonlocal setting



Difficulties Taking ldeas to Nonlocal Setting

The space of test functions is much larger! CZ(R") versus S”

Test function space is not invariant under the scaling of the
operators u — e%u(-/¢)

F(¢,-) is a function, not a constant

What should be the “corrector” equation? We can't just “freeze”
the hessian, D?¢(xg), at a point xg



Scaling Test Functions?
Bad Test Function Scaling, But Good F Scaling
Lu(D)](x) = L[u)(2)

L2u(x) = [ (uloc+y) + ulx = y) = 200K (S, y)dy



Scaling Test Functions?

Bad Test Function Scaling, But Good F Scaling
aBr.o " _ qaBr X
Ll u())(x) = L2 [ul(5)

L2u(x) = [ (uloc+y) + ulx = y) = 200K (S, y)dy

Put The Test Function Inside

Fo+v5%) = in B
ve(x) =0 on R"\ By,



“Corrector” Equation
equation for ¢ + v©

F(¢+V8’§):
igfsup{faﬂ(x)+/ (A(x +y) + d(x — y) — 2¢(x ))Kaﬁ( ,y)dy
8 € Rn

+/]R,,(V€(X+_y)+ Vi(x — y) — 20 (x)) K (Z g )dy }



“Corrector” Equation
equation for ¢ + v©

F(¢ —+ VE’ g) =
inf sup { FB(%) + / (Bx+y) + 6(x = ¥) = 260K (X, y)dy
a g 9 Rn

+/<v€(x+y)+vf(x—y)— RS, y)ay)
RI’I

“frozen” operator on ¢ at xg

[L700)l() = [ (90 +2)+ 600 = 2) ~ 20(0))K*(x,2)c2



“Corrector” Equation

Analogy to 2nd order equation

i (2)(& + Vg (X) = 22z () + (2 )iz (4)
and ajj(Z)¢x;x;(x) is uniformly continuous in x.
Free and frozen variables, x and xg
Uniform continuity (Caffarelli-Silvestre)

[LYB(x0)](x) is uniformly continuous in xq, independent of x and af



“Corrector” Equation

NEW OPERATOR F,,,

o5, 2) = infsup {F7(2) + L 000)] 2)

+/n(vf(x+y) v (x = y) = 27 (K2, y)dy}

New “Corrector” Equation

For(V5 5) = F(¢,%0)  in Bi(x0)
v =0 on R\ Bi(xp).



“Corrector” Equation

Proposition (S. '08; “Corrector” Equation)

There exists a unique choice for the value of F(¢, xo) such that the
solutions of the ‘“corrector” equation also satisfy

lim max |[v¢| =0.
e—0 Bi(x0)

(via the perturbed test function method, this proposition is equivalent to
homogenization)



Finding F... Variational Problem

(Caffarelli-Sougandis-Wang... *In spirit)



Finding F... Variational Problem

(Caffarelli-Sougandis-Wang... *In spirit)

Consider a generic choice of a Right Hand Side, / is fixed

F¢,XO(V}€, g) =/ in Bl(Xo)
V/€ =0 on R” \ Bl(Xo).

How does the choice of / affect the decay of v;?

decay property

lime—0 maXg; (xo) v¥[=0 <= (v/)*=(v)«=0



Variational Problem

| very negative

pt(x) = (1 — |x[?)2 - 1p, is a subsolution of equation
= (v{)+ > 0 and we missed the goal.




Variational Problem

By

| very positive

p~(x) = —(]x|* = 1)2- 1, is a supersolution of equation
—> (v;)* < 0 and we missed the goal,



Variational Problem

By

| very positive

p~(x) = —(]x|* = 1)2- 1, is a supersolution of equation
—> (v/)* < 0 and we missed the goal, but in the other direction.



Variational Problem

By

| very positive

p~(x) = —(]x|* = 1)2- 1, is a supersolution of equation
—> (v/)* < 0 and we missed the goal, but in the other direction.

Can we choose an / in the middle that is “JUST RIGHT”?



Variational Problem

Vg ¢
N,
AR\ A A A
By By
(/ << o) | =777

Can we choose an / in the middle that is “JUST RIGHT”?



Obstacle Problem

(Caffarelli-Sougandis-Wang) The answer is YES.

Information From Obstacle Problem

The obstacle problem gives relationship between the choice of / and the
decay of v;.



Obstacle Problem
The Solution of The Obstacle Problem In a Set A
Up =inf{u: Fy,(u,y) <lin Aand u>0inR"}

equation: Ui\ is the least supersolution of Fy,, = /in A
obstacle: U/, must be above the obstacle which is 0 in all of R”



Obstacle Problem
The Solution of The Obstacle Problem In a Set A
Up =inf{u: Fy,(u,y) <lin Aand u>0inR"}

equation: Ui\ is the least supersolution of Fy,, = /in A
obstacle: U/, must be above the obstacle which is 0 in all of R”

Lemma (Holder Continuity)

Ui\ is y-Hélder Continuous depending only on A, A,
dimension, and A.

faﬁHOO' qbr

Monotonicity and Periodicity of Obstacle Problem
If AC B, then U < Ug. For z € 2", U}, ,(x) = Uj(x — z)



Obstacle Problem

NOTATION
Rescaled Solution

!l = inf{u : F¢7X0(u,§) </in Q@ and u>0in R”}.

Solution in Q; and Solution in @ /.

1) = <Vl

)

€



(g <Fr

Qe



Obstacle Problem

Dichotomy

(i) For alle >0, Ué\)l/ = 0 for at least one point in every complete cell
of Z" contained in Q..



Obstacle Problem

Dichotomy

(i) For alle >0, Ué\)l/ = 0 for at least one point in every complete cell
of Z" contained in Q..

(i) There exists some g and some cell, Cp, of Z" such that
UIQ1/ (y) >0 forall y € G.
€0



Obstacle Problem

Dichotomy

(i) For alle >0, Ué\)l/ = 0 for at least one point in every complete cell
of Z" contained in Q..

(i) There exists some g and some cell, Cp, of Z" such that
UIQ1/ (y) >0 forall y € G.
€0

Lemma (Part (i) of The Dichotomy)
If (i) occurs, then (vi)* < 0.

Lemma (Part (ii) of The Dichotomy)

If (i) occurs, then (v;). >0



Obstacle Problem

Proof of First Lemma (If (i) occurs, then (v;)* <0)...
e Rescale back to Q.
Definition of v/ — vi < us!

o (i) = u®' =0 at least once in EVERY cell of £Z". Holder
Continuity = v®/ < Ce.

:\\j \ PRV P A
~__ Iy [
Ve F’\, Q,
1




Obstacle Problem

Proof of Second Lemma (If (ii) occurs, then (v/), > 0)...
e Given any ¢ > 0, Periodicity, Monotonicity, and (ii) allow

construction of a connected cube C. C @; such that v/ > 0in C.

and |C|/|Qi| >1—0.

% AT
N = -
0 ~ 0 )
Co N\ 711 +1 U
% Com| o s
4 - U
D) fr_ TN E
AR AN
IRV AR A=
v\ L~
(:} AN =/I/ V/ IV VIV AL PPNV
1 (
\_/C




Obstacle Problem

Proof of Second Lemma continued (If (ii) occurs, then (v;). > 0)
e Properties of u>/ = u®/ is a solution inside C..
e Comparison with v; and boundary continuity =
us! — Vi < C(sY/my.
e Upper limit in e: (—vf)* <0
e Same as (v/), >0



Choice for F

Choose a special / such that / is ARBITRARILY CLOSE to values that
give (i) and values that give (ii).



Choice for F

Choose a special / such that / is ARBITRARILY CLOSE to values that
give (i) and values that give (ii).

The Good Choice of F

F(¢,x0) = sup {I : (if) happens for the family (UIQ1/5)8>O}



Needed Properties for F

Still need to show
Elliptic Nonlocal Equation
o F(u,x) is well defined whenever u is bounded and “C'! at the
point, x".

o F(u,-) is a continuous function in an open set, Q, whenever
u e C3(Q).
e Ellipticity holds: If u and v are C*! at a point, x, then

M~ (u — v)(x) < F(u,x) — F(v,x) < MT(u— v)(x).



Needed Properties for F

Still need to show
Elliptic Nonlocal Equation
o F(u,x) is well defined whenever u is bounded and “C'! at the
point, x".

o F(u,-) is a continuous function in an open set, Q, whenever
u e C3(Q).
e Ellipticity holds: If u and v are C*! at a point, x, then

M~ (u — v)(x) < F(u,x) — F(v,x) < MT(u— v)(x).

Comparison

This follows from ellipticity and translation invariance.



True Corrector Equation

Periodic Corrector

F(¢,x0) is the unique constant such that the equation,

Fosxo(w,y) = F(¢,x0) in R”

admits a global periodic solution, w.



Inf-Sup Formula

Corollary: Inf-Sup formula

F = inf Fyxo (W,
(¢, %0) (w plagriodic}yseu]gn( oW, )



Thank You!



