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Abstract

This paper describes a new continuous-time principal-agent model, in which the

output is a diffusion process with drift determined by the agent’s unobserved effort.

The risk-averse agent receives consumption continuously. The optimal contract, based

on the agent’s continuation value as a state variable, is computed by a new method

using a differential equation. During employment the output path stochastically

drives the agent’s continuation value until it reaches a point that triggers retirement,

quitting, replacement or promotion. The paper explores how the dynamics of the

agent’s wages and effort, as well as the optimal mix of short-term and long-term

incentives, depend on the contractual environment.1
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1 Introduction.

The understanding of dynamic incentives is central in economics. How do companies moti-

vate their workers through piecerates, bonuses, and promotions? How is income inequality

connected with productivity, investment and economic growth? How do financial contracts

and capital structure give incentives to the managers of a corporation? The methods and

results of this paper provide important insights to many such questions.

This paper introduces a continuous-time principal-agent model that focuses on the

dynamic properties of optimal incentive provision. We identify factors that make the

agent’s wages increase or decrease over time. We examine the degree to which current

and future outcomes motivate the agent. We provide conditions under which the agent

eventually reaches retirement in the optimal contract. We also investigate how the costs

of creating incentives and the dynamic properties of the optimal contract depend on the

contractual environment: the agent’s outside options, the difficulty of replacing the agent,

and the opportunities for promotion.

Our new dynamic insights are possible due to the technical advantages of continuous-

time methods over the traditional discrete-time ones. Continuous time leads to a much

simpler computational procedure to find the optimal contract by solving an ordinary differ-

ential equation. This equation highlights the factors that determine optimal consumption

and effort. The dynamics of the agent’s career path are naturally described by the drift

and volatility of the agent’s payoffs. The geometry of solutions to the differential equation

allows for easy comparisons to see how the agent’s wages, effort and incentives depend on

the contractual environment. Finally, continuous time highlights many essential features

of the optimal contract, including the agent’s eventual retirement.

In our benchmark model a risk-averse agent is tied to a risk-neutral principal forever

after employment starts. The agent influences output by his continuous unobservable effort

input. The principal sees only the output: a Brownian motion with a drift that depends

on the agent’s effort. The agent dislikes effort and enjoys consumption. We assume that

the agent’s utility function has the income effect, that is, as the agent’s income increases

it becomes costlier to compensate him for effort. Also, we assume that the agent’s utility

of consumption is bounded from below.

At time 0 the principal can commit to any history-dependent contract. Such a contract

specifies the agent’s consumption at every moment of time contingent on the entire past

output path. The agent demands an initial reservation utility from the entire contract in
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order to begin, and the principal offers a contract only if he can derive a positive profit from

it. After we solve our benchmark model, we examine how the optimal contract changes if

the agent may quit, be replaced or promoted.

As in related discrete-time models, the optimal contract can be described in terms of

the agent’s continuation value as a single state variable, which completely determines the

agent’s effort and consumption. After any history of output the agent’s continuation value

is the total future expected utility. The agent’s value depends on his future wages and

effort. While in discrete time the optimal contract is described by cumbersome functions

that map current continuation values and output realizations into future continuation values

and consumption, continuous time offers more natural descriptors of employment dynamics:

the drift and volatility of the agent’s continuation value.

The volatility of the agent’s continuation value is related to effort. The agent has

incentives to put higher effort when his value depends more strongly on output. Thus,

higher effort requires a higher volatility of the agent’s value. The agent’s optimal effort

varies with his continuation value. To determine optimal effort, the principal maximizes

expected output minus the costs of compensating the agent for effort and the risk required

by incentives. If the agent is very patient, so that incentive provision is costless, the optimal

effort decreases with the agent’s continuation value due to the income effect. Apart from

this extreme case, the agent’s effort is typically nonmonotonic because of the costs of

exposing the agent to risk.

The drift of the agent’s value is related to the allocation of payments over time. The

agent’s value has an upward drift when his wages are backloaded, i.e. his current consump-

tion is small relative to his expected future payoff. A downward drift of the agent’s value

corresponds to frontloaded payments. The agent’s intertemporal consumption is distorted

to facilitate the provision of incentives. The drift of the agent’s value always points in the

direction where it is cheaper to provide the agent with incentives. Unsurprisingly, when

the agent gets patient, so that incentive provision is costless, his continuation value does

not have any drift.

Over short time intervals, our optimal contract resembles that of Holmstrom and Mil-

grom (1987) (hereafter HM), who study a simple continuous-time model in which the agent

gets paid at the end of a finite time interval. HM show that optimal contracts are linear in

aggregate output when the agent has exponential utility with a monetary cost of effort.2

2Many other continuous-time papers have extended the linearity results of HM. Schattler and Sung
(1993) develop a more general mathematical framework for such results, and Sung (1995) allows the agent
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These preferences have no income effect. According to Holmstrom and Milgrom (1991),

the model of HM is “especially well suited for representing compensation paid over short

period.” Therefore, it is not surprising that the optimal contract in our model is also

approximately linear in incremental output over short time periods.

In the long-run, the optimal contract involves complex nonlinear patterns of the agent’s

wages and effort. In our benchmark setting, where the contract binds the agent to the

principal forever, the agent eventually reaches retirement. After retirement, which occurs

when the agent’s continuation value reaches a low endpoint or a high endpoint, the agent

receives a constant stream of consumption and stops putting effort.

The agent eventually reaches retirement in the optimal contract for two reasons. First,

as shown in Spear and Wang (2005), the agent must retire when his continuation payoff

becomes very low or very high.3 For the low retirement point, the assumption that the

agent’s consumption utility is bounded from below implies that payments to the agent must

stop when his value reaches the lower bound. For the high continuation values, retirement

becomes optimal due to the income effect. When the agent’s consumption is high, it costs

too much to compensate him for positive effort. Second, retirement depends on the relative

time preferences of the agent and the principal. If the agent had a higher discount rate

than the principal, then with time the principal’s benefit from output outweighs the cost

of the agent’s effort. Under these conditions, it is sensible to avoid permanent retirement

by allowing the agent to suspend effort temporarily. However, when the agent is equally

patient as the principal, our result implies that the agent eventually reaches permanent

retirement in the optimal contract.4

Of course, retirement and other dynamic properties of the optimal contract depend on

the contractual environment. The agent cannot be forced to stop consuming at the low

retirement point if he has acceptable outside opportunities. Then, the agent quits instead

of retiring at the low endpoint. If the agent is replaceable, the principal hires a new agent

when the old agent reaches retirement. The high retirement point may also be replaced

with promotion, an event that allows the agent to gain greater human capital, and manage

larger and more important projects with higher expected output.5

to control volatility as well. Hellwig and Schmidt (2002) look at the conditions for a discrete-time principal-
agent model to converge to the HM solution. See also Bolton and Harris (2001), Ou-yang (2003) and
Detemple, Govindaraj and Loewenstein (2001) for further generalization and analysis of the HM setting.

3See also Wang (2006) for an extension of Spear and Wang (2005) to equilibrium in labor markets.
4See DeMarzo and Sannikov (2006), Farhi and Werning (2006a) and Sleet and Yeltekin (2006) for

examples where the agent is less patient than the principal.
5I thank the editor Juuso Valimaki for encouraging me to investigate this possibility.
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The contractual envirnoment matters for the dynamics of the agent’s wages. We already

mentioned that the drift of the agent’s continuation value always points in the direction

where it is cheaper to create incentives. Since better outside options make it more difficult

to motivate and retain the agent, it is not surprising that wages become more backloaded

with better outside options. Lower payments up front cause the agent’s continuation value

to drift up, away from the point where he is forced to quit. When the employer can offer

better promotion opportunities, the agent’s wages also become backloaded in the optimal

contract. The agent is willing to work for lower wages up front when he is motivated by

future promotions. These findings highlight the factors that may affect the agent’s wage

structure in internal labor markets.

Is the agent motivated more by wages in the short run, or those in the long run in an

optimal contract? Contracts in practice use both short-term incentives, as piecework and

bonuses, and long-term ones, as promotions and permanent wage increases. In our model,

the ratio of the volatilities of the agent’s consumption and his continuation value measures

the mix of short-term and long-term incentives. We find that the optimal contract uses

stronger short-term incentives when the agent has better outside options, which interfere

with the agent’s incentives in the long run. In contrast, when the principal has greater

flexibility to replace or promote the agent, the optimal contract uses stronger long-term

incentives and keeps the agent’s wages more constant in the short run. We find that the

agent puts higher effort and the principal gets greater profit when the optimal contract

relies on stronger long-term incentives.

It is difficult to study these dynamic properties of the optimal contract using discrete-

time models. Without the flexibility of the differential equation that describes the dynamics

of the optimal contract in continous time, traditional discrete-time models produce a more

limited set of results. Spear and Srivastava (1987) show how to analyze dynamic principal-

agent problems in discrete time using recursive methods, with the agent’s continuation

value as a state variable.6 Assuming that the agent’s consumption is nonnegative and

that his utility is separable in consumption and effort, they show that the inverse of the

agent’s marginal utility of consumption is a martingale. An earlier paper of Rogerson

(1985) demonstrates this result on a two-period model.7 However, this restriction is not

6Abreu, Pearce and Stacchetti (1986) and (1990) study the recursive structure of general repeated
games.

7This condition, called the inverse Euler equation, has received a lot of attention in recent macroeco-
nomics literature. For example, see Golosov, Kocherlakota and Tsyvinski (2003) and Farhi and Werning
(2006b).
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very informative about the optimal path of the agent’s wages, since a great diversity of

consumption profiles in different contractual environments we study satisfy this restriction.

In its early stage, this paper was inspired by Phelan and Townsend (1991) who develop a

method for computing optimal long-term contracts in discrete time. There are strong sim-

ilarities between our continuous-time solutions and their discrete-time example, implying

that ultimately the two approaches are different ways of looking at the same thing. Their

computational method relies on linear programming and multiple iterations to converge to

the principal’s value function. While their method is quite flexible and applicable to a wide

range of settings, it is far more computationally intensive than our method of solving a

differential equation. Also, as we discussed earlier, our characterization allows for analytic

comparisons to study how the optimal contract depends on the contractual environment.

Because general discrete-time models are difficult to deal with, one may be tempted to

restrict attention to the special tractable case when the agent is patient. As the agent’s

discount rate converges to 0, efficiency becomes attainable, as shown in Radner (1985) and

Fudenberg, Holmstrom and Milgrom (1990).8 However, we find that optimal contracts

when the agent is patient do not deliver many important dynamic insights: the agent’s

continuation value becomes driftless, and the agent’s effort, determined without taking the

cost of incentives into account, is decreasing in the agent’s value.

Concurrently with this paper, Williams (2003) also develops a continuous-time principal-

agent model. The aim of that paper is to present a general characterization of the optimal

contract using a partial differential equation and forward and backward stochastic differ-

ential equations. The resulting contract is written recursively using several state variables,

but due to greater generality, the optimal contract is not explored in as much detail.

More recently, a number of other papers started using continuous-time methodology.

DeMarzo and Sannikov (2006) study the optimal contract in a cash-flow diversion model

using the methods from this paper. Biais et al. (2006) show that the contract of DeMarzo

and Sannikov (2006) arises in the limit of discrete-time models as the agent’s actions become

more frequent. Cvitanic, Wan and Zhang (2006) study optimal contracts when the agent

gets paid once, and Westerfield (2006) develops an approach that uses the agent’s wealth,

as opposed to his continuation value, as a state variable.

The paper is organized as follows. Section 2 presents the benchmark setting and for-

mulates the principal’s problem. Section 3 presents an optimal contract and discusses its

properties: the agent’s effort and consumption, the drift and volatility of his continuation

8Also, Fudenberg, Levine and Maskin (1994) prove a Folk Theorem for general repeated games.
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value and retirement points. The formal derivation of the optimal contract is deferred to

the Appendix. Section 4 explores how the agent’s outside options and the possibilities for

replacement and promotion affect the dynamics of the agent’s wages, effort and incentives.

Section 5 studies optimal contracts for small discount rates. Section 6 concludes the paper.

2 The Benchmark Setting.

Consider the following dynamic principal-agent model in continuous time. A standard

Brownian motion Z = {Zt,Ft; 0 ≤ t < ∞} on (Ω,F ,Q) drives the output process. The

total output Xt produced up to time t evolves according to

dXt = At dt + σdZt,

where At is the agent’s choice of effort level and σ is a constant. The agent’s effort is a

stochastic process A = {At ∈ A, 0 ≤ t < ∞} progressively measurable with respect to Ft,

where the set of feasible effort levels A is compact with the smallest element 0. The agent

experiences cost of effort h(At), measured in the same units as the utility of consumption,

where h : A → < is continuous, increasing and convex. We normalize h(0) = 0 and assume

that there is γ0 > 0 such that h(a) ≥ γ0a for all a ∈ A.

The output process X is publicly observable by both the principal and the agent. The

principal does not observe the agent’s effort A, and uses the observations of X to give the

agent incentives to make costly effort. Before the agent starts working for the principal, the

principal offers him a contract that specifies a nonnegative flow of consumption Ct(Xs; 0 ≤
s ≤ t) ∈ [0,∞) based on the principal’s observation of output. The principal can commit

to any such contract. We assume that the agent’s utility is bounded from below and

normalize u(0) = 0. Also, we assume that u : [0,∞) → [0,∞) is an increasing, concave and

C2 function that satisfies u′(c) → 0 as c → ∞.

For simplicity, assume that both the principal and the agent discount the flow of profit

and utility at a common rate r. If the agent chooses effort level At, 0 ≤ t < ∞, his average

expected utility is given by

E

[

r

∫ ∞

0

e−rt(u(Ct) − h(At)) dt

]

,

and the principal gets average profit
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E

[

r

∫ ∞

0

e−rt dXt − r

∫ ∞

0

e−rtCt dt

]

= E

[

r

∫ ∞

0

e−rt(At − Ct) dt

]

.

Factor r in front of the integrals normalizes total payoffs to the same scale as flow payoffs.

We say that an effort process {At, 0 ≤ t < ∞} is incentive compatible with respect to

{Ct, 0 ≤ t < ∞} if it maximizes the agent’s total expected utility.

2.1 The Formulation of The Principal’s Problem.

The principal’s problem is to offer a contract to the agent: a stream of consumption

{Ct, 0 ≤ t < ∞} contingent on the realized output and an incentive-compatible advice of

effort {At, 0 ≤ t < ∞} that maximizes the principal’s profit

E

[

r

∫ ∞

0

e−rt(At − Ct) dt

]

(1)

subject to delivering to the agent a required initial value of at least Ŵ

E

[

r

∫ ∞

0

e−rt(u(Ct) − h(At))dt

]

≥ Ŵ . (2)

We assume that the principal can choose not to employ the agent, so we are only interested

in contracts that generate nonnegative profit for the principal.

3 The Optimal Contract.

In this section, we heuristically derive an optimal contract and discuss its basic properties.

In Appendix A we formally show that an optimal contract takes the form presented in this

section. Only for this section, assume that an optimal contract can be written in terms

of the agent’s continuation value Wt as a single state variable. The continuation value Wt

is the total utility that the principal expects the agent to derive from the future after a

given moment of time t. In the optimal contract, Wt will play the role of the unique state

descriptor that determines how much the agent gets paid, what effort level he is supposed

to choose, and how Wt itself changes with the realization of output. The principal must

design a contract that specifies functions c(W ), the flow of the agent’s consumption, a(W ),

the recommended effort level, and the law of motion of Wt driven by the output path Xt.

Three objectives must be met. First, the agent must have sufficient incentives to choose the
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recommended effort levels. Second, payments, recommended effort and the law of motion

must be consistent, so that the state descriptor Wt represents the agent’s true continuation

value. Lastly, the contract must maximize the principal’s profit.

Before we describe the dynamic nature of the contract, note that the principal has the

option to retire the agent with any value W ∈ [0, u(∞)), where u(∞) = limc→∞ u(c). To

retire the agent with value u(c), the principal offers him constant consumption c and allows

him to choose zero effort. Denote the principal’s profit from retiring the agent by

F0(u(c)) = −c.

Note that the principal cannot deliver any value less than 0, because the agent can guarantee

himself nonnegative utility by always taking effort 0. In fact, the only way to deliver value

0 is through retirement. Indeed, if the future payments to the agent are not always 0, the

agent can guarantee himself a strictly positive value by putting effort 0. We call F0 the

principal’s retirement profit.

Given the agent’s consumption c(W ) and recommended effort a(W ), the evolution of

the agent’s continuation value Wt can be written as

dWt = r (Wt − u(c(Wt)) + h(a(Wt))) dt + rY (Wt) (dXt − a(Wt)dt)
︸ ︷︷ ︸

σdZt

, (3)

where rY (W ) is the sensitivity of the agent’s continuation value to output. When the agent

takes the recommended effort level, dXt − a(Wt) dt has mean 0, and so r(Wt − u(c(Wt)) +

h(a(Wt))) is the drift of the agent’s continuation value. To account for the value that

the principal owes to the agent, Wt grows at the interest rate r and falls due to the flow

of repayments r(u(c(Wt)) − h(a(Wt))). We will see later that in the optimal contract, Wt

responds to output in the employment interval (0,Wgp) and stops when it reaches 0 or

Wgp, leading to retirement. After the agent is retired, he stops putting effort and receives

constant consumption utility ru(c(Wt)) = rWt.

The sensitivity rY (Wt) of the agent’s value to output affects the agent’s incentives. If

the agent deviates to a different effort level, his actual effort affects only the drift of Xt.

The agent has incentives to choose effort that maximizes the expected change of Wt minus

the cost of effort

rY (Wt)a − rh(a).

Since it is costly to expose the agent to risk, in the optimal contract Y (Wt) is set at the
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minimal level that induces effort level a(Wt). We denote this level by

γ(a) = min{y ∈ [0,∞) : a ∈ arg maxa′∈A ya′ − h(a′)}. (4)

Function γ(a) is increasing in a. For the binary action case A = {0, a}, γ(a) = h(a)/a.

When A is an interval and h is a differentiable function, γ(a) = h′(a) for a > 0.

We come to the crucial part where we describe the optimal choice of payments c(W )

and effort recommendations a(W ). Consider the highest profit F (W ) that the principal can

derive when he delivers to the agent value W. Function F (W ) together with the optimal

choices of a(W ) and c(W ) satisfy the HJB equation

rF (W ) = max
a>0,c

r(a − c) + F ′(W )r(W − u(c) + h(a)) +
F ′′(W )

2
r2γ(a)2σ2. (5)

The principal is maximizing the expected current flow of profit r(a − c) plus the expected

change of future profit due to the drift and volatility of the agent’s continuation value.

Equation (5) can be rewritten in the following form suitable for computation

F ′′(W ) = min
a>0,c

F (W ) − a + c − F ′(W )(W − u(c) + h(a))

rγ(a)2σ2/2
. (6)

To compute the optimal contract, the principal must solve this differential equation by

setting

F (0) = 0 (7)

and choosing the largest slope F ′(0) ≥ F ′
0(0) such that the solution F satisfies

F (Wgp) = F0(Wgp) and F ′(Wgp) = F ′
0(Wgp) (8)

at some point Wgp ≥ 0, where F ′(Wgp) = F ′
0(Wgp) is called the smooth-pasting condition.9

Let functions c : (0,Wgp) → [0,∞) and a : (0,Wgp) → A be the minimizers in equation

(6). A typical form of the value function F (0) together with a(W ), c(W ) and the drift of

the agent’s continuation value are shown in Figure 1.

Theorem 1, which is proved formally in Appendix A, characterizes optimal contracts.

Theorem 1. The unique concave function F ≥ F0 that satisfies (6), (7) and (8)

9If r is sufficiently large, then the solution of (6) with boundary conditions F (0) = 0 and F ′(0) = F ′

0
(0)

satisfies F (W ) > F0(W ) for all W > 0. In this case Wgp = 0 and contracts with positive profit do not
exist.
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Figure 1: Function F for u(c) =
√

c, h(a) = 0.5a2 + 0.4a, r = 0.1 and σ = 1. Point W ∗ is
the maximum of F.

characterizes any optimal contract with positive profit to the principal. For the agent’s

starting value of W0 > Wgp, F (W0) < 0 is an upper bound on the principal’s profit. If

W0 ∈ [0,Wgp], then the optimal contract attains profit F (W0). Such a contract is based on

the agent’s continuation value as a state variable, which starts at W0 and evolves according

to

dWt = r (Wt − u(Ct) + h(At)) dt + rγ(At) (dXt − At dt) (9)

under payments Ct = c(Wt) and effort At = a(Wt), until the retirement time τ. Retirement

occurs when Wt hits 0 or Wgp for the first time. After retirement the agent gets constant

consumption of −F0(Wτ ) and puts effort 0.

The intuition why the agent’s continuation value Wt completely summarizes the past

history in the optimal contract is the same as in discrete time. The agent’s incentives

are unchanged if we replace the continuation contract that follows a given history with a
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different contract that has the same continuation value Wt.
10 Therefore, to maximize the

principal’s profit after any history, the continuation contract must be optimal given Wt.

It follows that the agent’s continuation value Wt completely determines the continuation

contract.

Let us discuss optimal effort and consumption using equation (5). The optimal effort

maximizes

ra + rh(a)F ′(W ) + r2σ2γ(a)2F ′′(W )

2
, (10)

where ra is the expected flow of output, −rh(a)F ′(W ) is the cost of compensating the

agent for his effort, and −r2σ2 γ(a)2

2
F ′′(W ) is the cost of exposing the agent to income

uncertainty to provide incentives. These two costs typically work in opposite directions,

creating a complex effort profile (see Figure 1). While F ′(W ) decreases in W because F is

concave, F ′′(W ) increase over some ranges of W.11 However, as r → 0, the cost of exposing

the agent to risk goes away and the effort profile becomes decreasing in W, except possibly

near endpoints 0 and Wgp (see Section 5).

The optimal choice of consumption maximizes

−c − F ′(W )u(c). (11)

Thus, the agent’s consumption is 0 when F ′(W ) ≥ −1/u′(0), in the probationary interval

[0,W ∗∗], and it is increasing in W according to F ′(W ) = −1/u′(c) above W ∗∗. Intuitively,

1/u′(c) and −F ′(W ) are the marginal costs of giving the agent value through current con-

sumption and through his continuation payoff, respectively. Those marginal costs must be

equal under the optimal contract, except in the probationary interval. There, consumption

zero is optimal because it maximizes the drift of Wt away from the inefficient low retirement

point.

Why is it optimal for the principal to retire the agent if his continuation payoff becomes

sufficiently large? This happens due to the income effect: when the flow of payments to

the agent is large enough, it costs the principal too much to compensate the agent for his

effort, so it is optimal to allow effort 0. When the agent gets richer, the monetary cost of

10This logic would fail if the agent had hidden savings. With hidden savings, the agent’s past incentives
to save depend not only on his current promised value, but also on how his value would change with savings
level. Therefore, the problem with hidden savings has a different recursive structure, as discussed in the
conclusions.

11F ′′(W ) increases at least on the interval [0, W ∗], where c = 0 and sign F ′′′(W ) = sign (rW − u(c) +
h(a)) > 0 (see Theorem 2). When W is smaller, the principal faces a greater risk of triggering retirement
by providing stronger incentives.
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delivering utility to the agent rises indefinitely (since u′(c) → 0 as c → ∞) while the utility

cost of output stays bounded above 0 since h(a) ≥ γ0a for all a. High retirement occurs

even before the cost of compensating the agent for effort exceeds the expected output from

effort, since the principal must compensate the agent not only for effort, but also for risk

(see (10)). While it is necessary to retire the agent when Wt hits 0 and it is optimal to

do so if Wt reaches Wgp, there are contracts that prevent Wt from reaching 0 or Wgp by

allowing the agent to suspend effort temporarily. Those contracts are suboptimal: in the

optimal contract the agent puts positive effort until he is retired forever.12

The drift of Wt is connected with the allocation of the agent’s wages over time. Section

5 shows that the drift of Wt becomes zero when the agent becomes patient, to minimize

intertemporal distortions of the agent’s consumption. In general, the drift of Wt is nonzero

in the optimal contract. Theorem 2 shows that the drift of Wt always points in the direction

where it is cheaper to provide incentives.

Theorem 2. Until retirement, the drift of the agent’s continuation value points in the

direction in which F ′′(W ) is increasing.

Proof. From (5) and the Envelope Theorem, we have

r(W − u(c) + h(a))F ′′(W ) + r2σ2γ(a)2F ′′′(W )

2
= 0 (12)

Since F ′′(W ) is always negative, W − u(c) + h(a) has the same sign as F ′′′(W ). QED

By Ito’s lemma, (12) is the drift of −1/u′(Ct) = F ′(Wt) on [W ∗∗,Wgp]. Thus, in our

model the inverse of the agent’s marginal utility is a martingale when the agent’s consump-

tion is positive. The analogous result in discrete time was first discovered by Rogerson

(1985).

In the next subsection we discuss the paths of the agent’s continuation value and income,

and the connections between the agent’s incentives, productivity and income distribution

in the example in Figure 1. Before that, we make three remarks about possible extensions

of our model.

Remark 1: Retirement. If the agent’s utility was unbounded from below (e.g. expo-

nential utility), our differential equation would still characterize the optimal contract, but

the agent may never reach retirement at the low endpoint. To take care of this possibility,

12This conclusion depends on the assumption that the agent’s discount rate is the same as that of the
principal. If the agent’s discount rate was higher, the optimal contract may allow the agent to suspend
effort temporarily.
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the boundary condition F (0) = 0 would need to be replaced with a regularity condition

on the asymptotic behavior of F. Of course, the low retirement point does not disappear if

the agent has an outside option at all times (see Section 4). Similarly, if the agent’s utility

had no income effect, the high retirement point may disappear as well. This would be the

case if we assumed exponential utility with a monetary cost of effort, as in Holmstrom and

Milgrom (1987).13

Remark 2: Savings. We assume in this model that the agent cannot save or borrow,

and is restricted to consume what the principal pays him at every moment of time. What

would happen if the agent actually could save and borrow at rate r, but the principal did

not know it? What would he do? Since 1/u′(c(Ws)) is a martingale, the agent’s marginal

utility of consumption u′(c(Ws)) must be a submartingale. Since the agent’s marginal utility

increases in expectation, he is tempted to save for the future. The conclusion discusses the

difficulties connected with finding the optimal contract when the agent can save secretly.

Remark 3: A risk-averse principal. Although our model assumes a risk-neutral

principal, there are a number of ways to examine the principal’s risk aversion. First, if the

risk-averse principal has access to perfect capital markets he should be able to diversify the

idiosyncratic risk connected with the agent’s output.14 This makes the principal effectively

risk-neutral to output and our solution applies. Second, if we allow the principal to be ex-

plicitly risk-averse we can expect the qualitative features of the optimal contract (including

retirement) to be the same as with risk-neutrality. The agent would probably have to bear

higher risk and take higher effort. Formally, this problem can be dealt with by introducing

an additional state variable, the principal’s wealth. Although an additional state variable

would involve a partial differential equation and a more complicated solution, some simpli-

fications are possible for specific functional forms of utilities and production technologies.

Williams (2005) has an example with log utilities that reduces to a single state variable.15

13DeMarzo and Sannikov (2006) study a dynamic agency problem without the income effect. In their
setting the moral hazard problem is that the agent may secretly divert cash from the firm, so his benefit
from the hidden action is measured in monetary terms. The optimal contract has a low absorbing state,
since the agent’s utility is bounded from below, but no upper absorbing state.

14After the principal subtracts from output the noise correlated with market risk factors, the remaining
statistic for the agent’s effort contains only idiosyncratic noise.

15Because log utilities are unbounded from below, Williams (2005) does not have a low retirement point.
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3.1 Income Dispersion, Effort and Productivity.

The left panel of Figure 2 shows how the distribution of the agent’s continuation values

Wt changes with time when W0 is the largest value for which the principal’s profit is

nonnegative, for the example in Figure 1.16 The distribution becomes absorbed at the

retirement points over time. In this example, the agent is more likely to retire at Wgp than

at 0, despite the fact that W0 is at the lower end of the interval [0,Wgp]. This outcome is

not surprising, given that the drift of Wt is positive on the entire interval [0,Wgp] in this

example.
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Figure 2: Consumption, inequality and expected output for the example in Figure 1.

Besides the likely paths of the agent’s continuation value, Figure 2 also explores the

distribution of income and effort for a population of identical agents who start with value

W0 under the optimal contract. Income inequality widens over time due to the provision of

incentives and the Gini coefficient in the population generally increases (top right panel).

However, the average effort decreases (bottom right panel). This fact is consistent with

empirical findings that economic growth is negatively related to income inequality.17 Those

16This distribution is computed using Monte Carlo simulations.
17For example, see Alesina and Rodrik (1994), Persson and Tabellini (1994), Perrotti (1996) and an

excellent survey Aghion, Caroli and Garcia-Penalosa (1999).
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findings appear to be at odds with the traditional idea that there is a trade-off between effi-

ciency and equality (see Mirrlees (1971)). Our model suggests that incentives are connected

with the rate at which the income distribution widens, rather than the income inequality

itself.18

The example in Figure 2 is also related to empirical findings in personnel economics

(see Spitz (1991) and Lazear (1999)) that workers’ wages typically rise faster than their

productivity. This work is motivated by Lazear (1979), who argues that deferred compen-

sation can serve as a motivating factor for workers early in their career. In our example

the agent’s puts high effort early in his career and his continuation value tends to increase

over time. However, the increasing pattern of the agent’s wages and the extent to which

the agent is motivated by distant future are really different issues. Indeed, if the agent

expects his wages to increase no matter what, he would not be motivated to put effort.

In the next section we explore the factors that determine the time profiles of the agent’s

wages and incentives.

4 The Agent’s Career Path.

In this section we extend our model to study how the contractual environment affects the

dynamics of the agent’s wages, effort and incentives in the optimal contract. Specifically, we

investigate the agent’s outside opportunities, the principal’s options to replace the agent,

and the possibilities for the agent’s career development.19

Lazear (1979) argues that employers can strengthen the employment relationship by

offering a rising pattern of wages. Our optimal contracts weigh this benefit of backloaded

wages against the costs of the income effect, earlier retirement and distortions of the agent’s

consumption. The optimal resolution of this trade-off depends on the contractual environ-

ment. In our optimal contract wages become more backloaded when the agent has better

outside options, or when promotion, instead of retirement, can be used to reward the

agent. Technically, we estimate the agent’s wage profile by studying how his current wage

compares with his continuation value.20

18In the long run, average effort converges to zero as inequality becomes extreme, a fact related to the
immizeration result of Atkeson and Lucas (1992). However, on Figure 2 we see that in the short run also,
average effort decreases while inequality widens.

19Our methods can be also applied to study the optimal contract when the principal cannot commit.
Such a contract must be a public equilibrium of the game between the principal and the agent (see Levin
(2003)).

20This measure has its drawbacks, since the agent’s continuation value depends not only on his future
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The dynamic provision of incentives is also an important characteristic of employment

relationships. Although both short-term and long-term incentives have been studied indi-

vidually, the dynamic properties of incentives have not received sufficient attention in the

literature. Short-term incentives include piece rates and year-end bonuses, while long-term

incentives include terminations, permanent wage increases and promotions. Lazear and

Rosen (1981) study the long-term incentives created by promotions, and Holmstrom and

Milgrom (1987) and (1991) study the optimality of piece rates as short-term incentives.

We study the optimal mix of short-term and long-term incentives. This issue is of practical

importance. For example, Lazear (2000) documents the example, in which the productiv-

ity has increased by 44 percent when the company started using piece rates to motivate

its workers. Prior to the switch to piecerates, autoglass installers were motivated only by

terminations and promotions, which provide long-term incentives.

We measure the optimal mix of short-term and long-term incentives by the ratio of the

volatilities of the agent’s consumption and his continuation value. Long-term incentives

are more difficult to create when the agent has better outside options, and easier, when

the principal can replace or promote the agent. In the case of autoglass installers at

Safelite, short-term incentives turned out to be vital for the optimal contract, perhaps

because terminations and promotions play a minor role in their contractual environment in

comparison, for example, with junior faculty, whose contracts do not include a significant

piecerate component. Generally, our results imply that the agent works harder when the

optimal contract relies more on long-term incentives.

The rest of this section is organized as follows. Subsection 4.1 presents Theorem 3, which

characterizes the optimal contract in a general contractual environment. Subsections 4.2

and 4.3 apply Theorem 3 to settings with outside options, replacements and promotions.

Subsection 4.4 provides comparisons across the different environments.

4.1 Additional Contractual Possibilities.

We can summarize the contractual environment, with the agent’s outside option W̃ , by

a function F̃0 : [W̃ ,∞) → <. This function captures the principal’s options to deliver to

the agent value W ∈ [W̃ ,∞) at profit F̃0(W ). In our benchmark setting retirement is the

only contractual option, so that W̃ = 0 and F̃0 = F0. If the agent has an outside option

of W̃ > 0, then F̃0(W̃ ) = 0 as the principal can deliver to the agent value W̃ by firing

wages, but also the cost of effort and income uncertainty. However, in our setting this measure produces
by far the cleanest analytical results in comparisons with other measures, e.g. the drift of consumption.

17



him. Function F̃0 can capture many other contractual possibilities, including replacement

and promotion. In general, we assume that F̃0 is an upper semi-continuous function that

satisfies F̃0(W ) ≥ F0(W ) for all W ∈ [W̃ ,∞), with equality when W is sufficiently large.

A contract in this environment specifies the agent’s consumption {Ct, t ≤ τ}, an

incentive-compatible effort recommendation {At, t ≤ τ} and a stopping time τ when the

agent receives value Wτ at profit F̃0(Wτ ). We consider the problem of maximizing the

principal’s profit

E

[

r

∫ τ

0

e−rt(At − Ct) dt + e−rτ F̃0(Wτ )

]

subject to giving the agent a specific value of W0 ≥ W̃

E

[

r

∫ τ

0

e−rt(u(Ct) − h(At)) dt + e−rτWτ

]

= W0

and the agent’s participation constraint for all t ≤ τ

E

[

r

∫ τ

t

e−r(s−t)(u(Cs) − h(As)) ds + e−r(τ−t)Wτ | Ft

]

≥ W̃ .

The value of W0 is determined by the relative bargaining powers of the principal and the

agent.

Theorem 3 shows that the optimal contract in the presence of new contracting possibil-

ities is described by the same HJB equation as before, but with new boundary conditions.

This characterization allows us to perform clean comparisons across the different environ-

ments.

Theorem 3. Suppose that a concave function F̃ ≥ F̃0 satisfies the HJB equation on

[W̃ ,∞) and coincides with F̃0 at WL and WH > WL. Then the optimal contract with any

value W0 ∈ [WL,WH ] to the agent has profit F̃ (W0) to the principal. Let ã : [WL,WH ] → A
and c̃ : [WL,WH ] → [0,∞) be the optimizers in the HJB equation associated with the

function F̃ . In the optimal contract the agent’s value starts at W0 and evolves according to

dWt = r (Wt − u(Ct) + h(At)) dt + rγ(At) (dXt − At dt) (13)

under payments Ct = c̃(Wt) and effort At = ã(Wt), until Wt hits WL or WH for the first

time at time τ. At time τ the principal follows the contractual possibility that delivers to

the agent value Wτ at profit F̃0(Wτ ).
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Proof. See Appendix B.
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Lemma 5 in Appendix B shows that for any W0 ∈ [W̃ ,∞), if a function F̃ with the

desired properties does not exist, then the principal cannot do better than to randomize

among the points of F̃ (W ) at time 0. Also, note that if F̃ does exist, then it characterizes

the optimal contract for any value in the interval [WL,WH ].

4.2 Quitting and Replacement.

In this subsection we use Theorem 3 to describe the optimal contract when the agent may

quit or the principal may replace the agent.

What if the agent can quit working for the principal at any time and receive a value

of W̃ ≥ 0? We can interpret W̃ as the value from new employment minus the search cost.

Then F̃0(W̃ ) = 0 and F̃0(W ) = F0(W ) for W ∈ (W̃ ,∞). The function F̃ ≥ F̃0 in the left

panel of Figure 3, which satisfies the boundary conditions F̃ (W̃ ) = 0, F̃ (W̃gp) = F̃0(W̃gp)

and F̃ ′(W̃gp) = F̃ ′
0(W̃gp) for some W̃gp ≥ W̃ , represents the maximal profit that the principal

can achieve from any contract with value W0 ∈ [W̃ , W̃gp]. The principal’s profit would be

negative for any contract with value W0 > W̃gp, since function F̃ is an upper bound on the
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principal’s profit there. Figure 3 (both panels) are computed for the same functional forms

of the agent’s utility and cost of effort as in Figure 1 in Section 3.

What if the agent cannot freely quit, but the principal can replace him with a new

agent? If the principal derives value D from the new agent, then F̃0(W ) = F0(W ) + D

for all W ∈ [0,∞). The optimal contract is characterized by the function F̃ ≥ F̃0 that

satisfies the HJB equation with the boundary conditions F̃ (0) = 0, F̃ (W̃gp) = F̃0(W̃gp) and

F̃ ′(W̃gp) = F̃ ′
0(W̃gp), for some W̃gp ≥ 0. The right panel of Figure 3 shows the typical form

of F̃ .

Note that if the market is full of identical agents with reservation value 0, and if it

costs the principal C to replace the agent, then D is determined endogenously by D =

max F̃ (W ) − C.

4.3 Promotion.

Suppose that the principal has an opportunity to promote the agent to a new position by

training him at a cost K ≥ 0. Training permanently increases the agent’s productivity of

effort from a to θa, for some θ > 1, and his outside option from 0 to Wp ≥ 0. The agent’s

new skills may be valuable to other firms. What does the optimal contract look like in this

setting? Does the principal train the agent immediately upon hiring, or with a delay?
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To solve the problem, denote by Fp(W ) the principal’s profit function from a trained

agent, the largest solution of equation

F ′′
p (W ) = min

a>0,c

Fp(W ) − θa + c − F ′
p(W )(W − u(c) + h(a))

rσ2γ(a)2/(2θ2)

with boundary conditions Fp(W̃p) = 0, Fp(Wgp) = F0(Wgp) and F ′
p(Wgp) = F ′

0(Wgp) for

some Wgp ≥ 0, where rσγ(a)/θ is the volatility of the agent’s continuation value required

to provide incentives for productivity θa.

For an untrained agent, the principal must decide on the timing of promotion or re-

tirement. Function F̃0(W ) = max(F0(W ), Fp(W ) − K) summarizes these options. Figure

4 shows a typical form of the principal’s profit from an agent before promotion, which

satisifes

F̃ ′′(W ) = min
a>0,c

F̃ (W ) − a + c − F̃ ′(W )(W − u(c) + h(a))

rσ2γ(a)2/2

with boundary conditions F̃ (0) = 0, F̃ (W̃gp) = Fp(W̃gp) − K and F̃ ′(W̃gp) = F ′
p(W̃gp).

The right panel of Figure 4 compares the principal’s profit with and without the possi-

bility of promotion. Promotion, which happens when the agent’s value hits Wgp, provides

an efficient way to reward the agent.

This example sheds light on how firms use complex employment hierarchies to create

incentives, and why employees climb up the hierarchial ladder gradually. Two reasons why

promotion is delayed in our example are the cost of training and the improvement of the

agent’s outside option.

4.4 Comparisons.

We can study how the contractual environment affects the agent’s career by exploring how

the solutions of the HJB equation change with the boundary conditions. Theorem 4 is the

main tool that allows us to perform comparisons.

Theorem 4. Consider two concave solutions of the HJB equation F̃1(W ) and F̃2(W ).

Denote by c̃i(W ) and ãi(W ) the agent’s consumption and effort that correspond to value

W in the contract associated with function F̃i(W ).

(a) If F̃1(W ) = F̃2(W ) and F̃ ′
1(W ) < F̃ ′

2(W ) for some W, then the contract associated with

F̃2 involves more backloaded payments. That is, for any w, c̃1(w) ≥ c̃2(w).
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(b) If F̃1(W ) ≤ F̃2(W ) for all W, then for each pair of values w and w′ such that F̃ ′
1(w) =

F̃ ′
2(w

′) (and so c̃1(w) = c̃2(w
′)) we have

(i) ã1(w) ≤ ã2(w
′). Therefore, for each positive wage level the contract associated with

F̃2 involves weakly higher effort.

(ii) the ratio of volatilities of the agent’s consumption and continuation values is greater in

the contract associated with F̃2 when c̃1(w) = c̃2(w
′) > 0. Therefore, for each positive

wage level, the contract associated with F̃2 relies less on short-term incentives.

Proof. See Appendix B.

Theorem 4 compares the agent’s continuation values, efforts and the mix of short and

long-term incentives in two different contracts at points that correspond to the same wage

level. This method of comparisons is not only convenient analytically, but also relevant

empirically, since wages are much easier to observe than continuation payoffs.
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To apply Theorem 4, we need to compare the principal’s profit in different settings and

find points where profit functions intersect. In terms of the principal’s profit (part (b) of

Theorem 4), the settings we have considered compare as follows:
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quitting < benchmark < replacement, promotion

where the last two settings cannot be ranked.21 For each wage level, both the agent’s effort

and the use of long-term incentives are greater when the principal’s profit is higher.

Regarding the relationship between the agent’s consumption and his continuation value,

the profit function F̃ with promotion intersects F at W = 0, where F̃ ′(0) ≥ F ′(0). Also,

the profit function F̃ when the agent has an outside option must intersect F at a point

W ∈ (W̃gp,Wgp), where F̃ ′(W ) ≥ F ′(W ). Therefore, both when the agent can get promoted

or when he has an outside option, the agent’s wages are more backloaded relative to the

benchmark contract.

The following table summarizes how contracts in different settings compare to the

benchmark, and Figure 5 illustrates them for our examples.

possibility payments effort incentives

outside option more backloaded smaller more immediate

replacement either greater more distant

promotion more backloaded greater more distant

Note that we perform comparisons only for positive wage levels, which correspond to a

single point on the principal’s value function.

Our final comparative static has to do with the nature of human capital the agent gains

after promotion. The human capital is less firm-specific when Wp is higher. When the agent

gains better outside options due to promotion, then the principal’s profit after promotion

Fp is lower and the slope F̃ ′(0) before promotion becomes lower. As a result, less firm-

specific human capital after promotion results in more frontloaded wages and incentives in

the optimal contract, and it also motivates the agent to put lower effort.

5 Optimal Contracts when the Agent is Patient.

Discrete-time models have focused considerable attention on the case when the agent is

patient. The standard result is that efficiency is attainable as the agent’s discount rate

21Also, for the case of quitting it is assumed that W̃ < Wc, where Wc > 0 is defined by F (Wc) = 0.
Then F̃ ≤ F on [W̃ , W̃gp] because F̃ (W̃ ) < F (W̃ ) and F̃ (W̃gp) = F0(W̃gp).
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goes to 0 (or the discount factor between periods goes to 1). In this section, we confirm

this result in continuous time. More importantly, we argue that the case when the agent

is patient may be of limited interest if one wants to understand the dynamic properties of

optimal contracts. When r is close to 0, optimal contracts have straightforward dynamic

properies. In the limit, the agent’s wages are neither backloaded nor frontloaded and his

continuation value is driftless. The agent’s effort decreases in his continuation value, and

stays roughly constant over time. The dynamic properties of the contract related to the

optimal incentive provision disappear.

We focus on the case where A = [0, Ā] and the cost of effort h(a) is twice continuously

differentiable. Denote by F̄ : [−h(Ā), u(∞)) → (−∞, Ā] the first-best average profit, which

the principal would be able to achieve if he could control both the agent’s consumption

and effort. When W ≥ W ∗
gp, we have F̄ (W ) = F0(W ), where W ∗

gp is defined by F ′
0(W

∗
gp) =

γ0 = 1/v′(0). When W < W ∗
gp, profit F̄ (W ) = ā(W ) − c̄(W ) is achieved by constant effort

and consumption that satisfy W = u(c̄(W )) − h(ā(W )) and (assuming v ′(Ā) = u′(0)) the

first-order condition

F̄ ′(W ) = u′(c̄(W )) = v′(ā(W )). (14)

Theorem 5 characterizes the principal’s profit and the optimal contract when r is small.

Theorem 5. As r → 0, Wgp → W ∗
gp and the principal’s average profit F converges to

first best pointwise on (0,W ∗
gp). The agent’s consumption and effort converge to c̄(W ) and

ā(W ) pointwise on (0,W ∗
gp), and the principal’s profit is

F (W ) = F̄ (W ) + rγ(ā(W ))2σ2 F̄ ′′(W )

2
+ o(r).

Proof. See Appendix C.

What is the intuition behind Theorem 5? When the agent is patient, incentives require

very little variation in the agent’s income. As a result, the optimal contract implements

first-best effort ā(W ) and uses only a local portion of the agent’s utility function. The

average inefficiency is

−rγ(ā(W ))2σ2F̄ ′′(W )

2
= −rv′(ā(W ))2σ2u′′(c̄(W ))

2u′(c̄(W ))3
=

rα2σ2δ

2
,

where δ = −u′′(c̄(W ))/u′(c̄(W )) is the agent’s coefficient of absolute risk aversion at c̄ and
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α = v′(ā)/u′(c̄) is the piece-rate. This form of losses is similar to that in the multi-task

model of Holmstrom and Milgrom (1991), confirming once again that the case of a patient

agent captures only short-run properties of the optimal contract.

6 Conclusion.

This paper develops a new flexible method of analyzing optimal dynamic contracts between

a principal and an agent when the agent’s effort is not directly observable. Contracts in

continuous-time are conveniently characterized by the drift and volatility of the agent’s

continuation value. The drift is related to the intertemporal pattern of the agent’s wages

and the volatility to incentives and effort. The provision of incentives, the agent’s effort

and the allocation of payments over time depend on many factors, including the agent’s

outside options, the cost of replacing the agent and promotion opportunities.

Despite the abstract form of the model, the properties of the optimal contract we

investigate have a real economic meaning. It is possible to estimate empirically both the

rate at which employee wages tend to increase and the mix of short-term and long-term

incentives from employment data.22 While some of the issues we study have already received

attention in the personnel economics literature (e.g. Spilz (1991) confirms empirically that

employee wages tend to rise faster than their productivity), others have not received due

attention because of the lack of theory. For example, it would be very difficult to study

without continuous-time methods the optimal mix of short-term and long-term incentives.

Our analysis of optimal dynamic incentives relies on the differentiability properties that

continuous time delivers.

While interpreting our results, one has to be conscious of our assumption that the

agent cannot save. Generally, our intuitions about the dynamics of the agent’s wages and

incentives do not appear to depend on this assumption. However, the assumption that

the agent cannot save matters if one addresses the practically important issue that the

principal’s commitment may be limited. A contract cannot have a high retirement point if

the principal cannot commit to make high payments to the agent in exchange for zero effort

and the agent cannot save. Yet, with savings a high retirement point can be implemented

by letting the agent accumulate wealth during employment, and then consume the annuity

value of his wealth during retirement. This paper does not explore the degree of the

22For example, one could use the dataset like that of Meyersson-Milgrom, Petersen and Asplund (2002)
to estimate these properties of actual contracts.
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principal’s commitment.

We finish by discussing the technical issues connected with the no-savings assumption.

If the agent’s savings were observable and contractible, then the principal would be able

to achieve the same profit as if the agent could not save or borrow. However, if the prin-

cipal cannot observe the agent’s savings, then the contracting problem becomes extremely

difficult.23 The contract proposed in this paper would be vulnerable to many deviations

if the agent could save and borrow. The agent would save his income to insure himself

against future manipulations by the principal. One way to approach this problem is to

add a restriction on the contract that the payments to the agent must induce a martingale

marginal utility of consumption. Then the agent would not be able to improve his welfare

by deviating only with his effort, or only with his savings. This idea, called the first-order

aproach, was taken up in discrete time in Werning (2002), who finds a computational way

to check the validity of this approach for specific examples. In general, this approach al-

ways provides a useful upper bound on the principal’s profit, since the first-order conditions

are necessary for incentive compatibility. However, nobody has found a satisfactory set of

conditions that guarantee full incentive-compatibility under the first-order approach to dy-

namic contracts with hidden state variables like savings, although limited progress has been

made in this direction. For example, Williams (2003) presents one set of useful sufficient

conditions, although they are not comprehensive enough to deal with hidden savings. It is

also known that the first-order approach fails in a few reasonable cases, e.g. when the agent

has binary effort choice or a linear cost of effort.24 Kocherlakota (2004) points out that the

first order approach is invalid when the agent’s cost of effort is linear in the unemployment

insurance problem, and develops a number of new elegant ideas to solve the problem.

23The problem with hidden savings can be solved for the case when the agent is risk-neutral but has
limited liability. For example, see the continuous-time model of DeMarzo and Sannikov (2006).

24There is a simple verbal argument to show that the first-order approach fails with binary effort. Under
any contract derived using the first order approach, the agent’s marginal utility of consumption would be
a martingale. When the agent is supposed to put positive effort, the first order condition implies that he
is indifferent between positive effort and effort zero, given that he does not alter his consumption pattern.
The agent’s deviation to effort zero would modify the underlying probability measure, so that with the
original consumption pattern his marginal utility of consumption will be a submartingale. Therefore, by
saving appropriately the agent can strictly improve his utility. We conclude that under an optimal contract
subject to just first order incentive compatibility conditions, the agent always has a profitable deviation,
which involves choosing effort zero and increased savings.
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7 Appendix A: Proof of Theorem 1.

Here we provide a formal derivation of the optimal contract. We organize the derivation
into five steps:

1. Define the agent’s continuation value Wt(C,A) for an arbitrary contract (C,A).

2. Using the Martingale Representation Theorem, find a stochastic representation for
Wt(C,A).

3. Derive necessary and sufficient conditions for the optimality of the agent’s effort in
terms the sensitivity of Wt(C,A) to output.

4. Investigate regularity properties of the HJB equation, and prove existence and unique-
ness of an appropriate solution to conjecture an optimal contract.

5. Verify that the conjectured contract is indeed optimal using a martingale argument
that relies on the properties of the HJB equation.

7.1 The agent’s continuation value.

Fix an arbitrary consumption process C = {Ct} and an effort strategy A = {At}, which
may or may not be optimal for the agent given C. The agent’s continuation value, his
expected future payoff from (C,A) after time t, is

Wt(C,A) = EA

[

r

∫ ∞

t

e−r(s−t)(u(Cs) − h(As)) ds | Ft

]

, (15)

where EA denotes the expectation under the probability measure QA induced by the agent’s
strategy A.

7.2 The evolution of Wt(C, A).

If At and Ct are completely determined by the path of output {Xs, s ∈ [0, t]} for all t ≥ 0,
i.e. the contract does not use randomization, then the agent’s continuation value Wt(C,A)
is completely determined by the path of output as well. The motion of Wt(C,A) is described
by a stochastic differential equation. Proposition 1 derives the drift and introduces notation
for the volatility of Wt(C,A), which describe the law of motion of Wt(C,A). The volatility
of Wt(C,A), which comes from its sensitivity towards the output Xt, plays an important
role for the agent’s incentives.
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Proposition 1. Representation of the agent’s value as a diffusion process.

There exists a progressively measurable process Y = {Yt,Ft; 0 ≤ t < ∞} in L∗ such that25

Wt(C,A) = W0(C,A) +

∫ t

0

r(Ws(C,A) − u(Cs) + h(As)) ds +

∫ t

0

rYs(dXs − As ds) (16)

for every t ∈ [0,∞).

Proof. Note that the agent’s total expected payoff from (C,A) given the information
at time t,

Vt = r

∫ t

0

e−rs(u(Cs) − h(As)) ds + e−rtWt(C,A), (17)

is a QA-martingale. Assuming that the filtration {Ft} satisfies the usual conditions, the
QA-martingale V must have a RCLL modification by Theorem 1.3.13 of Karatzas and
Shreve (1991) (from now on KS). Then by the Martingale Representation Theorem (KS,
p.182), we get the representation

Vt = V0 + r

∫ t

0

e−rsYsσ dZA
s , 0 ≤ t < ∞, (18)

where

ZA
t =

1

σ

(

Xt −
∫ t

0

As ds

)

(19)

is a Brownian motion under QA and the factor re−rtσ that multiplies Yt is just a convenient
rescaling. Differentiating (17) and (18) with respect to t we find that

dVt = re−rtYtσ dZA
t = re−rt(u(Ct) − h(At)) dt−e−rtWt(C,A) dt + e−rt dWt(C,A)

︸ ︷︷ ︸

d(e−rtWt(C,A))

(20)

⇒ dWt(C,A) = r(Wt(C,A) − u(Ct) + h(At)) dt + rYtσ dZA
t ,

which implies (16). QED

The value of Wt(C,A) depends only on the path {Xs; 0 ≤ s ≤ t} and the processes
(C,A) after time t, but not the agent’s effort before time t. Therefore, equation (16) de-
scribes how Wt(C,A) is determined by the output path {Xs; 0 ≤ s ≤ t} regardless of the
agent’s effort before time t.26 This distinction is crucial for Proposition 2, which derives a
necessary and sufficient condition for the optimality of the agent’s effort.

25A process Y is in L∗ if EA
[∫ t

0
Y 2

s ds
]

< ∞ for all t ∈ [0,∞).
26For simplicity, we suppress the dependence of Yt on the processes (C, A) from time t onward in equation

(16).
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7.3 Incentive-compatibility condition.

Proposition 2. The agent’s incentives. For a given strategy A, let Yt be the process
from Proposition 1 that represents Wt(C,A). Then A is optimal if and only if

∀a ∈ A, YtAt − h(At) ≥ Yta − h(a), 0 ≤ t < ∞ (21)

almost everywhere.

Proof. Consider an arbitrary alternative strategy A∗. Define by

V̂t = r

∫ t

0

e−rs(u(Cs) − h(A∗
s)) ds + e−rtWt(C,A), (22)

the time-t expectation of the agent’s total payoff if he experienced the cost of effort from
the strategy A∗ before time t, and plans to follow the strategy A after time t. Let us identify
the drift of the process V̂t under the probability measure QA∗

. We have

dV̂t = re−rt(u(Ct) − h(A∗
t )) dt−re−rt(u(Ct) − h(A∗

t )) dt + re−rtYtdZ
A
t

︸ ︷︷ ︸

d(e−rtWt(C,A)) by (20)

= re−rt(h(At) − h(A∗
t ) + Yt(A

∗
t − At))

︸ ︷︷ ︸

drift of V̂

dt + re−rtYtσ dZA∗

t ,

where the Brownian motions under QA and QA∗

are related by σZA
t = σZA∗

t +
∫ t

0
(A∗

s−As)ds.
If (21) does not hold on a set of positive measure, choose A∗

t that maximizes YtA
∗
t−h(A∗

t )
for all t ≥ 0. Then the drift of V̂ (under QA∗

) is nonnegative and positive on a set of positive
measure. Thus, there exists a time t > 0 such that

EA∗

[V̂t] > V̂0 = W0(C,A).

Because the agent gets utility EA∗

[V̂t] if he follows A∗ until time t and then switches to A,
the strategy A is suboptimal.

Suppose (21) holds for the strategy A. Then V̂t is a QA∗

-supermartingale for any alter-
native strategy A∗. Moreover, since the process W (C,A) is bounded from below, we can
add

V̂∞ = r

∫ ∞

0

e−rs(u(Cs) − h(A∗
s)) ds

as the last element of the supermartingale V̂ .27 Therefore,

W0(C,A) = V̂0 ≥ EA∗

[

V̂∞

]

= W0(C,A∗),

so the strategy A is at least as good as any alternative strategy A∗. QED

27See Problem 3.16 in Karatzas and Schreve (1991). Note that V̂∞ ≤ limt→∞ V̂t.
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From Proposition 2 it follows that the minimal volatility of the agent’s continuation
value required to induce action a ∈ A is given by rγ(a)σ, where γ : A → [0,∞) is defined
by (4).

7.4 The HJB Equation.

Next, we conjecture an optimal contract using the HJB equation. To show that the HJB
equation has an appropriate solution, we start by investigating its regularity properties
(Lemmas 1 and 2) in order to prove existence and uniqueness of an appropriate solution
(Lemma 3). From that solution, Proposition 3 conjectures an optimal contract.

To ensure regularity, we start with a version of the HJB equation in which the sensitivity
parameter Y is bounded from below by γ0 and consumption is bounded from above by the
level C̄ such that u′(C̄) = γ0.

28 Letting γ1 = maxa γ(a), consider equation

F ′′(W ) = min
(a,Y )∈Γ,c∈[0,C̄]

F (W ) − a + c − F ′(W )(W − u(c) + h(a))

rσ2Y 2/2
︸ ︷︷ ︸

Ha,Y,c(W,F (W ),F ′(W ))

, (23)

where Γ is the set of pairs (a, Y ) ∈ A× [γ0, γ1] that satisfy the incentive constraints (21) of
Proposition 2. Note that Γ is a compact set that contains the set of pairs {(a, γ(a)), a > 0}.
Lemma 1 proves continuity and concavity properties of the solutions to (23), and Lemma
2 proves monotinicity properties of the phase diagram of solutions.

Lemma 1. The solutions to the HJB equation (23) exist and are unique and continuous
in initial conditions F (W ) and F ′(W ). Moreover, initial conditions with F ′′(W ) < 0 result
in a concave solution.

Proof. Functions Ha,Y,c(W,F, F ′) are differentiable in all of its arguments, with uni-
formly bounded derivatives over all (a, Y ) ∈ Γ and c ∈ [0, C̄]. Therefore, the right hand
side of (23) is Lipschitz continuous. It follows that the solutions to (23) exist globally and
are unique and continuous in initial conditions.29

We still need to prove that a solution F with a negative second derivative at one point
must be concave everywhere. Let us show that the second derivative of the solution F can
never reach 0, and therefore must remain negative. If F ′′(W ) = 0, it follows that the entire
solution must be a straight line F (W ′) = F (W ) + F ′(W )(W ′ − W ) since

F (W ) + F ′(W )(W ′ − W ) − a + c − F ′(W )(W ′ − u(c) + h(a))

rσ2Y 2/2
(24)

takes the same value for all W ′, for all a, Y and c. QED

28It can be shown that whenever the tangent to F at W passes above F0 and F ′′(W ) < 0, then the
optimal choice of consumption in the HJB equation is less than C̄. Thus, the restriction to c < C̄ is without
loss of generality in the relevant range.

29Note that the linear growth conditions hold as well.
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Lemma 2. Consider two solutions F and F̃ of equation (23) that satisfy F (W ) = F̃ (W )
and F ′(W ) < F̃ ′(W ). Then F ′(W ′) < F̃ ′(W ′) for all W ′. Therefore, F (W ′) < F̃ (W ′) for
W ′ > W and F (W ′) > F̃ (W ′) for W ′ < W.

Proof. Without loss of generality, let us prove the claim for W ′ > W. If the claim is
false, let W ′ ∈ (W,∞) be the smallest point for which F ′(W ′) = F̃ ′(W ′). Then F ′(V ) <
F̃ ′(V ) for V ∈ (W,W ′), so F (W ′) < F̃ (W ′) and

F ′′(W ′) ≤ Ha,Y,c(W
′, F (W ′), F ′(W ′)) < Ha,Y,c(W

′, F̃ (W ′), F̃ ′(W ′)) = F̃ ′′(W ′)

for the triple (a, Y, c) that serves as a minimizer in the HJB equation for function F̃ at
point W. Note that Ha,Y,c(W,F, F ′) is increasing in its second argument. It follows that
F ′(W ′ + ε) < F̃ ′(W ′ + ε) for all sufficiently small ε, a contradiction. QED

The optimal contract is constructed from a specific solution of the HJB equation, which
satisfies F (W ) ≥ F0(W ) for all W ≥ 0 and boundary conditions

F (0) = 0, F (Wgp) = F0(Wgp) and F ′(Wgp) = F ′
0(Wgp) (25)

for some Wgp ∈ [0,W ∗
gp]. Lemma 3 shows that there is a unique function with these prop-

erties.
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Figure 6: Typical solutions of the HJB equation.

Lemma 3. There exists a unique function F ≥ F0 that solves the HJB equation and
satisfies the boundary conditions (25) for some Wgp ∈ [0,W ∗

gp].

Proof. In this proof we consider the solutions of equation (23) with F (0) = F0(0)
and various slopes F ′(0) ≥ F ′

0(0). By Lemma 1, all of these solutions are concave and
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continuous in F ′(0). If the solution F with F ′(0) = F ′
0(0) satisfies F (W ) ≥ F0(W ) for all

W ≥ 0, then it is the desired solution, and Wgp = 0.
Otherwise, as we increase F ′(0) above F ′

0(0), initially the resulting solutions F must
reach F0 at some point W ′ ∈ (0,∞), as shown by curves A and B in Figure 6. By Lemma
2, point W ′ is moving to the right as F ′(0) is increasing. When F ′(0) becomes sufficiently
large the resulting solution never reaches F0 on (0,∞). Indeed, by Lipschitz continuity of
(23), if F ′(0) is large enough then F grows above the level maxA. Such a solution must
grow forever, since if it ever reaches slope 0 at a point W, then F (W ) > maxA together
with F ′(W ) = 0 would imply that F ′′(W ) > 0, contradicting Lemma 1 (see solution E in
Figure 6).

Now, as we increase F ′(0) above F ′
0(0), point W ′ stays bounded by W ∗

gp. Otherwise, if
W ′ > W ∗

gp then for some W ′′ < W ′, F ′(W ′′) = F ′
0(W

∗
gp) = −1/u′(C̄) = −1/γ0 and

F (W ′′) + F ′(W ′′)W ′′ > F0(W
∗
gp) + F ′

0(W
∗
gp)W

∗
gp = −C̄ + F ′(W ′′)u(C̄).

But then

F ′′(W ′′) =
F (W ′′) − a + C̄ − F ′(W ′′)(W ′′ − u(C̄) + h(a))

rσ2Y 2/2
>

−a + h(a)/γ0

rσ2Y 2/2
≥ 0,

a contradiction to Lemma 1.
Since W ′ cannot escape to infinity, by continuity it follows that there is a largest slope

F ′(0) > F ′
0(0) for which the resulting solution reaches F0(0) at a point Wgp = W ′ ≤ W ∗

gp

(solution C in Figure 6). Because solutions with a larger slope at 0 would never reach F0

on (0,∞), it follows that F (W ) ≥ F0(W ) for all W ∈ [0,∞), and thus F is tangent to F0

at Wgp.
Thus, we have constructed a function F ≥ F0 that satisfies conditions (25) for some

Wgp ≥ 0. To see that this function is unique, note that any solution with a larger slope at
0 would be strictly greater than F0 on (0,∞). QED

Proposition 3 conjectures an optimal contract from the solution of equation (23) we
have just constructed (see solution C in Figure 6).

Proposition 3. Consider the unique solution F (W ) ≥ F0(W ) of equation (23) that
satisfies conditions (25) for some Wgp ∈ [0,W ∗

gp]. Let a : [0,Wgp] → A, Y : [0,Wgp] → [γ0, γ1]
and c : [0,Wgp] → [0, C̄] be the minimizers in (23).

For any starting condition W0 ∈ [0,Wgp] there is a unique in the sense of probability
law weak solution to equation

dWt = r (Wt − u(c(Wt)) + h(a(Wt))) dt + rY (Wt) (dXt − a(Wt)Y (Wt) dt)
︸ ︷︷ ︸

σdZ
a(W )
t

(26)
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until the time τ = inf{t : Wt = WL or WH}. The contract (C,A) defined by

Ct = c(Wt), and At = a(Wt), for t ∈ [0, τ)
Ct = −F0(Wτ ), and At = 0, for t ≥ τ

(27)

is incentive-compatible, and it has value W0 to the agent and profit F (W0) to the principal.

Proof. There is a weak solution of (26) unique in the sense of probability law by
Theorem 5.5.15 from KS because the drift and the volatility of W are bounded on [0,Wgp],
and the volatility is bounded above 0 by rγ0σ. Define Wt = Wτ for t > τ, and let us show
that Wt = Wt(C,A), where Wt(C,A) is the agent’s true continuation value in the contract
(C,A).

From the representation of Wt(C,A) in Proposition 1, we have30

d(Wt(C,A) − Wt) = r(Wt(C,A) − Wt) dt + r(Yt − Y (Wt))σ dZA
t ⇒

Et[Wt+s(C,A) − Wt+s] = ers(Wt(C,A) − Wt).

Note that Et[Wt+s(C,A) − Wt+s] must remain bounded, because both W (by 0 and Wgp)
and W (C,A) (since Ct is bounded) are bounded. We conclude that Wt = Wt(C,A) for
all t ≥ 0, and in particular, the agent gets value W0 = W0(C,A) from the entire contract.
Also, the contract (C,A) is incentive compatible, since (At, Yt) ∈ Γ for all t.

To see that the principal gets profit F (W0), consider

Gt = r

∫ t

0

e−rs(As − Cs) ds + e−rtF (Wt)

By Ito’s lemma, the drift of Gt is

re−rt

(

(At − Ct − F (Wt)) + F ′(Wt)(Wt − u(Ct) + h(At)) + rσ2Y 2
t

F ′′(Wt)

2

)

.

The value of this expression is 0 before time τ by the HJB equation. Therefore, Gt is a
bounded martingale until τ and the principal’s profit from the entire contract is

E

[

r

∫ τ

0

e−rs(As − Cs) ds + e−rτF0(Wτ )

]

= E[Gτ ] = G0 = F (W0),

since F (Wτ ) = F0(Wτ ). QED

30When one constructs a weak solution Wt, one may need a filtration bigger than that generated by
underlying the Brownian motion. Then, while generally the Martingale Representation Theorem (used in
Proposition 1 to represent Wt(C, A)) may fail, it holds on the minimal filtration that contains the Brownian
motion and the solution if the solution is unique in the sense of probability law (see Jacod and Yor (1977)).
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7.5 Verification.

Our last step is to verify that the contract presented in Proposition 3 is optimal. We start
with a lemma that bounds from above the principal’s profit from contracts that give the
agent a value higher than W ∗

gp.

Lemma 4. The profit from any contract (C,A) with the agent’s value W0 ≥ W ∗
gp is at

most F0(W0).

Proof. Define c by u(c) = W0. Then W0 ≥ W ∗
gp ⇒ u′(c) ≤ γ0. We have

W0 = E

[

r

∫ ∞

0

e−rt(u(Ct) − h(At)) dt

]

≤ E

[

r

∫ ∞

0

e−rt(u(c) + (Ct − c)u′(c) − γ0At) dt

]

≤

u(c) − u′(c)

(

E

[

r

∫ ∞

0

e−rt(At − Ct) dt

]

+ c

)

,

where u(c) = W0 and c = −F0(W ). It follows that the profit from this contract is at most
F0(W ). QED

Now, note that function F from which the contract is constructed satisfies

min
W ′∈[0,u(∞))

F (W ) − F0(W
′) − F ′(W )(W − W ′) = min

c∈[0,∞)
F (W ) + c − F ′(W )(W + u(c)) ≥ 0

(28)
for all W ≥ 0. For any such solution, the optimizers in the HJB equation satisfy a(W ) > 0
and c(W ) < C̄. If either of these conditions failed, (28) would imply that F ′′(W ) ≥ 0. Also,
we have Y (W ) = γ(a(W )).

Proposition 4. Consider a concave solution F of the HJB equation that satisfies (28).
Any incentive-compatible contract (C,A) achieves profit at most F (W0(C,A)).

Proof. Denote the agent’s continuation value by Wt = Wt(C,A), which is represented
by (16) using the process Yt. By Lemma 4, the profit is at most F0(W0) ≤ F (W0) if
W0 ≥ W ∗

gp. If W0 ∈ [0,W ∗
gp], define

Gt = r

∫ t

0

e−rs(As − Cs) ds + e−rtF (Wt)

as in Proposition 3. By Ito’s lemma, the drift of Gt is

re−rt

(

(At − Ct − F (Wt)) + F ′(Wt)(Wt − u(Ct) + h(At)) + rσ2Y 2
t

F ′′(Wt)

2

)

.

Let us show the drift of Gt is always non-positive. If At > 0 then Proposition 2 and the
definition of γ imply that Yt ≥ γ(At). Then equation (23) together with F ′′(Wt) ≤ 0 imply
that the drift of G is non-positive. If At = 0, then F ′′(Wt) < 0 (28) imply that the drift of
Gt is non-positive.
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It follows that Gt is a bounded supermartingale until the stopping time τ ′ (possibly
∞) when Wt reaches W ∗

gp. At time τ ′ the principal’s future profit is less than or equal to
F0(W

∗
gp) ≤ F (W ∗

gp) by Lemma 4. Therefore, the principal’s expected profit at time 0 is less
than or equal to

EA

[
∫ τ ′

0

e−rt(dXt − Ct dt) + e−rτ ′

F (Wτ ′)

]

= EA[Gτ ′ ] ≤ G0 = F (W0).

QED

Remark. A concave function F that satisfies (28) is still an upper bound on the
principal’s profit even if we allowed randomization. With this possibility, the representation
for W would involve an extra term, a martingale orthogonal to the Brownian motion. One
can easily adjust the arguments of Proposition 4 to accommodate this extra term.

8 Appendix B: Additional Contractual Possibilities.

Proof of Theorem 3. First, since F ≥ F̃0 ≥ F0 is a concave function, it follows that
(28) holds for all W ∈ [W̃ ,∞). Second, since F̃0(W ) = F0(W ) for sufficiently large W, there
exists a point W̃ ∗

gp ≥ W ∗
gp such that F̃0(W ) = F0(W ) ≥ F0(W )+(W −W ′)F ′

0(W )− F̃0(W
′)

for all W ≥ W̃ ∗
gp and W ′ ≥ W̃ . Then by an argument similar to Lemma 4 it follows that

the profit from any contract with value W ≥ W̃ ∗
gp is at most F0(W ).

Now, consider an arbitrary incentive-compatible contract (C,A) with value to the agent
W0 < W̃ ∗

gp, in which the principal gives the agent value Wτ at profit F̃0(Wτ ) at time τ.
Then the agent’s continuation value follows

dWt = r(Wt − u(Ct) + h(At)) dt + rYtσ dZA
t ,

for some Yt ≥ γ(At) until time τ. Denote by τ ′ the time when the process Wt hits value
W̃ ∗

gp for the first time. With this process Wt, as shown in the proof of Proposition 4, the
process

Gt = r

∫ t

0

e−rs (dXs − Cs ds) + e−rtF (Wt)

is a supermartingale until time min(τ, τ ′), and a martingale if until that time

Wt ∈ [WL,WH ], At = a(Wt), Ct = c(Wt) and Yt = γ(At).

Thus, the principal’s profit from this contract is less than or equal to

E[Gτ + 1τ≤τ ′e−rτ (F̃0(Wτ ) − F (Wτ )) + 1τ ′<τe
−rτ ′

(F0(W̃
∗
gp) − F (Wτ ))] ≤ G0 = F (W0),

with equalities everywhere if G is a martingale, Wτ = WL or WH and τ ≤ τ ′ almost surely.
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We conclude that F (W0) is an upper bound on the profit from any contract with any
value W0 ∈ [W̃ ,∞). For W0 ∈ [WL,WH ] this upper bound is achieved by a contract of the
form outlined in the statement of Theorem 3. QED

Lemma 5. For any W0 ∈ [W̃ ,∞), if there is no concave solution F ≥ F̃0 of the HJB
equation that reaches F̃0 at WL < W0 and WH > W0, then the best way to deliver to the
agent value W0 is to randomize among the contracts of from F̃0.

Sketch of Proof. Consider solutions to the HJB equation F that satisfy F (W0) =
f ≥ F̃0(W0) and F ′(W0) = f ′. Of these solutions, let us replace those that are convex by a
straight line through (W0, f) with slope f ′. Then functions F (concave solutions or straight
lines) change continuously with f and f ′. For any value f, the set of slopes f ′ for which
F reaches F̃0 at a point W > W0 is a half-line (−∞, f ′

H(f)], where f ′
H(f) is a continuous

function decreasing function. Function f ′
L(f) defined similarly for W < W0 is continuous

and increasing.
If f ′

H(F̃0(W0)) ≤ f ′
L(F̃0(W0)), then function F that corresponds to level F̃0(W0) and

slope (f ′
H(F̃0(W0)) + f ′

L(F̃0(W0)))/2 stays weakly above F̃0, and it can be shown to be an
upper bound on the principal’s profit for all W by an argument similar to the proof of
Theorem 3. Then the best contract with value W0 gives profit F̃0(W0) to the principal.

Otherwise, there is a value f > F̃0(W0) such that f ′
H(f) = f ′

L(f). Then the function
F that corresponds to level f and slope f ′

H(f) = f ′
L(f) stays weakly above F̃0, so it is an

upper bound on the principal’s profit for all W. Moreover, by continuity F reaches F̃0 at
some points WH > W0 and WL < W0. If F is a straight line, then the best contract with
value W0 involves randomization between two contracts from F̃0. If F is concave, then it
satisfies the conditions of Lemma 5 (and Theorem 3). QED

Proof of Theorem 4. (a) According to Lemma 2, we have F̃ ′
1(w) < F̃ ′

2(w) for all
w. Then the HJB equation implies that c̃1(w) ≤ c̃2(w), with equality only when c̃1(w) =
c̃2(w) = 0.

(b) Since profit from F̃1 < F̃2 are concave functions, it follows that at any two points
w and w′ with F̃ ′

1(w) = F̃ ′
2(w

′), the line tangent to F̃2 at w′ should be above (and parallel
to) the line tangent to F̃1 at w. This amounts to

F̃1(w) + F̃ ′
2(w)w < F̃2(w

′) + F̃ ′
2(w

′)w′.

Because F̃ ′
1(w) = F̃ ′

2(w
′) the HJB equation implies that F̃ ′′

1 (w) < F̃ ′′
2 (w), so the cost of

exposing the agent to risk is greater for F̃1 than F̃2. Then, (10) implies that ã1(w) ≤ ã2(w
′).

Otherwise, we would have γ(ã1(w))2 > γ(ã2(w
′))2 and

ã1(w)+h(ã1(w))F̃ ′
1(w)+rσ2 γ(ã1(w))2

2
F̃ ′′

1 (w) ≥ ã2(w
′)+h(ã2(w

′))F̃ ′
1(w)+rσ2γ(ã2(w

′))2

2
F̃ ′′

1 (w)

would imply that

ã1(w)+h(ã1(w))F̃ ′
2(w

′)+rσ2γ(ã1(w))2

2
F̃ ′′

2 (w′) > ã2(w
′)+h(ã2(w

′))F̃ ′
2(w

′)+rσ2γ(ã2(w
′))2

2
F̃ ′′

2 (w′),
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a contradiction.
Regarding volatilities, the volatility of Wt in contract i is rγ(ãi(Wt))σ. By Ito’s Lemma,

the volatility of F̃ ′
i (Wt) = 1/u′(c̃i(Wt)) is rγ(ãi(Wt))σF̃ ′′

i (Wt), and so the volatility of c̃i(Wt)
is

rγ(ãi(Wt))σF̃ ′′
i (Wt)

dc

d1/u′(c)

∣
∣
∣
∣
c=c̃i(Wt)

= rγ(ãi(Wt))σF̃ ′′
i (Wt)u

′′(c̃i(Wt)).

The ratio of the volatility of c̃i(Wt) to the volatility of Wt is

F̃ ′′
i (Wt)u

′′(c̃i(Wt)).

Now, since F̃ ′′
1 (w) < F̃ ′′

2 (w′) and c̃1(w) = c̃2(w
′), we have

F̃ ′′
1 (w)u′′(c̃1(w)) > F̃ ′′

2 (w′)u′′(c̃2(w
′)),

i.e. contract 1 relies more on short-term incentives. QED

9 Appendix C: The proof of Theorem 5.

Sketch of Proof. We will go loosely through the argument behind the proof, to spare
the reader of long precise calculations. For a constant k ≈ 1 that does not depend on r,
consider the function

F̃ (W ) = F̄ (W ) + krγ(ā(W ))2σ2 F̄ ′′(W )

2
.

Let us argue that for all sufficiently small r, F̃ (W ) is an upper bound on the principal’s
profit from the optimal contract when k < 1 and a lower bound, when k > 1.

First, we claim that

max
a,c

r(a−c)+F̃ ′(W )r(W−u(c)+h(a))+
F̃ ′′(W )

2
r2σ2γ(a)2 = rF̄ (W )+r2σ2γ(a)2 F̄ ′′(W )

2
+O(r3)

(29)
Ignoring the terms of the order of r2 the problem (29) becomes

max
a,c

r(a − c) + F̄ ′(W )r(W − u(c) + h(a)).

This problem has solution c = c̄(W ) and a = ā(W ) and value rF̄ (W ). Therefore, problem
(29) has the solution c = c̄(W ) + O(r) and a = ā(W ) + O(r), and value

r(ā(W ) − c̄(W )) + F̃ (W )′r (W − u(c̄(W )) + h(ā(W )))
︸ ︷︷ ︸

0

+
F̃ ′′(W )

2
r2σ2γ(ā(W ))2 + O(r3) =
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rF̄ (W ) + r2σ2γ(ā(W ))2 F̄ ′′(W )

2
+ O(r3).

Now, for any k > 1,

rF̃ (W ) < r(ā(W )− c̄(W ))+F̃ (W )′r(W−u(c̄(W ))+h(ā(W ))+
F̃ ′′(W )

2
r2σ2γ(ā(W ))2 (30)

for all sufficiently small r > 0. A contract that has value W0 ∈ (0,W ∗
gp) for the agent and

profit of at least F̃ (W0) for the principal can be constructed by solving

dWt = r (Wt − u(Ct) + h(At))
︸ ︷︷ ︸

0

dt + rγ(At) (dXt − At dt)

and letting Ct = c̄(Wt) and At = ā(Wt), until the stopping time τ when Wt hits 0 or W ∗
gp.

After time τ, let At = 0 and Ct = u−1(Wτ ). Then the process

Gt = r

∫ t

0

e−rs(As − Cs) ds + e−rtF̃ (Wt)

is a submartingale by (30), so the principal’s profit under this contract is

E[Gτ + e−rτ (F0(Wτ ) − F̃ (Wτ ))] > G0 + O(E[e−rτ ]) > F̃ (W0) + O(E[e−rτ ]),

where O(E[e−rτ ]) decays exponentially fast as r → 0, since the volatility of Wt is of the
order of r and the drift of Wt is 0.

For any k < 1,

rF̃ (W ) < max
a>0,c

r(a − c) + F̃ (W )′r(W − u(c) + h(a)) +
F̃ ′′(W )

2
r2σ2γ(a)2. (31)

By modifying F̃ slightly near W ∗
gp, we can create a function that satisfies (31) and also

min
c∈[0,∞)

F̃ (W ) + c − F̃ ′(W )(W + u(c)) ≥ 0.

This function is an upper bound on the principal’s profit, since for any incentive-compatible
contract

Gt = r

∫ t

0

e−rs(As − Cs) ds + e−rtF̃ (Wt)

is a supermartingale.
Our tight bounds on the principal’s profit imply that as r → 0, Wgp → W ∗

gp and
F ′(W ) → F̄ (W ) pointwise on (0,Wgp), so the agent’s consumption converges to c̄(W ).
From equation (6), the agent’s effort converges to ā(W ). QED
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[19] Jacod, J. and M. Yor (1977) “Étude des solutions extrémales, et représentation
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