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Gaussian statistics are consistent with linear dynamics.

Are non-Gaussian statistics necessarily inconsistent with linear dynamics ?

In particular, are skewed pdfs, implying different behavior of 
positive and negative anomalies, inconsistent with linear dynamics ?

Thanks also to : Barsugli, Compo, Newman, Penland, and Shin



dx
dt

  =   A x +    fext +   B η  

Supporting EvidenceSupporting Evidence

- Linearity of coupled GCM responses to radiative forcings

- Linearity of atmospheric GCM responses  to tropical SST forcing

- Linear dynamics of observed seasonal tropical SST anomalies

- Competitiveness of linear seasonal forecast models with global coupled models          

- Linear dynamics of observed weekly-averaged circulation anomalies

- Competitiveness of Week 2 and Week 3 linear forecast models with NWP models

- Ability to represent observed second-order synoptic-eddy statistics

The Linear Stochastically Forced (LSF) Approximation

x =   N-component anomaly state vector                  
η

 

=  M-component gaussian noise vector              
fext (t) =   N-component external forcing vector 
A(t) =   N x N matrix                                               
B(t) =   N x M matrix



Observed and Simulated Spectra of Tropical SST Variability 

Spectra of the projection of tropical SST
anomaly fields on the 1st EOF of observed 
monthly SST variability  in 1950-1999.

Observations (Purple) 

IPCC AR4 coupled GCMs
(20th-century (20c3m) runs)
(thin black, yellow, blue, and green)

A linear inverse model (LIM) constructed 
from 1-week lag covariances of weekly- 
averaged  tropical data in  1982-2005
(Thick Blue)

Gray  Shading : 
95% confidence interval from the LIM, 

based on 100 model runs with different 
realizations of the stochastic forcing. 

From  Newman, Sardeshmukh and Penland (2008)



Seasonal Predictions of  Ocean Temperatures in the Eastern Tropical Pacific : 

Comparison of linear empirical and nonlinear GCM forecast skill 

(Courtesy : NCEP)

Simple linear 
empirical 
models are 
apparently 
just as good 
at predicting 
ENSO 

as 

“state of 
the art” 
coupled 
GCMs



BSR2
BASIC POINT: The nonlinear NCAR/CCM3 atmospheric GCM’s responses to 
prescribed global SST changes over the last 50 years are well -approximated by 
linear responses to just the Tropical SST changes, obtained by linearly combining 
the GCM’s responses to SSTs in the 43 localized areas shown above.

DOMINANCE and LINEARITY of Tropical SST influences on global climate variability

Sardeshmukh, Barsugli and Shin 2008

Local correlation of annual mean “GOGA” and “Linear TOGA” responses



Decay of lag-covariances of weekly anomalies is consistent with linear dynamics

Is   C(τ ) =  eMτ  C(0)   ?

M  is first estimated using the
observed C(τ = 5 days) and C(0) 
in this equation, and then used
to "predict"  C(τ = 21 days)

The components of the anomaly
state vector x  include the 7-day 
running mean PCs of 250 and 750 mb
streamfunction, SLP, tropical diabatic
heating and stratospheric height anomalies. 

From Newman and Sardeshmukh
 (2008)



dx
dt

  =   A x +   fext +   B η  

d
dt

< x >  =  A < x >  +  fext

d
dt

  C      =  A C  +  C  AT  +  B BT  

Equations for the first two momentsEquations for the first two moments

(Applicable to both Marginal and Conditional Moments)  

<x >   =   ensemble mean anomaly                                  

C =   covariance of departures from ensemble mean 

< x >  =  − A−1  fext          
dC
dt

  =  0  =    A C  +  C  AT  +  B BT  

x̂ '(t)  ≡  < x '(t) |  x '(0) >        =  eAt x '(0)    

Ĉ(t)  ≡  < (x̂ '− x ') (x̂ '− x ')T  >  =  C − eAtCeAT t  

If A(t), B(t) , and If A(t), B(t) , and ffextext (t(t)) are constant, thenare constant, then

First two Marginal moments   

First two Conditional moments         
Ensemble mean forecast                    
Ensemble spread 

If x is Gaussian, then these moment equations COMPLETELY 
characterize system variability and predictability 

An attractive feature of                 
the LSF Approximation



But . . . atmospheric circulation statistics are not Gaussian . . .

Observed Skew S and (excess) Kurtosis K of daily 300 mb Vorticity (DJF) 

From Sardeshmukh and Sura 2008



Sea Surface Temperature statistics are also not Gaussian . . .

Observed Skew S and (excess) Kurtosis K of daily SSTs (DJF) 

Skew                                                            Kurtosis

From Sura and Sardeshmukh 2008



Model  1 :   
dx
dt

= Ax + fext + Bη

Model  2 :   
dx
dt

= Ax + fext + Bη + (Ex)ξ

Model  3 :   
dx
dt

= Ax + fext + Bη + (Ex + g)ξ −
1
2

Eg

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

  
For simplicity consider a scalar ξ  here

A(t), B(t), E(t) are matrices; g(t),  fext (t),  η  are vectors 

  
Moment  Equations : 

                   

d
dt

< x >  =   M < x >  +   fext         where     M   =  (A +
1
2

E2 )           

d
dt

 C        =   M  C  +   C  MT   +   B BT   +   E { C  + < x >< x >T } ET   +   g  gT  
 

Modified LSF Dynamics



A simple view of how additive and linear multiplicative noise can 

generate skewed PDFs even in a deterministically linear system

Additive noise only
Gaussian
No skew

Additive and uncorrelated
Multiplicative noise 

Symmetric non-Gaussian

Additive and correlated
Multiplicative noise 

Asymmetric non-Gaussian



A simple rationale for Correlated Additive and Multiplicative (CAM) noise  

(xy)'   =     ′x  y    +     x  ′y   +    ′x ′y   −   ′x ′y

           =     y  ′x    +         (x + ′x ) ′y     −   ′x ′y

In a quadratically nonlinear system with “slow” and “fast” components x and y, 
the anomalous nonlinear tendency has terms of the form :

CAM 
noise

mean Noise 
Induced Drift

Note that it is the  STOCHASTICITY of  y’ that enables the mean drift to be 
parameterized in terms of the noise amplitude parameters

(vT )'   =     ′T  v   +      ′v  T   +     ′v ′T   −   ′v ′T

           =     v  ′T    +         ( T +  ′T ) ′v     −   ′v ′T



dXi

dt
= Lij X j + Nijk X j Xk + Fi                                                      Einstein Summation Convention

d ′Xi

dt
= [Lij + (Nijk + Nikj )Xk ] ′X j  +  Nijk ( ′X j ′Xk − ′X j ′Xk ) +  ′Fi      

Let ′X =
′x
′η

⎡

⎣
⎢

⎤

⎦
⎥  and X =

x
η
⎡

⎣
⎢

⎤

⎦
⎥

d ′xi

dt
  =       [Lij + (Nijm + Nimj )ηm ] ′x j                                       Linear terms (= Aij ′x j )

             +  [(Nijm + Nimj ) ′x j + {Lim + (Nijm + Nimj )x j }] ′ηm       Correlated additive and multiplicative noise

             −  (Nijm + Nimj ) ′x j ′ηm                                                 Mean noise-induced drift

             +  Nimn ( ′ηm ′ηn − ′ηm ′ηn  )                                               Other additive noise ( = Bikξk  )

             +  Nijk  ( ′xj ′xk − ′x j ′xk   )                                                Hard nonlinearity
             +  ′fi                                                                            External forcing
Neglecting the hard nonlinearity, and using the FPE to derive the noise-induced drift, we obtain

   
 
d ′xi

dt
  =  Aij  ′x j   +  (Eijm ′x j + Lim + Eijmx j ) ′ηm  −  

1
2

Eijm (Ljm + Ejkmxk ) +  Bikξk  +  ′fi  

          =   Aij ′x j   +  (Eijm ′x j +  Gim  ) ′ηm            −  
1
2

EijmGjm                  +  Bikξk  +  ′fi   
 

where   Eijm =  (Nijm + Nimj ), and Gim =   Lim + (Nijm + Nimj )x j = Lim +  Eijmx j      
 

Rationalizing linear anomaly dynamics 

with correlated additive and linear multiplicative stochastic noise  



A 1-D system with Correlated Additive and Multiplicative  (“CAM”) noise 

 
dx
dt

≅ Ax + (Ex + g)η + Bξ −
1
2

Eg                 

 < x >   =       0
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n − 1

2
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d
dx

 [( E2x2 + 2Egx + g2 + B2 ) p ] Fokker-Planck Equation  :  

Remembering that  Skew  S  =  
< x 3 >
σ 3   and  Kurtosis  K  =  

< x 4 >
σ 4  −  3 ,  we have

                  K  =  
3
2
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Stochastic Differential  Equation  : 

Moments : 

A simple relationship between Skew and Kurtosis :  



Note the quadratic relationship between K and S :    K > 3/2  S2

Observed Skew S and (excess) Kurtosis K of daily 300 mb Vorticity (DJF) 



Observed Skew S and (excess) Kurtosis K of daily SSTs (DJF) 

Skew                                                            Kurtosis

From Sura and Sardeshmukh 2008

Note the quadratic relationship

between K and S :    K > 3/2  S2



Understanding the patterns of Skewness and Kurtosis

Are diabatic or adiabatic stochastic transients more important ?

To clarify this, we examined the circulation statistics in a 1200
winter simulation generated with a T42  5-level dry adiabatic GCM 
(“PUMA”) with the observed time-mean diabatic forcing specified as
a fixed forcing. 

There is thus NO transient diabatic forcing in these runs.



1-point anomaly correlations of synoptic (2 to 6 day period) variations 

with respect to base points in the Pacific and Atlantic sectors

Simulated                                     Observed

•
• •

•



Observed (NCEP, Top) and Simulated (PUMA, Bottom) S and K of 300 mb Vorticity



Scatter plots of Fifth Moments versus Skew in the dry adiabatic GCM 

300 mb Vorticity 500 mb Heights

   The 1-d model predicts     μ5 ≡
< x5 >
σ 5      

>   10s + 3S3  for  S > 0
<   10s + 3S3  for  S < 0

      !! 



A linear 1-D system with non-Gaussian statistics, forced by “CAM” noise

 

 
dx
dt

= Ax + bη1 + (Ex + g)η2 −
1
2

Eg                                                      SDE

[ Mx  ] p =
1
2

 
d
dx

 [ E2x2  +  2Egx  +  (g2 + b2 ) p ]                               FPE
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Such a system satisfies K  > (3 / 2)S2  and its PDF has power-law tails 

M  =  A +  0.5 E2    
α  =  E2 / M         
Both < 0



Observed and Simulated pdfs in the North Pacific
(On a log-log plot, and with the negative half folded over into the positive half)

500 mb 
Height

300 mb
Vorticity

Observed                         
(NCEP Reanalysis)

Simulated by a dry adiabatic    
GCM with fixed forcing



Observed and Simulated pdfs in the North Pacific
(On a log-log plot, and with the negative half folded over into the positive half)

500 mb 
Height

300 mb
Vorticity

Observed                         
(NCEP Reanalysis)

Simulated by a dry adiabatic    
GCM with fixed forcing



A linear 1-D system with non-Gaussian statistics, forced by “CAM” noise
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A linear 1-D system with non-Gaussian statistics, forced by “CAM” noise
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dx
dt

 =   Ax  +   [(Emx + gm )2 + cmx]   ηm
m
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β
2

 +    fext                                SDE

Mx + fext[ ] p =  
1
2
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Such a system satisfies K  ≥  (3 / 2)S2  and its PDF also has power-law tails   

β   = Em gm +
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m
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2

m
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2  

m
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M  =  A +  0.5 E2    
α  =  E2 / M         
Both < 0

The most general linear 1-D system with non-Gaussian statistics,  forced by “radical” noise 



Why does a local 1-D system capture the relationships between the higher-order moments 

of the N-d climate system with obviously important non-local dynamics ? 

K   =    
3
2

  S2   +   r                    

r    =     3 
M + (1 / 2)E2

M + (3 / 2)E2  −  1
⎡
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⎦
⎥     −  3 

M + (1 / 2)E2
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M + E2

M + (3 / 2)E2

⎡

⎣
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⎤

⎦
⎥  S ε (3)   +   ε (4)

                       >  0                                       <  0   if   ε (2)  > 0

The quantities ε (n)  represent the error made in   < xn > /  σ n   by ignoring the non-local dynamics.

From Diagonal Dominance, we expect that  | ε (4) |  <  | ε (3) |  <  | ε (2) |     etc.

 

Mainly because the equations for the higher moments in the N-d system are increasingly 

dominated by self-correlation terms. We call this a principle of “DIAGONAL DOMINANCE”



Variance Budget of 250 mb 

Streamfunction in winter

Note the approximate
balance between 
stochastic forcing and 
local damping.

The non-local 
interactions increase the 
variance, everywhere.

Newman and 
Sardeshmukh
(2008)



Summary

1. Strong evidence for “coarse-grained” linear dynamics is provided by 
( a ) the observed decay of correlations with lag
( b ) the success of linear forecast models, and
( c ) the approximately linear system response to external forcing.

2. The simplest dynamical model with the above features is a linear model perturbed by additive 
Gaussian stochastic noise. Such a model, however, cannot generate non-Gaussian statistics.

3. A linear model with a mix of multiplicative and additive noises can generate non-Gaussian
statistics; but not odd moments (such as skew) without external forcing; and therefore are not 
viable models of anomalies with zero mean.   

4. Linear models with correlated multiplicative and additive (“CAM”) noise can generate    
both odd and even moments, and can also explain the remarkable observed quadratic K-S 
relationship between Kurtosis and Skew, as well as the Power-Law tails of the pdfs.
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