Moduli spaces of stable sheaves
& the Brauer class

Huybrechts- Lehn " The geometry
of moduli spaces
of sheaves"

X proj variety / field k = k
Fix embedding X \hookrightarrow \mathbb{P}^n \rightarrow \mathcal{O}_X(1)
goal: (quasi-) proj. variety param.
vector bundles / coherent sheaves on X.

1st issue: infinitely many connected components \implies not finite type
ex: line bundles on \mathbb{P}^1
each (0\alpha) gives different connected component, \alpha \in \mathbb{Z}

solution: fix some numerical invariants
e.g. Chern classes, or...

Def: For $F \in \text{Coh}(X)$, the **Hilbert polynomial** of F is

$$P_F(t) := \chi(F(t))$$

$F(t) = F \otimes \mathcal{O}_X(t)$

depends on choice!

If $t >> 0$, $h^i(F(t)) = 0 \ \forall \ i > 0$

$$P_F(t) = h^0(F(t))$$

& is a polynomial in t

- compute use HRR
- $\text{deg } P_F = \dim \text{Supp } F$
- leading coeff. > 0
- constant in flat families

2nd issue: space param all sheaves w/ fixed Hilb. poly. is typically not separated.
ex: on \(P' \), \(O(1) \oplus O(1), \; O \oplus O(2), \; O(-1) \oplus O(3) \)

have Hilb poly \(2t + 4 \)

Can form family \(\mathcal{F} \) over \(A' \) w/\n\[
\mathcal{F}|_{P' \times \{ z \}} = \begin{cases}
O(1) \oplus O(1) & z \neq 0 \\
O \oplus O(2) & z = 0
\end{cases}
\]

\(\rightarrow \) map \(A' \to M \)
\(z \to 0 \mapsto (O(1) \oplus O(1)) \to \text{is not separated.} \)

\(z = 0 \mapsto (O \oplus O(2)) \)

Solution: add a stability condition

Def: \(F \) is pure if \(\forall 0 \neq E \leq F, \dim \text{Supp } E = \dim \text{Supp } F \)

(\(X \) integral, \(\text{rk } F > 0 \) \(\Rightarrow \) pure = torsion-free)

Def: The reduced Hilbert polynomial of \(F \) is
\[p_F(t) = \frac{P_F(t)}{\text{leading coeff. of } P_F} \quad \text{(monic)} \]
Def: F is stable (resp. semi-stable) if \(\forall E \in F,\ P_E(t) < P_F(t) \) \(\forall t \gg 0 \).

(resp. \(\leq \))

Ex: \(F = 0 \oplus 0(2) \)
\[P_F(t) = 2t + 4 \]
\[P_E(t) = t + 2 \]
\[P_E(t) = t + 3 = P_F(t) \]

\(\therefore F \) unstable

But \(0(1) \oplus 0(1) \) is semi-stable

\[P_{0(1)}(t) = t + (d+1) \leq t + 2 \]

In fact, its polystable = sum of stable sheaves

Thm: There exists a quasi-proj. variety param. stable sheaves w/ any given Hilb. poly., & a proj. variety param. polystable sheaves.
Note:
- If $k
eq k_{0}$, change "stable" to "geometrically stable"
- can also work over $\text{Spec} \mathbb{Z}$, $\text{Spec} \mathbb{Z}_{p}$

Examples:

1. A connected component of $\text{Pic} X$

Prop: if X is geometrically integral, all rank-1 torsion-free sheaves are stable wrt any embedding $X \hookrightarrow \mathbb{P}^{n}$.

PF: \[0 \to E \to F \to F/E \to 0 \]
\[\text{rk} E = 1, \text{rk}(F/E) = 0 \]
\[O \to E \to F \to F/E \to 0 \]
\[P_{E}(t) = a t^{n} + \cdots, a > 0, \ n = \dim X \]
\[P_{F/E}(t) = b t^{m} + \cdots, b > 0, \ m = \dim \text{Supp}(F/E) \leq n \]
\[P_{E}(t) = P_{F}(t) - P_{F/E}(t) \]

divide by a to get $P_{E}(t) < P_{F}(t)$

\[\square \]
Gives natural compactification of Pic \(X \) - component, & being line bundle is open condition

Thm: \(X \) smooth \(\Rightarrow \) its also a closed condition

\(\exists \) \text{Hilb}^n \text{X} \text{ param ideal sheaves of 0-dim' length n subsch. of X}

\(\exists X = \text{intersection of 2 quadrics} \)

\[\mathbb{P}^5 \setminus \mathbb{C} \]

\[= \{ f = g = 0 \} \]

\(\rightarrow \) pencil of quadrics

\[Q(a:b) = \{ af + bg = 0 \} \quad [a:b] \in \mathbb{P}^1 \]

If \(f, g \) generic, \(X \) smooth

\(\Rightarrow Q(a:b) \) smooth, except when

\[\det \left(a M f + b M g \right) = 0, \quad \text{i.e.} \]

\[\text{symm. matrix of } df \]
except at 6 pts of \mathbb{P}^1.

Each smooth $Q_{[a:b]} \cong Gr(2,4)$

$$0 \to S' \to \mathcal{O}^4 \to Q \to 0$$

tautological bundle

quotient bundle

Consider $S'|_X$, $Q|_X$ - rk 2 stable sheaves on X

moduli space param. these rk 2 stable sheaves \cong double cover of \mathbb{P}^1 branched over those 6 pts.

The Brauer class:

$M =$ mod. sp. of stable sheaves w/ fixed Hilb. poly

goal: when does \mathcal{F} a universal sheaf on $X \times M$, i.e. U s.t.

$U|_{X \times \{F\}} \cong \mathcal{F}$?
If U exists, then M fine, i.e. represents functor:

For family \mathcal{F} of sheaves on $X \times T$,

exists map $f : T \to M$ s.t.

\[(1 \times f)^* U \otimes \pi_2^* L \cong \mathcal{F} \]

A universal sheaf always exists locally (analytic/étale), but \exists a Brauer class that can obstruct it globally:

1st, replace $F \in M \rightsquigarrow F(n)$ for $n \gg 0$

(boundedness $\Rightarrow \exists \ n$ that works $\forall F \in M$)

So assume F is globally generated & $h^i(F) = 0 \ \forall \ i > 0$.

Let \(m = h^0(F) = \chi(F) \)

\(U \) univ. sheaf - only well-defined up to \(\otimes \) line bundle

\[
\begin{array}{c}
X \times M' \xrightarrow{\pi_M'} M' \xrightarrow{\text{étale}} M
\end{array}
\]

\[E := \pi_{M'}^* U \] \(\text{rk} \) \(m \) vector bundle on \(M' \)

\[P' := \mathcal{P} \mathcal{E} \]

\[\rho : P' \to M' \]

\(U \) vs \(U \otimes \pi_{M'}^* L \) also universal

\(E \) vs \(E \otimes L \)

\(\mathcal{O}_{P'E}(1) \) vs \(\mathcal{O}_{P' \otimes L(1)}(1) \equiv \mathcal{O}_{P'E}(1) \otimes L^* \)

on \(X \times P' \), \((1 \times \rho)^* U
\otimes \mathcal{O}_{P'E}(1) \) is well-defined

\[\Rightarrow \text{get } \mathbb{P}^{m-1}-\text{bundle } \pi : P \to M, \]

\[P_{(F)} = \mathbb{P} H^0(F), \text{ w/ univ. sh. } \widetilde{U} \]

on \(X \times P \).
If \(E \) relative \(\mathcal{O}(1) \) for \(\pi \), then
\[
\tilde{U} \otimes \pi_2^*(\mathcal{O}(-1))
\]
descends to a univ.
sheaf on \(X \times M \).

Recall: relative \(\mathcal{O}(1) \) exists
\[
\iff P = \mathbb{P}(\text{v.b.})
\]
\[
\iff \text{Brauer class vanishes}
\]

In general, no relative \(\mathcal{O}(1) \).

Call the Brauer class the obstruction to the existence of
a univ. sheaf on \(X \times M \).

When does \(E \) relative \(\mathcal{O}(1) \)?

As above, \(\pi_2^* \tilde{U} \) \(\text{rk} \) \(m \) v.b. \(m \)
P, & restriction to any \(\mathbb{P}^{m-1} \)-fiber
is \(\mathcal{O}(1)^m \)
\[\Rightarrow \det (\pi_2^* \tilde{\mathcal{A}}) \text{ is a relative } O(\log) \]

If \(E \) v.b. on \(X \) w/ \(\chi(E \otimes F) = k \)

\(\Rightarrow \) \(\det R\pi_2^* (\tilde{\mathcal{A}} \otimes \pi_1^* E) \) is a relative \(O(k) \)

If \(F \in M \)

\(\Rightarrow \det R\pi_2^* (\tilde{\mathcal{A}} \otimes \pi_1^* E) \) is a relative \(O(k) \)

If \(F \in \mathcal{L} \) w/ \(\gcd (\chi(E \otimes F)) = 1 \),

then \(\mathcal{L} \) relative \(O(1) \), & hence universal sheaf on \(X \times M \).