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IRONING, SWEEPING, AND MULTIDIMENSIONAL 

SCREENING 


We provide existence proofs and characterization results for the multidimensional 
version of the multiproduct monopolist problem of Mussa and Rosen (1978). These results 
are also directly applicable to the multidimensional nonlinear pricing problems studied by 
Wilson (1993) and Armstrong (1996). We establish that bunching is robust in these 
multidimensional screening problems, even with very regular distributions of types. This 
comes from a strong conflict between participation constraints and second order incentive 
compatibility conditions. We consequently design a new technique, the sweeping proce- 
dure, for dealing with bunching in multidimensional contexts. This technique extends the 
ironing procedure of Mussa and Rosen (1978) to several dimensions. We illustrate it on 
two examples: we first solve a linear quadratic version of the bidimensional nonlinear 
pricing problem, where consumers' types are exponentially distributed. The solution 
involves pure bundling for consumers with low demands. The second example is the 
bidimensional version of the Mussa and Rosen problem when consumers' types are 
uniformly distributed on a square. The solution is such that the seller offers a full 
differentiation of products in the upper part of the qualities spectrum, but only limited 
choice for lower qualities. This seems to be a quite general pattern for multidimensional 
screening problems. The sweeping procedure is potentially applicable to other multidi- 
mensional screening problems. 

KEYWORDS:Screening, nonlinear pricing, adverse selection, incentives, bundling. 

1. INTRODUCTION 

THISARTICLE OFFERS A SYSTEMATIC ANALYSIS of a particular class of multidimen- 
sional screening models, which are natural extensions of the nonlinear pricing 
models studied by Mussa and Rosen (1978), Roberts (1979), Spence (1980), 
Maskin and Riley (19841, and Wilson (1993). We show that the solutions differ 
markedly from their one-dimensional counterparts, essentially because "bunch- 
ing"* cannot be ruled out easily. We design a new technique, the "sweeping" 
procedure, for dealing with this difficulty. This new technique is potentially 
applicable to many other multidimensional screening problems. 

' This is a revision of a manuscript of the first author only (January, 1995) with the same title. A 
previous version (1992) circulated under the title "Optimal Screening of Agents with Several 
Characteristics." We benefited from the detailed comments and suggestions of a co-editor and three 
referees, as well as seminar participants in Chicago, MontrCal, Stanford, Toulouse, and a workshop 
in Bonn, and offer particular thanks to Bruno Jullien, Jean-Jacques Laffont, Jean Tirole, Bob 
Wilson, and Preston McAfee (who gave us the idea for the title). Patrice Loisel was very helpful in 
providing several numerical solutions. The usual disclaimer applies. 

In the jargon of incentives theory, "bunching" refers to a situation where a group of agents 
(here, buyers) having different types are treated identically in the optimal solution. 



1.1. A Brief Survey of the Literature 

The analysis of optimal screening of agents with unknown characteristics has 
been the subject of a large theoretical literature in the last twenty years. This is 
partly justified by the great variety of contexts to which such an analysis can be 
applied. Indeed, one of the merits of this theoretical literature has been to show 
that such diverse questions as nonlinear pricing, product lines design, optimal 
taxation, regulation of public utilities . .. , could be handled within the same 
framework. 

Although it is often recognized that agents typically have several characteris- 
tics and that principals typically have several instruments, this problem has most 
of the time been examined under the assumption of a single characteristic and a 
single instrument. In this case, several qualitative results can be obtained with 
some generality: 

(i) When the single-crossing condition is satisfied, only local (first and second 
order) incentive compatibility constraints can be binding. 

(ii) In most problems, the second order (local) incentive compatibility con- 
straints can be ignored, provided that the distribution of types is not too 
irregular. 

(iii) If it is the case, bunching is ruled out and the optimal solution can be 
found in two steps: 

(a) First compute the expected rent of the agent as a function of the 
allocation of (nonmonetary) goods. 

(b) Second, find the allocation of goods that maximizes the surplus of the 
principal, net of the expected rent computed above. 

Considering the typical multiplicity of characteristics and instruments in most 
applications, it is important to know if the results above can be extended to 
multidimensional contexts. This question has already been examined in the 
signaling literature: Kohleppel (1983) and Wilson (1985) have considered exam- 
ples of multidimensional signaling equilibria, while Quinzii and Rochet (1985) 
and Engers (1987) have obtained existence results. In the screening literature, 
the question has been essentially considered in two polar cases: one instrument 
-several characteristics (Laffont, Maskin, and Rochet (1987), Lewis and Sap- 
pington (1988), Srinagesh (1991)) and one characteristic-several instruments 
(Matthews and Moore (1987)). In the first case, it is of course impossible to 
obtain perfect discrimination among agents. The same level of the instrument 
(for example the quantity produced by a regulated firm) is chosen by many 
different agents (in Lewis and Sappington (1988) this corresponds to firms 
having different costs and demands). However Laffont, Mashn, and Rochet 
(1987) and Lewis and Sappington (1988) show that it is possible to aggregate 
these types and reason in terms of the average cost function of all firms having 
chosen the same production level. Once this aggregation has been performed, 
the problem resembles a one-dimensional problem, in which types have been 
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aggregated as above. Of course the situation is more complex, since this 
aggregation procedure is endogenous. 

The second case, that of several instruments and one characteristic is very 
different. For instance Matthews and Moore (1987) extend the Mussa and 
Rosen model by allowing the monopolist to offer different levels of warranties 
as well as qualities. One of their most striking results is that the allocation of 
qualities is not necessarily monotonic with respect to types. As a consequence, 
nonlocal incentive compatibility constraints may be binding at the optimum. 

The most interesting (and probably most difficult) case is the one with several 
instruments and several characteristics. It has been examined in relatively few 
papers: Seade (1979) has studied the optimal taxation problem for multidimen- 
sional consumers and has shown that it was equivalent to a calculus of variations 
problem with several variables. Rochet (1984) has studied an extension of the 
Baron and Myerson (1982) regulation problem to a bidimensional context, 
where both marginal cost and fixed cost are unknown to the regulator. Contrary 
to Lewis and Sappington, Rochet allows for stochastic mechanisms (as Baron 
and MyersoIl did): this provides additional flexibility to the regulator. On a 
particular example, Rochet (1984) shows that the optimal mechanism can indeed 
be stochastic, as conjectured by Baron and Myerson. McAfee and McMillan 
(1988) have provided a decisive step in the study of nonlinear pricing under 
multidimensional uncertainty. They introduce a "Generalized Single Crossing 
Condition" under which incentive compatibility constraints can be replaced by 
the local (first and second order) conditions of the agents' decision problems. 
Then they also show that the optimal screening mechanism can be obtained as 
the solution of a calculus of variations problem. Wilson (1993) contains a very 
original and almost exhaustive treatment of nonlinear pricing models: in particu- 
lar several multidimensional examples are solved. Finally, Armstrong (1996) 
exemplifies some of the difficulties involved in the multidimensional nonlinear 
pricing problem. He shows that the participation constraint typically binds for a 
set of consumers with positive measure, and gives closed form solutions for 
several parametric examples. The present article builds directly on Wilson 
(1993) and Armstrong (1996). 

1.2. Outline of the Paper 

We start in Section 2 by specifying a particular class of multidimensional 
screening problems which contains two examples of interest: the multidimen- 
sional extension of the Mussa and Rosen (1978) article on product line design by 
a monopolist, and the multiproduct nonlinear pricing problem studied by Wilson 
(1993) and Armstrong (1996). Section 3 contains a heuristic presentation of our 
results. We proceed in Section 4 by studying the simpler problem (which we call 
the "relaxed" problem P4)in which the second order conditions of consumers' 
choice are neglected. We give a formal proof of existence and uniqueness of the 
solution (Theorem 11, and an economic interpretation of its characterization 
(Theorem 2). As a corollary, we find a simple necessary condition on the 



distribution of consumers' types for this solution to be admissible in the 
"complete" problem 9 (i.e. for the second order conditions of consumers' 
choice not to be binding). This condition is very restrictive: except for some 
specific situations (like the ones that Wilson (1993) and Armstrong (1996) have 
solved explicitly), the second order conditions of the consumers' program will be 
violated. The economic interpretation is that bunching is present in the solution 
of most multidimensional screening problems. This comes from a strong con- 
flict between participation constraints and second order incentive compatibility 
conditions, which are neglected in the relaxed problem. This is explained in 
Section 5. 

We therefore proceed (in Section 6) to the study of the complete problem 5, 
where the possibility of bunching is explicitly taken into account. We establish 
existence and uniqueness of the solution to 9 (Theorem 1 bis) and give an 
economic interpretation of its characterization (Theorem 2 bis). This characteri- 
zation involves a new technique, the "sweeping procedure," which generalizes 
the ironing procedure, invented by Mussa and Rosen (1978)~ for dealing with 
unidimensional bunching. In Section 7 we illustrate the use of the sweeping 
procedure by solving two examples. These examples give interesting insights on 
the economic constraints faced by multiproduct firms when designing their 
product lines and price schedules in an adverse selection context. Section 8 
concludes. 

2. STATEMENT O F  THE PROBLEM 

2.1. The Model 

We consider a multidimensional extension of the Mussa and Rosen (1978) 
model, in which a multiproduct monopolist sells indivisible goods to a heteroge- 
nous population of consumers, each buying at most one unit. Utilities are 
quasilinear: 

Here, t is a K dimensional vector of characteristics of the consumer (his 
"type"), q is a K dimensional vector of attributes of the good ("qualities"), and 
p is the price of the good. The monetary equivalent of one unit of the good is 
represented by u(t, q )  with a vector of characteristics q and for a consumer d 
type t .  For simplicity, we assume that the technology exhibits constant returns to 
scale: the unit cost of producing product q is C(q). Notice that q and t have the 
same dimensionality, so that perfect screening (a pattern in which consumers 
with different types always buy different goods) is not ruled out by dimensional- 
ity considerations. We assume that the surplus function S(t, q), defined by 

The ironing procedure has been applied to more general unidimensional situations by Gues- 
nerie and Laffont (1984). 
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is strictly concave, twice continuously differentiable, and has for all t a unique 
maximum. In that sense, product differentiation is "fundamental": it is not a 
consequence of monopoly power, since it is present in the first best solution. For 
technical reasons that we explain below, we will have to assume that the 
parameterization of preferences is linear in types: 

where u(.) = (u,(.), .. .,u,(.)) is a one-to-one mapping. Up to a redefinition of 
the vector of attributes q and the cost function C(q), we can, without further 
loss of generality, take 

which gives us a bilinear specification: 

Such a parameterization is used by Wilson (1993) and Armstrong (1996) in the 
different context of nonlinear pricing. For example, q may be a utility vector 
(q,(x), .. . ,q,(x)) where x is a vector of quantities 6.e. a bundle of different 
goods). Denoting by x(q) the (unique) bundle that provides the utility vector q, 
the cost function is then 

where C, denotes the unit cost of good k, for k = 1, ... ,K. Another example is 
the multiproduct linear demand model where customers' benefit functions have 
the form 

and the unit costs are normalized to zero. The surplus function therefore 
coincides with this customer benefit function, and formula (2.2) holds with 

Although we focus here on the product line interpretation B la Mussa and 
Rosen, our model is thus compatible with the nonlinear pricing models of 
Wilson (1993) and Armstrong (1996). This will allow us to compare our results 
with those obtained by these two authors. 
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2.2. The Monopolist's Problem 

The monopolist has to design a product line Q (i.e. a subset of R K )  and a 
price schedule p (i.e. a mapping from Q to R) that jointly maximize her overall 
profit,4 knowing only the statistical distribution of types in the population of 
potential buyers. We assume that this distribution is continuous on its domain 
0, a convex open bounded subset of R t ,  with a density function f( t )  with 
respect to the Lebesgue measure on RK. This density f is t?' on 0,and can be 
extended by continuity to the closure of 0,which is a convex compact subset of 
R:, denoted a.By convention, the total mass of consumers is normalized to 1: 

When he buys from the monopolist, a consumer of type t chooses the product 
q(t) that solves 

However, consumers of type t can also abstain from buying, in which case 
they obtain their reservation utility level denoted U,,(t). This reservation utility 
level is often supposed to be type independent, and normalized to zero.' We will 
deal here with the more general and more interesting case where U,,(t) is 
associated to an "outside good" (as in Salop (197911, corresponding to a quality 
q, sold at a price p,: 

(2.6) U,(t) = t .q,  -p,. 

The total profit of the monopoly is 

where q(t) realizes the maximum in (2.5), and 1{U 2 U,,} is the indicator function 
of the participation set: 

{t E n,u ( t )  2 ~ , , ( t ) } . ~  

It is easy to see that the solution q(t) of (2.5) is uniquely defined for a.e. t 
(see, for instance, Rochet (1987)), so that the value of the integral defining II is 
not ambiguous. However the participation set depends on the price schedule in 
a complex fashion, which may introduce nonconvexities, at least when p,,< C(q,,) 

'This is only to fix ideas. The case of a regulated monopoly, required to maximize a weighted sum 
of its profit and consumers' surplus, could be treated in the same fashion (see Wilson (1993) for 
details). 

This is the case, for instance, in Wilson (1993) or Armstrong (1996). A thorough treatment of 
type dependent participation levels in unidimensional models is, however, to be found in Jullien 
(1996). 

When indifferent, the consumer is supposed to buy from the monopoly. As we will see, this 
assumption will turn out to be innocuous in our context. 
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(this happens already in dimension 1; see Jullien (1996) for a discussion). We 
will therefore consider only the case where p, 2 C(q,), which means that the 
monopoly does not lose money if he sells the outside good at price p,. In this 
case, it is always in the interest of the monopolist to choose p(.) in such a way 
that all consumers participate, so that 

The integral defining n can then be computed over all 0: 

The monopolist's problem therefore consists in finding Q and p(.) that 
maximize 17 (given by (2.8)), under the constraints (2.51, (2.61, and (2.7). 

2.3. Two Possible Approaches 

We now discuss the two approaches that can be used for solving this problem. 
The first approach is due to Wilson (1993): it is direct and very powerful in the 
one-dimensional case. The second approach, due to Mirrlees (1971), is indirect, 
more complex, but can be extended easily to multidimensional models. 

2.3.1. The Direct Approach 

If the price schedule p :  Q -, R is "well behaved" (i.e. Q is convex, p is strictly 
convex and g2)then the quality assignment t + q(t) is one-to-one and smooth: 
q = q(t) - Vp(q) = t, where 

denotes the gradient of p. Then one can change variables in (2.8) and write 

where J(q)  = I D2p(q)l is the Jacobian of the change of variables. In dimension 
1, this'gives immediately the solution after integration by parts. Indeed, in this 
case 

which is also equal to 



where F is the c.d.f. associated to f. The optimal marginal price p ' ( q )  is 
therefore obtained by pointwise maximization7 in (2.10): 

(2.11) p ' ( q )  = arg max(t - C 1 ( q ) ) ( l-F ( t ) )  
I 

Unfortunately, this direct approach does not generalize easily to multidimen- 
sional problems, for two reasons: one cannot get rid of the Jacobian J ( q )  by 
integration by parts so that we are stuck with a second order variations calculus 
problem with a very complex Euler equation; moreover, we will establish below 
that the optimal price schedule is almost never "well behaved" in the above 
sense, so that the change of variables is not allowed. Therefore, we have to 
adopt the dual approach, initiated by Mirrlees (1971) and which we present now. 

2.3.2. The Dual Approach 

It consists in using the indirect utility function U ( t )as the instrument chosen 
by the monopoly. This is justified by the following implementation result: 

LEMMA1 (Rochet (1987)): Let U ( . )  and q( . )  be defined on 0, with values 
respectively in 1W and RK .  There exists a product line Q cR and a price schedule 
p:  Q -R such that U ( t )  satisfies (2.5) for a.e. t (the maximum being obtained for 
q = q ( t ) ) if and only i f:8 
(2.12) q ( t )  = C U ( t )  f0ra.e. t i n  R ,  
(2.13) U is convex continuous on R.  

CU( t ) ,the gradient of U at t ,  is defined for a s .  t because of condition (2.13). 
Thanks to Lemma 1, we can reformulate the monopoly problem: it suffices to 
replace, in formula (2.81, q ( t )  by V U ( t )  and p ( q ( t ) )  by t .  V U ( t )  - U(t) .  We 
obtain a problem of calculus of variations: 

under the constraints: 

(2.13) U convex continuous on 0 ,  
(2.14) U ( t )2 U,,(t) for a.e. t in 0.  

7 0 n e  can check that when q( . )  is increasing, the first order condition of this problem gives the 
familar result: 

However this condition holds only when there is no bunching, whereas (2.11) is always true. 
'Without our assumption that u( t ,q ) is linear in t ,  such a simple characterization is impossible to 

obtain (see Rochet (1987) for details), so that a complete solution is out of reach. The generalized 
single crossing condition of McAfee and McMillan (1988) is slightly more general than linearity, but 
gives rise to untractable integrability constraints. 
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If we ignore (2.141, the problem boils down to what is known in physics as an 
obstacle problem, i.e. a problem of calculus of variations with an inequality 
constraint. This problem, which we call the relaxed problem .F*, is studied in 
Section 4. In Section 5 we show that the solution of this relaxed problem is 
seldom convex: it typically violates constraint (2.14). The complete problem 9, 
which includes constraint (2.14), is much more difficult to handle, and is studied 
in Section 6. For the moment, we give a heuristic presentation of our results. 

3. A HEURISTIC PRESENTATION OF OUR RESULTS 

Even if the above problem is very natural from an economic viewpoint, its 
solution necessitates mathematical tools that are not standard in economics. For 
the sake of exposition, we have dedicated this section to a heuristic presentation 
of our results, which are then rigorously established in the rest of the paper. Our 
starting point is the functional 4 (U)  that expresses the monopolist's profit as a 
function of the buyers' indirect utility function U: 

3.1. The Problem is not Decomposable 

Up to a constant, this profit is also equal to the difference between the 
expectation of the total surplus S(t, q(t)) (with q(t) = VU(t)) and the expecta- 
tion of the buyers' rent U(t) - U,,(t). In dimension one (i.e. when 0= [a ,  b]), it 
is easy to transform the second term, as soon as one knows where the participa- 
tion constraint is binding. For example in the most familiar situation, U(a) = 

U,,(a) (i.e. the participation constraint binds "at the bottom") and an integration 
by parts gives 

The problem is thus decomposable into two subproblems: 

(i) Compute expected rents as a function of the product assignment q(.); this 
is formula (3.2). 

(ii) Then choose the products assignment (I(.) that maximizes the "virtual" 
surplus (Myerson (1981)): 

Unfortunately when K > 1 (multidimensional setting), this does not work for 
(at least) two reasons: 

(a) Given an arbitrary product assignment t +q(t), it is not in general 
possible to find a function U(t) such that VU = q ;  q has to satisfy integrability 
conditions, which are complex to manage. 



(b) Even if q satisfies these integrability conditions, there are an infinity of 
ways to compute the expected rent. Indeed [U(t) - U,(t)l can be computed as 
the integral of q - q, along any path joining 0, (where the rent equals zero) to 
the point t. Thus there are an infinity of vector fields t + v(t) such that 

In more intuitive terms, the problem is that one does not know the direction 
of the (local) incentive compatibility constraints that will be binding. This is why 
we cannot (in general)9 decompose the problem, and have to work directly on 
U(.) instead of q(.). 

3.2. Characterization of the Solution when there is no "Bunching" 

When there is no bunching (i.e. when different types always get different 
products) the monopolist's problem reduces to maximizing +(U) under the sole 
constraint U r U,. The solution U* of this (relaxed) problem P* is such that 
+(U* + ~ h )5 +(U*) for any admissible function (U* + eh). Let the marginal 
loss in the direction h be defined as 

4(U*)  - +(U* + ~ h )
(3.4) L ( h ) =  lim 

(i.e. the opposite of the directional derivative 4'(U*)h). The first order condi- 
tion of 9*expresses that L(h)  is nonnegative for any admissible direction h ,  
i.e. for any function h that is nonnegative on the "indifference set" R,, where 
the consumers' rent equals zero. We establish below (in Section 4) that the 
marginal loss can be written as the integral of h with respect to some measure 
p, supported by a: 

More precisely p is the sum of a measure on 0,with a density cu(t), and a 
(singular) measure on dR,  with a density P(t) with respect to the Lebesgue 
measure a on i)R (the expressions of a and p are given in Section 4): 

The expression of the first order conditions that characterize U* now becomes 
very simple (see Theorem 2 in Section 4): the measure p has to be positive (i.e. 
a ( t )  2 0, P(t)  2 0) and supported by R, (i.e. a and P are equal to zero outside 
0,).  The difficulty is then to find the boundary r that separates 0, from its 

The only exception of which we are aware is the family of problems solved explicitly by Wilson 
(1993) and Armstrong (1996). As we explain in Section 5, these examples are not robust. 
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complement 0 , .  Once r has been determined (see Section 4 for details), R,, 
and 0, are also determined and the value of U* in 0, is obtained by solving a 
partial differential equation which expresses two crucial properties of the 
solution. To interpret them, let us define the marginal distortion vector at t: 

(i) First Property of the Solution: The boundary of the strict participation set 
0, is the union of two sets: r,where the participation constraint is binding 
(U* = U,) and d 0 ,  17 d 0  (the "outside" boundary of 01,where the distortion 
vector v(t) is tangent to d o .  This generalizes the property known as "no 
distortion at the top" of the unidimensional solution. It can be interpreted as 
follows: The optimal solution is never distorted in the direction of the outside 
normal Z(t) to rlR because there are no types outside 0, and therefore there 
are no binding incentive compatibility constraints in that direction. 

(ii) Second Property of the Solution: The sum of the marginal variations of v at 
t in all directions1' equals the opposite of f(t): 

K dv; 
(3.7) C -(t) = -f( t ) .

d tir = l  

This condition (already discussed in Wilson (199311, expresses the basic 
trade-off between rent extraction and surplus formation. In dimension one, this 
equation can be solved explicitly: 

u( t )  = - F ( t )  + constant, 

where the constant is determined by the boundary condition discussed above. 
When K > 1, v can in general only be found numerically. 

3.3. Bunching is Robust in Multiple Dimension 

Armstrong (1996) has shown that when R is strictly convex, the indifference 
set" R,, cannot be reduced to a singleton: it has even a nonempty interior, as 
we show below. We establish that p(O,,) equals one (see Proposition 2 in 
Section 4.31, which immediately implies Armstrong's result. Moreover, we also 
prove (Proposition 1) that 0, necessarily contains all the boundary points t of 
?? that are "directly exposed to the outside product q," in the sense that the line 
from VC(q,) to t does not intersect R.I2 The set of such points is denoted by 
rl-0 and its convex hull by 0-.One of our main results is that whenever 0- is 
large enough, then U* is not convex and thus differs from the solution of the 
complete problem 9,which involves bunching. 

lo  The expression Cf=, (dv,/dt,Xt), known as the divergence of v at t, is denoted divv(t1 and 
plays a crucial role in the sequel. 

" While in Armstrong's context, O,, is interpreted as the nonparticipation set, we prefer to 
interpret it'here as the set of types for which all the rent is extracted by the monopoly. 

l2  The precise interpretation of this property is given in Section 4.3. 



Intuitively, this comes from a conflict between participation constraints and 
second order incentive compatibility conditions: on the one hand, it is optimal to 
extract all the surplus from all the types in ii- R (who a re  directly exposed to the 
outside product); on the other hand, if U* is convex (as a function) then R,,  is 
also convex (as a set) and therefore has to contain the convex hull 0- of a- O ,  
which may conflict with the condition p ( f l O )  = 1. O n  a series of examples, we 
show this is more the rule than the exception, and that the explicit solutions 
found by Wilson (1993) and Armstrong (1996) (who do not satisfy it) are not 
robust to a small perturbation of R .  

3.4. Characterization of the Solution when there is Bunching 

When there is bunching, the complete characterization of the solution neces- 
sitates a complex technique, the sweeping procedure, that we discuss in detail in 
Section 6. For the moment, we just explore the economic interpretation of the 
results that we obtain thanks to this technique (Theorem 2 bis). The general 
pattern of the solution is as follows. O is partitioned into three regions:13 

(i) the indifference region (still denoted O,,), where 0= U,,;it is convex, its 
boundary is now strictly included in rl-O (contrary to the case of U*) but we 
still have the property p (O, )  = 1; 

(ii) the nonbunching region O , ,  where 0 is strictly convex and p is zero; 
therefore the marginal distortion vector satisfies the two properties described 
above in part 3.2; 

(iii) finally the bunching region R,, itself partitioned into "bunches" O ( q )  of 
types who buy the same product q ;  the measure p has now a positive part p+ 
and a negative part p-. We prove that the restrictions of p+ and p- to each 
bunch O ( q )  have the same mass and the same mean. If one remembers that p 
measures the marginal losses associated to variations of consumers' rent, these 
conditions mean that whenever the specification of product q or its price P ( q )  
are marginally altered around the solution, the total contribution to the firm's 
profit is zero. 

We now explore in details the techniques needed to solve our problem. We 
start with the relaxed problem 9*. 

4. THE RELAXED PROBLEM 

In this section, we study the (relaxed) problem where the convexity constraint 
(2.14) (which can be interpreted as the second order condition of the buyers' 
program (2.5)) is neglected. This is the traditional way to solve the one-dimen- 
sional version of the problem, in which (2.14) boils down to the condition that 
t +q(t)  is nondecreasing. When there is no "bunching" (i.e., different types 
always get different products), the relaxed problem and the complete problem 

l3 See Figures 6 and 7 in Section 7 for two examples. 
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have the same solutions. It is therefore natural to try the same procedure in the 
multidimensional case. This has been done by Wilson (1993) and Armstrong 
(1996) on several examples. We provide here a systematic treatment by obtain- 
ing existence and characterization results for the solution of the relaxed prob- 
lem. 

4.1. Existence of the Solution 

As already mentioned, the relaxed problem is a problem of calculus of 
variations with an inequality constraint. Similar problems are called "obstacle 
problems" in Physics and many existence and regularity results are available 
(see, for instance, Kinderlehrer-Stampacchia (1980) or Rodrigues (1987)).The 
appropriate functional space for solving such problems is H 1 ( 0 ) ,the space of 
functions" U from 0 to W such that U and V U  are square integrable. This 
space is a Hilbert space for the norm /UI defined by 

The mathematical formulation of our relaxed problem is therefore 

(4.2) (9*){max cb(U>,
U E K * ,  

where 

and 

(4.4) K* {U E H 1 ( 0 ) / ~= 2 U, a.e.1. 

THEOREM1: We assume that f is bounded away @om zero, that C is g2and that 
its second derivative D2C has uniformly bounded eigenualues: 

3e > 0 and 3M > E such that Qq Qh 
(4.5) 

ellh1I25 D 2 C ( q > ( h ,h )  ~ l l h l l ~ .  

Then 9'"has a unique solution U *. 

PROOF:'^ See Appendix 1 

14 Actually, H 1 ( 0 )  is a set of equiualence classes of functions for the relation U j  - U2- Ul = U, 
almost evelywhere on 0. 

15Although similar, the obstacle problems encountered in Physics are somewhat simpler, since 
they typically require U = Uo on the boundary of 0 ,  which we denote from now on by do.This is 
not the case here, and our Theorem 1 is not a direct corollary of classical results in the calculus of 
variations. However, the structure of the proof is standard: we first prove that d~ is concave and 
continuous on K*, and that K* is closed and convex. The difficult part is to prove that 4 IS  coerciue, 
i.e., that 4 ( U )  tends to -=when / U /tends to +=. The uniqueness of U* is easy to establish. 



4.2. The Characterization of U* 

We come now to the characterization of U*, which relies on the first order 
condition of 9*.This first order condition expresses that whenever a function h 
constitutes an admissible (marginal) variation of U*, then it has to generate a 
marginal loss for the monopoly. The following lemma shows that this marginal 
loss can be computed as the integral of h for some measure p on fi = R U d o .  
We first need a definition. 

DEFINITION1: The marginal loss of the monopoly at U* for a variation h is the 
opposite of the directional derivative of the profit function 4: 

LEMMA2: The marginal loss of the monopoly at U* for a variation h can be 
computed as follows: 

where d a  denotes the Lebesgue measure on the boundary d o ,  div denotes the 
dicergence operator, 

(4.8) a ( t )  =f ( t )  + divv(t),  

(4.9) p ( t )  = v(t) .n ' ( t ) f ( t ) .  

is the marginal distortion cector, and Z(t) is the (outward) normal to d o .  

PROOF: See Appendix 2. 

a ( t )  measures the marginal loss of the seller when the rent of type t buyers 
increases marginally; formula (4.8) shows that it is the sum of f ( t )  (direct affect) 
and divv(t) (indirect effect). The proof of Lemma 2 relies on the dicergence 
theorem'' (see, for instance, Rodrigues (1987)), which asserts that under some 
regularity conditions 

(4.10) / div{a(t)) dt = / a ( t ) f i t )  d u ( t ) .  
R d n 

where a(.) is a vector field from R to RK,and n'(t), u ( t )  are defined as in the 
above lemma. The last technical tool for characterizing U* is the following 
lemma, which relies on the fact that K *  is a convex cone of vertex U, (this 
means that if U,]+ h belongs to K*, then for any positive number A,  U, + Ah 
also belongs to K*). 

I h  The divergence theorem has been used in similar contexts by Mirrlees (1971) and more 
recently by McAfee and McMillan (1988), Wilson (19931, Armstrong (19961, and Jehiel et al. (1996). 
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LEMMA 3: U* is the maximum of + on K *  if and only if 


Vh r 0 +'(U*)h r 0, 

U* - U,]2 0 and +'(U*)(U* - =
U,,)0. 

PROOF: See Appendix 2. 

The last condition in Lemma 3 is to be interpreted as a complementarity 
slackness condition. Using Lemma 3 and formulas (4.7) to (4.91, we can now 
establish the characterization of U*. 

THEOREM2: Under the assumptions of Theorem 1, the unique solution U* of 
9*(with q* = VU*) is of class 55" on a. It is characterized by the following 
conditions: 

a ( t )  = f ( t )  + divv(t) 2 0, 

a .e .  on 0 (with equality ifU(t) > U,(t)), 

P ( t )  = - v( t ) . n ( t )  r 0, 

a - a.e .  on d o  (with equalityifU(t) > U , , ( t ) ) ,  

where 

PROOF: See Appendix 2. 

Except for very specific cases (see Section 5) U* cannot be found explicitly." 
The main difficulty is to find the shape of the "free boundary:" T = d o , ,n do,, 
which separates the strict-participation region R, (where U* > Uo) from its 
complement O,, (where U = U,,).In Section 4.3 we will show however that the 
extremities of r can be determined, by using the continuity of q*(.) up to the 
boundary of 0 .  To go further, numerical solutions are possible, either by 
discretizing the first order conditions, or by discretizing the economic problem 
9*,
and solving it by standard (discrete) programming techniques. For example, 
we have studied the following case: K = 2, R = [a ,  bI2, f uniform, C(q) = 

( ~ / 2 ) ( ~ :+ q;), qg= 0. We have solved numerically the discretized version of 
9,,
which gives a standard quadratic programming problem, and extended it by 
linearity to the whole set R.We have taken a uniform distribution on a finite 
N x N grid. For N large enough (typically, N 2 15), the solution is smooth and 
satisfies ( n u m e r i ~ a l l ~ ) ' ~  the necessary and sufficient condition of Theorem 2. 
The shape of the solution is represented in Figure 1 for the case a = 2, b = 3, 
c = 1. 

"This is not surprising: boundary value problems for partial differential equations almost never 
have explicit solutions. 

"A  formal proof of convergence of the solution of the discretized problem towards the solution 
of the continuous problem is given in Chon6 and Rochet (1997). 
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FIGURE free boundary of the relaxed problem for a uniform distribution on a square. 1.-The 

We now give an economic interpretation of the conditions found in Theo- 
rem 2. 

4.3. The Economic Interpretation of the Characterization of U* 

The divergence theorem has thus allowed us to compute two functions, a 
(defined on 0 )  and P (defined on d 0 )  which determine at each point of 
fi= 0U a 0  the local net cost of adverse selection (in terms of foregone profit) 
for the monopolist. These functions measure the marginal loss for the moqopolist 
due to a local increase of the consumers' informational rent. 

Theorem 2 establishes that, for the optimal solution U * , this marginal loss is 
always nonnegative, and is zero anywhere the participation constraint does not 
bind (i.e. on 0 , ) .  Thus on this participation set a , ,  U* satisfies a partial 
differential equation (the Euler equation of our problem of calculus of varia- 
tions): 

which expresses the trade-off between surplus maximization and rent extraction. 
This equation has a unique solution that satisfies also the (mixed) boundary 
conditions: 

as 
(4.12) -(t, 

dq 
q*(t)).n'(t)  = 0 on 0,n d 0  (no distortion at the "top") 

and 

(binding participation constraint at the "bottom"). 
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4.3.1. The Geometry of the Participation Constraint 

Let us consider the indifference set RO.  When 0, has a nonempty interior (a 
robust situation, by Armstrong's (1996) result), we have by construction U(t) = 

t .go -po, q*(t) = q,, for t in 0 , .  For convenience we will denote VC(q,,) by to. 
t,, corresponds to the type of consumers for which q, is the first best choice. The 
position of t, with respect to R will play an important role in the determination 
of q*(.). On 0, the first order conditions become inequalities: 

(4.15) v t  E an, n an, p ( t )  = (t, - t) .n '(t)  2 0. 

Condition (4.14) does not necessarily restrict O,, since it can be seen as a 
regularity condition of the density function f .  It is automatically satisfied, for 
instance, if f is uniform, or close to a uniform distribution in the $3'' topology. It 
generalizes a previous condition, used by McAfee and McMillan (1988) in their 
analysis of the "bundling" problem. 

On the other hand, condition (4.15) cannot be satisfied for all t in dR,  at 
least when t, P 3. It is a geometric condition, linked to the relative positions of 
t, and . 0 .  It imposes strong restrictions on the boundary of the nonparticipation 
region O,,. To understand its economic meaning, let us recall that for t, E d 0  
the convex set 0 is entirely contained in the half space (t - t,).n'(t,) < 0 (see 
Figure 2, case 1). Now condition (4.15) means exactly that, when t, belongs to 
the no participation region R,, then necessarily t, does not belong to this half 
space: to and 0 are separated by the tangent hyperplane at t,. In other words, 
the boundary type t, is directly exposed to the attraction of the outside good q,, 
(materialized in the type space by t, = VC(q,)). On the contrary, when condi- 
tion (4.15) is not satisfied, there are other types in O that are more directly 
exposed to the attraction by q, (see Figure 2, case 2). 

case 1 : direct exposure case 2 : t2 is more directly 
to the outside good exposed than t1  
(to- t l )  .6( t l )  2 0. (to- t l ) . n'(t1)< 0. 

FIGURE notion of direct exposure to the outside good. 2.-The 
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FIGURE partition of d l 2  when R is a smooth and strictly convex subset of R'.3.-The 

This motivates the partition of dR into two sets: 

def 
a - 0  = {t  E a n , ( t ,  - t ) . Z ( t )r 01, 

the set of boundary points that are directly exposed to the outside good, and its 
complement, 

For example, if 0 is a smooth and strictly convex subset of R2 (and if 
t,,P f i ) ,  there are exactly two points MIand M, in dR for which ( t o -  t ) .Z( t )  
= 0. These two points separate a- 0 and d +  0,as in Figure 3. 

It can be proved that r necessarily passes through M, and M,.IYMore 
generally, let us define 

a ,  R = ann an,,, 
the "outside" boundary of the indifference region, and similarly for O , ,  

a , n =  ann an,, 
which is also the "outside" boundary of 0 , .  We have the following proposition. 

PROPOSITION 1: When 0 is smooth, strictly concex, and t,, P f i ,  the outside 
boundary of 0, consists exactly of the boundary points of 0 that are directly 
exposed to the outside good: 

As a consequence, we also have that 

d i n =  d + R .  

PROOF:Condition (4.15) implies that d,R is included in d - 0 .  Moreover, 
Theorem 2 asserts that U *  is %?'on a.This implies that P( t )  = (VC(q*( t ) )- t )  
. Z ( t ) f ( t )is continuous on d o .  Now on d o  0 P( t )  = ( to- t ) . Z ( t ) f ( t )and, by the 
first order condition, equals zero on the complement of d,R. 

l 9  In the example of Figure 1, l2 is not smooth (because of the corners) but there is no  ambiguity: 
M I  and M2 correspond precisely to  the corners B and D. 
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By continuity of P ( . ) , it is therefore also equal to zero at all the limit points of 
d , 0  (in our example, M, and M2)  which means that d , 0  actually coincides 
with a- 0 (and that d, 0= d + 0 ) .  Q.E.D. 

4.3.2. The Measure of the Indifference Region 

The last important consequence of Theorem 2 is that 0, cannot be too small. 
More specifically, we have the following proposition. 

,PROPOSITION2: Let F be the measure associated to U* by (4.71, (4.8), and (4.9), 
and let 0, = {t, U *(t ) = U,(t )I be the indifference region. Then we have 

PROOF:First let us remark that by definition of F and 4 we have p ( 0 )  = 

-+ ' (U*) l=  I .  Now, Theorem 2 establishes that F is supported by 0,,which 
proves (4.16). Q.E.D. 

We will show in Section 5 that condition (4.16) is also satisfied by the solution 
0 of the complete problem (using of course the measure F and the set 0, that 
correspond to 0 ) .  We will also give an interesting interpretation of this 
condition. 

5. BUNCHING IS ROBUST IN MULTIDIMENSIONAL SCREENING PROBLEMS 

As we already discussed, Armstrong (1996) has proved that 0,)had typically a 
nonempty interior: except for peculiar cases, there is always a nonnegligible set 
of consumers who don't gain anything from the presence of the monopoly."' 
They are "bunched" on the outside option q,. In this section, we establish an 
equally surprising result: except for specific cases (like those solved explicitly in 
Wilson (1993) or Armstrong (1996)) there is always a nonnegligible set of 
consumers outside 0, who are not screened by the monopoly: they receive the 
same product even though they have different tastes. We call this property 
"bunching of the second type." This is surprising for at least two reasons: in our 
set up, the first best solution involves a complete screening of consumers. Our 
result means therefore that, in multidimensional contexts, product differentia- 
tion is somewhat impeded (and not entailed) by exploitation of market power, 
contrary to that suggested by a naive extrapolation of the Mussa and Rosen 
(1978) results (where the monopolist's product line is typically much larger than 
the efficient one). The second reason is technical: in dimension one, bunching 
can be easily discarded by reasonable assumptions on the distribution of types. 

20 Armstrong considers the case qo = 0, po = C(q,) = 0, and interprets noas a nonparticipation 
set. In the more general case q,, + 0 , p Or C(q,,),it is more natural to interpret a,as the set where 
the participation constraint is exactly binding. Amstrong's interpretation is more natural in the case 
p, < C(q,,)= 0, which we have excluded, since it gives rise to nonconvexities. 



In multidimensional screening problems, it is not possible to do so, which 
imposes the use of more complex techniques (see Section 6). In this section we 
start by giving the economic intuition why bunching is robust (subsection 5.1) 
and then give the precise statement of our result (subsection 5.2). We then 
discuss in detail the closed form solutions obtained by Wilson (1993) and 
Armstrong (1996) (subsection 5.3). 

5.1. Economic Intuition of Why Bunching is Robust 

Let us examine the uniform-quadratic specification on the square R = [a, bl' 
that we have already used as an illustration. The shape of the solution is given in 
Figure 1. It is easy to see that U *  cannot be convex. Indeed the indifference 
region 0, can be described as {t E R ,  U*(t) 5 t.q,, -pol.  This would be a 
convex set if U* was a convex function. It is immediate from Figure 1 that R,, is 
not convex. Intuitively (this is particularly so when a is large), the monopoly 
would like to serve as many consumers as possible, and choose r as close as 
possible to the lower boundary of 0 .  This creates a conflict with second order 
incentive compatibility conditions, which are neglected in the relaxed problem. 
For example, in Figure 1, it is impossible to find a quality vector q and a price p 
that simultaneously give a positive utility to type t, = (t, + t,)/2 and do not 
attract t, or t, (which have zero utility): 

t , . q - p _ < 0  and t 2 . q - p s 0  imply: t , . q - p s 0 .  

As we will see in Section 6, the optimal trade-off between surplus extraction 
on the marginal consumers and second order incentive compatibility conditions 
will imply giving the same products to types t,, t,, and t,, which will result in r 
becoming a straight line (see Figure 7). This is a robust source of bunching. 

5.2. A Formal Statement of the Result 

Since U *  cannot be computed explicitly in general, it is difficult to prove 
directly that it is not convex. However, as usual in such problems, the necessary 
conditions that characterize U* imply strong properties. For example, we have 
seen in Proposition 1 that the lower boundary of 0, was equal to the set 

a - n =  { t ~  a n , ( t , - t > . n ' ( t ) > o ) ,  

i.e. the boundary points that are directly exposed to the outside good. If R, is 
convex, it contains necessarily the convex hull of d - 0 ,  which we have denoted 
0 - .  Now Proposition 2 establishes that 

(5.1) ~ ( n , , )= 1.  

Thus a necessary condition for 0- to be contained in R, (and therefore for U* 
to be convex) is 
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When R, has a nonempty interior, then v ( t )= t - to on 0, so that a ( t )  and 
P(t)  have an explicit expression. By contraposition, we obtain the following 
proposition. 

PROPOSITION3: Under the assumptions of Proposition 1 and when 0,)has a 
nonempty interior, the following condition implies that U *  is not convex, and 
therefore that bunching occurs: 

where 

and R- is the convex hull of d- R. 

As a first illustration of condition (5.2), let us consider the case where f is 
uniform and R is an ellipse in [W< of center (a,O):R = {t = ( t , ,  t2 ) , ( t l  - a)2+ 
(t,2/b2>5 11. 

For simplicity, we take to= (0,O).When b = 1, R is a disk; on the other hand 
when b tends to zero, L! shrinks to the line {(t,,O), a - 1 t ,  5 a + 11. In this 
limit case, the solution of the relaxed problem is always convex and RO is a 
singleton whenever a 2 3. However, by Armstrong's result (1996)we know that 
for b > 0, ROhas always a nonempty interior. We can therefore apply Proposi- 
tion 3. It is easy to see that R- = { t  E B i t ,  5 a - ( l / a ) )(see Figure 4) and that 

p( 0-) = 3[- - -iarcsin - -
a 

4.-WhenFIGURE is an ellipse, 0 is represented by the shaded area. 



This quantity is less than 1 if and only if a < a *  - 3.77. Therefore when 
a > a*, U* is not convex and bunching of the second type appears. Notice that 
this condition does not depend on b. However when b = 0 and a 2 3 there is no 
bunching at all: Proposition 3 cannot be applied, since R, has an empty 
interior. 

By Proposition 1, we know that the free boundary r passes through M, and 
M2. When a > a*, T is contained in 0- so that U * cannot be convex. 

5.3. The Closed-form Solutions of Wilson (1993) and Armstrong (1996) 

Wilson (1993, Chapter 13) and Armstrong (1996) were able to obtain closed- 
form solutions for several problems closely related to 9*.These solutions adapt 
very naturally to our context. For example, Wilson finds the explicit solution of 
(the analogous to) 9*when C(q) = (1/2)11q1I2, q, = 0, and t is uniformly 
distributed on the "north east" quarter of the unit disk: 

The solution is characterized by 

It is illustrated by Figure 5a. 
It is easily checked that q* satisfies the necessary conditions of Theorem 2. In 

particular the distortion vector t - VC(q*(t)) is colinear to t, and vanishes on 
BC (since lit 1 1 2  = 1). Also, q* equals zero on R, = {t E R:, t: + t: 5 (1/3)} and 
is continuous on 0 .  The most interesting property is that the function t -,(t -
t,).Z(t) is identically zero on the whole lower boundary CA U A B . This comes 
from the joint facts that t, = A  and that the lower boundary of R coincides with 
the coordinate axes. This causes a certain degeneracy of the problem: the points 
M, and M2 of Figure 3 are not well defined, and (S-R = CA UAB does not 

FIGURE5a.-The explicit solution of Wilson (1993): arrows represent the directions of binding 
incentive constraints (they are always radial). 
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coincide with d, R= C'A U AB'.However, condition (5.1) is satisfied, since 

while 

Armstrong (1996) also finds closed form solutions for cases where t, = 0 and 
R= R:. Therefore these examples also satisfy the property that (t - t,,).Z(t) is 
identically zero. This property is not robust: it is lost after an arbitrarily small 
perturbation of R (or t,). For example consider a small perturbation of Figure 5 
(Figure 5b), whereby R is shifted by a vector 

It is easy to see, in this example, that condition (5.2) (which implies bunching) is 
satisfied. Indeed d - R now equals the lower boundary CA UAB, which means 
that 0- is the triangle CAB.The distribution of t being uniform (f(t)  = (4/.ir)), 
the first integral in the right-hand side of (5.2) is easily computed: 

The second integral being necessarily nonnegative, condition (5.2) is satisfied. 
This means that an arbitrarily small perturbation of the problem solved explic- 
itly above gives rise to b~nch ing .~ '  

21 This also indicates that the free boundary r is not a continuous function of the support fi of 
the types' distribution. This comes from the shape of 0,and more specifically from the discontinuity 
of t -,Z(t) at B and C. 



We are now back to our initial problem, which can be written, in conformity 
with our previous notation, 

where 

and 

K =  { u E H ' ( o ) , u ~  unand U is convex) 

It is immediately seen that, like K*, is a (closed) convex cone of vertex U,,: if 
(Uo+ h) belongs to K (which means exactly that h is convex nonnegative, since 
Uo(t)= t .q,  -p, is linear) then for any positive constant A, (U, + Ah) also 
belongs to K. Thus our first two results on the relaxed problem .Y* can 
immediately be adapted to the complete problem @. 

6.1. Existence and First Characterization of the Solution 

THEOREM1': Under the assumptions of Theorem 1, the complete problem ,? has 
a unique solution U. 

PROOF: See Appendix 1. 

The second result is the variational characterization of u .  

LEMMA 3': The solution 0 of the complete problem ,@ is characterized by the 
properties: 

(6.1) For all convex h 2 0, $ ' ( u ) h  I0; 

(6.2) u- U, 2 0, conuex, and $ ' ( u ) ( u -  u,,)= 0. 

PROOF: Identical to that of Lemma 3. Q.E.D 

The difference with Lemma 3 is that the first condition is less restrictive, since 
$ ' (u)h has to be 5 0 only when h is convex, but the second condition is more 
restrictive, since u (or equivalently 0- U,) is now required to be convex. In 
particular u =  U* if and only if U* is convex, which is very seldom the case (by 
our Proposition 3). We have seen in Section 4 that the directional derivative of 
4 could be written as a measure 
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where p is the sum of a measure on 0,with a density22 a ( t )  =f( t )  + div{(t -
VC(?(t>))f(t)}, and a (singular) measure supported by d o ,  of density P(t)  = 

(VC(?j(t)) - t).Z(t)f(t). Contrarily to the case of problem P*,the first order 
conditions of 3 do not imply that p is a positive measure, since (6.1) is only 
required when h is conuex nonnegative. Therefore it is natural to decompose p 
into its positive and its negative parts: 

The'next step is to introduce the important notion of sweeping operator 

6.2. The Notion of Sweeping Operator 

DEFINITION2: A transitionprobability T on fi is a family T(t, .) of probability 
measures on 0,defined for a.e. t in E ,  and measurable in t. To any measure p 
on 3 one can associate the measure Tp defined by 

DEFINITION3: If the transition probability T satisfies 

(6.5) / s ~ ( t ,  ds) = t for a . e  t in 3,  

then T is called a sweeping operator. 

This notion of a sweeping operator is an important tool in potential theory 
(see Meyer (1966)). The word "sweeping" is a literal translation of the French 
word "balayage" coined by Meyer. It refers to the fact that the measure Tp is 
obtained from p by "sweeping mass" around each point t, while preserving the 
center of gravity (condition (6.5)). It is the exact generalization of the notion of a 
mean preserving spread (see Rothschild and Stiglitz (1970)), defined for proba- 
bility distributions on the real line. It is easy to see from (6.5) and Jensen's 
lemma that for any convex function h and any t in fl 

Therefore if p is a positive measure, (6.4) implies 

22 Again, we assume that q(.) is almost everywhere differentiable (otherwise a ( t ) is not defined 
everywhere), which will be checked ex post. 
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It turns out that Cartier's theorem (see Meyer (1966)) asserts the converse 
property: if p, and p, are two positive measures such that p 2 h  2 p , h  for all 
convex functions h, then p, can be obtained from p, by a sweeping operator.23 
This is in fact a generalization of the property of "increasing risk," defined and 
characterized by Rothschild and Stiglitz (1970) for real-valued random 
variables.24 

Our condition (6.1) is a little more complex: using the decomposition (6.3), it 
amounts to saying that p + h  2 p - h  for any convex nonnegative function h. By 
an adaptation of Cartier's theorem, we obtain the following result. 

PROPOSITION4: The integral l h  d p  is nonnegative on all convex continuous 
nonnegative functions h if and only if there exists a sweeping operator T and two 
nonnegative measures h and v such that 

PROOF: See Appendix 2. 

The next (and final) step in the characterization of 0is the transformation of 
condition (6.2), the second part of the first order conditions obtained in Lemma 
3'. This is what we do in the next subsection. 

6.3. The Characterization of" Bunches" 

What we call a "bunch" is a (nonsingleton) set R (q )  of types t who choose 
the same quality q: 

Note that, by definition of 0,we always have Vt E 0,U(t) 2 t . q  - ~ ( q ) ,  so that 
O(q)  can also be defined by 0 ( q )  = {tE R ,  u( t )  5 t .q  -p(q)). 

By convexity of u, R(q)  is therefore a convex subset of O (or an empty set). 
By continuity of ?(.), it is also a closed set. Notice that R(q,,) coincides with the 
indifference set 0 , .  When u is strictly convex on 0,= 0 \ R 0 ,  R O  is the only 
bunch. As we have seen, this is seldom the case. On the contrary, when there is 
nontrivial bunching, 0 is affine on all bunches (by (6.8)) and conversely, if 
s E R(q )  and t E R(q), then U(s) > U(t) + ( r  - s ) .q .  

Therefore, the incentice compatibility constraint between s and t is binding if and 
only if s and t belong to the same bunch R(q). This defines a.e. an equivalence 

2 3 Asimple example is when p, is a uniform distribution on a line [ t , , t , ] ,  and p2 equals 
( M / 2 X 6 , , + 6,>),where 6, denotes the Dirac measure in t and M is the total mass of p l . This is an 
extreme case of sweeping: all the mass of p, is shifted to the boundary. However extreme, this 
situation will appear in one of the examples we solve explicitly in Section 7. 

24 Indeed, according to the definition of Rothschild and Stiglitz, a distribution p2 on IW is riskier 
than another distribution pl  if and only if for all concaue functions u ,  we have p2cI plc. This is 
clearly equivalent to our property. 
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relation between typesz The measures h and T(t, .) have to be interpreted as 
the Lagrange multipliers associated respectively to the participation constraint 
U(t) 2 U,(t), and to the incentive compatibility constraints U(s) 2 U(t) + 
q ( t > . ( s- t). 

To see this, it is enough to prove that these measures vanish outside the 
corresponding "bunches." 

PROPOSITION5: The measures A, v, and T(t, . )  (obtained from Proposition 4) 
satisjj 

supp h c f lu ,  


suppT(t;) c f l ( q ( t ) )  for v a.e .  t .  


PROOF: See Appendix 3. 

6.4. The Quality Does Not Jump 

Another important property is stated in the next proposition. 

PROPOSITION6: The mapping t -+ (7(t) is continuous on 0. 

In the unidimensional case, the continuity of q( . ) had been established by 
Mussa and Rosen (1978). It has important consequences: for example, all 
bunches O(q)  are closed sets, as preimages of a singleton { q }by a continuous 
mapping. Also, the consumers' program has for all t a unique maximizer: if it 
were not so, the indirect utility function 0 would not be 5' (not even 
differentiable) at t. This gives another (ex-post) justification for using the dual 
approach: the optimal indirect utility function 0 is E", whereas the optimal 
price schedule P is typically not differentiable. Finally, the continuity of has 
a surprising consequence in the multidimensional context: since Armstrong 
(1996) has shown that the nonparticipation region O,, had most of the time a 
nonempty interior, q, belongs to the set Q of products offered to the con-
sumers. The mapping ?(.) being continuous, this implies that Q is connected, 
which means that the monopoly will typically find it optimal to sell products 
which are arbitrarily close to the "outside product" q,,. An example of such a 
product line is given in Figure 8. 

6.5. The Complete Characterization of the Solution 

It is given in the following theorem. 

THEOREM2': Under the assumptions of Theorem 1, the solution 0of 9 is g1 
on fi. It is characterized by a partition of into three regions O,,, O,, and O , ,  

Zj Notice the important difference with discrete models, where this relation defines instead a 
partial ordering. 



with the following properties: 

(i) In the indifference region R,, o ( t )  = U,,(t). Moreover p( 0,)= 1 and the 
outside boundary of 0, is (strictly) included in d- 0 ,  the set of types that are 
directly exposed to the outside product. 

(ii) In the nonbunching region R , ,  0is strictly convex and satisfies the Euler 
equation 

a ( t ) = O  on 0,n R  and p ( t )  =O on R l  n dR .  

(iii) Finally the bunching region 0, is partitioned into bunches O(q) .  On each of 
these bunches 0is afine and the restriction of p satisfies Cartier's property: 

Notice that the characterization of a is more complex than that of U*, 
obtained in Theorem 2. For example, a( . )  (the density of the regular part of p)  
can be negative. However, it must be the case that the negative parts of a can 
be "swept" towards the boundary, while respecting the bunches. Consider for 
instance a bunch O(q) .Theorem 2' states that 

This implies in particular that the restriction of p to R ( q )  satisfies two 
conditions: 

and 

The interpretation of condition (6.9) is very natural if one remembers two basic 
formulas: 

Consider now what happens if the monopolist replaces her price schedule p(.) 
by a small variation ( p  + ~ k ) ( . ) .By the envelope formula applied to (6.11) and 
the chain differentiation rule applied to (6.12) we obtain the marginal profit 
change: 
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This is zero for any variation k ( . ) if and only if condition (6.9) is satisfied for 
all q.  This is analogous to a conditional expectations condition: the total 
(marginal) contribution to the firm's profit of the types who are bunched 
together in 0 ( q )  is zero for all q.  Similarly, condition (6.10) corresponds to an 
analogous extremality condition with respect to variations of the product line Q. 
Notice however that (6.9) and (6.10) do not exhaust the "sweeping conditions," 
which also imply (roughly spealung) that the positive part of p is more 
concentrated towards the boundary. Typically, these conditions will be satisfied 
if a ( t )  _< 0 and P ( t )  2 0, as we will see on a series of examples in Section 7. 

Finally in the nonbunching region, the Euler equation is satisfied: 

This can be expressed in terms of the distortion vector v(t): 

v ( t>= ( t  - VC(q(t ) ) ) f ( t ) .  

This vector satisfies the partial differential equation: 

div(v(t1) = - f ( t ) ,  

(which expresses the optimal trade-off between distortion and rent), and the 
boundary condition: 

Vt E 0,n d o  v( t )  .n'(t) = 0 (no distortion "at the boundary"). 

As we will see in the examples solved in Section 7, 0, typically contains 
portions of the lower boundary of 0. Therefore, extrapolating the expression 
"no distortion at the top" (correct in the one-dimensional case) would be 
misleading, even if the participation constraint binds in the lower regions of 0. 
The correct formulation is that, anywhere outside the bunching regions 0,)and 
a , ,  there is no distortion "at the boundary." 

To  conclude this section, let us remark that the condition (5.1) is also satisfied 
by the solution u of the complete problem. Indeed, by Theorem 2', 

which gives exactly condition (5.1). This condition has a nice interpretation, that 
we now explain. We first need two notations, for E > 0: 

n E =  {t E n , U ( t )  - u O ( t )2 E}, 

and B ( E )  is the profit obtained by uniformly raising prices by E (starting from 
the optimal solution a ) .  We have therefore 

B ( E )  =la{ t  v D ( t )  - C ( V ~ ( I ) )- a ( t )  + ~ } f ( t ) d t .  

It is possible to establish2' that B has a right derivative in 0 equal to 1- p(O,). 
Therefore, condition (5.1) becomes transparent. It describes the optimal trade-off 

26 The proof is technical and has not been included. It is available from the authors upon request. 



between market share and the general level of prices: uniformly increasing the 
level of prices implies gaining more profit from participating customers but 
losing the marginal ones. The optimal trade off is given by formula (5.1). 

Finally, let us remark that Armstrong's result (that O,, cannot have zero 
measure when 0 is strictly convex) is immediately deduced from (5.1). Indeed, if 
it were the case, 0,)would necessarily be a singleton (remember that it is 
convex). Then F(fl,,)would be 0, and (5.1) would be violated. 

7 .  THE USE OF THE SWEEPING CONDITIONS: SEVEkAL EXAMPLES 

As is unfortunately often the case, the characterization result obtained in 
Theorem 2' is not constructive. It does not tell how to find the solution u. 
However if we have a candidate solution (obtained, for example, by numerical 
solution of a discretized problem), Theorem 2' will allow us to check whether it 
is indeed the true solution. In this section, we study several examples along 
these lines. 

7.1. The Unidimensional Case: Ironing and Sweeping 

PROPOSITION In the unidimensional case, the sweeping conditions coincide 7 :  

with the ironing conditions of Mussa and Rosen. 

PROOF:See Appendix 4. 

7.2. Nonlinear Pricing with an Exponential Distribution of Types 

We consider here a two-dimensional nonlinear pricing problem of the sim- 
plest form, as in Wilson (1993). The gross utility obtained by a consumer of type 
t = (t,, t,) when he consumes a bundle q = (q, ,  q,) is 

S ( t ,  9 )  = f l q l  + f2q2 - 2 9 1  - 2 9 2 .  

Marginal costs are normalized to zero. We assume that t is distributed on 
[a,  + =I2, with an exponential density 

We assume that a > 1. Notice that t, and t, are independently distribute-d 
across the population of consumers, while S(t, q )  is separable in q ,  and q,. 
Therefore a natural candidate for the optimal price schedule is 

~ ( 4 )  + ~ 2 ( 4 2 ) ,= P I ( ~ I )  
where p,(.) and p,(.) are the solutions of the unidimensional pricing problems 
for q, and 9, separately. Because of the exponential distribution of types, these 
solutions are easy to determine explicitly. Indeed we have 
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so that 

Since a > 1, all consumers participate, and pi(0) is determined in such a way 
that Q ( a )= 0. We obtain finally 

1 2 2p i ( q i ) = q i + - ( a - l )  and p ( q , , q 2 ) = q 1 + 9 2 + ( a - ~ ) .
2 

The corresponding indirect utility function is 

However, this cannot be the solution, since { t ,  U( t )  = 0 )  is reduced to the 
singleton {(a ,  a)},  which is never optimal. As shown by Theorem 2', the solution 
0 is in fact characterized by a partition of R = iW; into three regions: 

(i) the nonparticipation region R,, on which u ( t )= 0; 
(ii) the bunching region O,, where 0only depends on T = t ,  + t,; 
(iii) the nonbunching region R,, where 0 is strictly convex. 

PROPOSITION8: The three regions are separated by two parallel lines: 

r,= { t ,  t ,  + t2= T o } ,  

the boundary between ROand RB,and 

r,= { t , t ,  + t 2  = r , } ,  

the boundary between 0, and 0,.The values of ro and r ,  are given in Appendix 
4. In the region R,, there is "commodity bundling": consumers are restricted to 
consume the same quantity of the two goods. 

The shape of the solution is represented in Figure 6. The proof of Proposi- 
tion 8, as well as the precise features of the solution are given in Appendix 4. 

7.3. The Mussa-Rosen Problem when Types are Uniformly Distributed on a 
Square 

As a final illustration, we come back to the Mussa-Rosen problem, in the case 
of a uniform distribution of types. For simplicity we specify the parameters as 
follows: t ,  = 0, C ( q )  = (~ /2)11~11~,  [a ,  b12, with b =and R = a + 1. In this case, 
which we have solved numerically, U has a different shape in the three different 
regions that partition 0 .  These regions are, as before: 

(i) the indifference region O,, on which u ( t )= 0; 
(ii) the bunching region O,, where 0only depends on t ,  + t 2 ;  
(iii) the nonbunching region a,,where 0 is strictly convex. 
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FIGURE 6.-The partition of 0 in the nonlinear pricing problem with linear demands and 
exponential distribution of types. 

The shape of the solution is represented in Figure 7. The quality assignment 
ij(t) is characterized by different formulas in these three regions: 

(i) On RO,q(t)  = 0 so that 

The frontier DUB, between R,, and 0, is the line t, + t, = T,, ,  where T,, is 
determined by condition (5.1): 

FIGURE7.-The for the case different regions: indifference 0,, bunching f lB,nonbunching a,, 
of a uniform distribution on a square. 
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We obtain 1= ( 3 / 2 ) ( ~ ,- aI2+ 2a(7,, - a), which gives 

(ii) On O,, ij,(t) = ij,(t) = q B ( ~ ) ,with T = t l  + t2.  Thus 

a ( t )  = 3  -cdivi j ( t )  = 3 - 2 c q q ( ~ )  on O,, 

p ( t )  = (cij(t) - t ) .n ' ( t )  = a  - c ~ , ( T )  on do, .  

The sweeping conditions are satisfied if 3 - 2 c q k ( ~ )1 0 ,  a - c q , ( ~ )2 0, and on 
each bunch 

This gives a differential equation in q,(.): 

This equation is easily solved: 

The constant k is determined by the smooth pasting condition q ( ~ , , )  = 0, which 
gives k = -1. 

The frontier between 0, and 0, is again a straight line D I B , ,  of equation 
t l  + t, = T,, where T, is determined by the continuity condition on do,which 
gives C ~ ~ ( T , )  =a. 

(iii) Finally on O , ,  the solution is determined by the Euler equation:" 

together with two boundary conditions, 

p ( t > = ( c q ( t ) - t ) . Z ( t ) = O  ontheupperboundaryof  fl,, and 

cq( t )  = on DlB,  (smooth pasting again). ( 1 
It is interesting to determine the set of qualities Q that are actually sold by the 
monopolist in this example. 

PROPOSITION9: The set Q = {ij(t), t ER}consists of the efficient product line 
plus a set of "basic" qualities constituted by the line OA (see Figure 8). 

27 Tlie convexity of on  0, has been checked numerically. 



FIGURE product line sold by the monopoly consists of the tlfficient product line (the 8.-The 
square ABCD) plus the line OA. 

PROOF: Although we have not solved explicitly for ij in the region fl,, the 
boundary conditions give us a lot of information: 

(i) The lower boundary D,B, of R ,  corresponds in fact to the last bunch of 
the region LIB: 

(ii) On the north-east boundary D I D ,  q,(t) equals a/c, while ij,(t) increases 
continuously from a/c  to b/c (the situation is symmetric on B, B). 

(iii) On the north boundary DC, q,(t) equals b/c, while ij, increases 
continuously from a/c  to b/c (the situation is symmetric on BC). 

Therefore the boundary of 0, is mapped by ij into the boundary of the 
efficient set (i.e. the square [a/c, b/cI2). Since q is the gradient of a strictly 
convex function (on a , ) ,  there cannot be any "hole" in ?(R,), which means 
that q (R, )  equals exactly the square [a/c,  b/c12. Now it is easy to see that the 
image of RB by q is just the straight line from 

The qualitative pattern of Figure 8 is also present in several examples that we 
have solved numerically: except in specific cases, there is always a set of types 
(close to those who don't participate) who are bunched together on the same 
"basic" qualities. As we already explained, this comes from a conflict between 
participation constraints and transverse incentive compatibility conditions. As a 
consequence (see Figure 8) the monopolist offers less choice to the "lower 
median" consumers (at least when the outside quality is low). This pattern is 
confirmed by casual empiricism: when they have some market power, firms 
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selling differentiated products (like cars or computers) seem indeed to offer less 
variety at the lower end of the spectrum of qualities. 

The main results of this paper are the following: 

(i) We have proved that, under multidimensional adverse selection, the 
multiproduct monopolist's problem has a unique s~ lu t i on ,~ '  both if we neglect 
(relaxed problem) or incorporate (complete problem) the second order condi- 
tions of the consumers' program. 

(ii) We have characterized these solutions by computing two functions, a 
(defined on the interior R of the set of types) and /3 (defined on the boundary 
d R )  which measure the local net cost (in terms of foregone profit) of the 
informational rents left to the consumers. These two functions naturally define a 
measure d p  = ad t  + p d a  on a. 

(iii) At the solution U *  of the relaxed problem 9*,both functions have to be 
equal to zero except in the indifference region R,, where rents are equal to 
zero and both functions can be positive. We establish a necessary condition 
(involving simultaneously the geometry of R ,  the distribution of types and the 
position of the outside option q,) for U *  to be admissible for the complete 
problem. 

(iv) On a series of examples, we show that this condition is seldom satisfied 
and that the closed form solutions obtained by Wilson (1993) and Armstrong 
(1996) correspond to very peculiar patterns. In other words, the second order 
conditions are typically binding, which suggests that bunching is robust in 
multidimensional adverse selection problems. 

(v) We then proceed to study the complete problem 9,and characterize its 
solution (n ,  q = v D )  by adapting the notion of sweeping operator used in 
potential theory. A sweeping operator is a transition probability that preserves 
the expectations: in other words it transforms positive measures on R by evenly 
"sweeping" mass towards the boundary of R .  The characterization of 0 is given 
in terms of the measure p and of the "bunches" R(q)  (which are defined as the 
sets of types who choose the same quality q). We prove that is the solution if 
and only if, on any bunch O(q)  the positive part of p (denoted p,) is obtained 
from its negative part (denoted p - )  by a sweeping operator supported by R(q). 
A typical situation is when a is nonpositive on R ,  P is nonnegative on d o ,  and 
the restriction of p to each bunch a(q)has a zero mass. We give economic 
interpretations for these conditions. 

The final section is dedicated to the presentation of three examples which 
illustrate these new techniques. 

As far as we know, such a formal existence result is novel in the literature on the topic. 



(i) In subsection 7.1 we show that in the unidimensional case, the sweeping 
procedure is equivalent to the ironing procedure invented by Mussa and Rosen 
(1978) for dealing with unidimensional bunching. 

(ii) In subsection 7.2 we solve the bidimensional nonlinear pricing problem 
when preferences are quadratic and types are exponentially distributed. We find 
that the solution involves some "commodity bundling": the consumers who do 
not want to buy more than some threshold quantity are forced to buy the same 
amount of the two goods. 

(iii) Finally in subsection 7.3 we solve the bidimensional Mussa-Rosen prob- 
lem when types are uniformly distributed on a square. We find that the seller 
offers a full differentiation of products in the upper part of the qualities 
spectrum, but only "limited choice" (which generates bunching) for lower 
qualities. We conjecture2' that this is a general pattern of multiproduct lines 
under imperfect competition. 

Even if we don't provide a general algorithm for solving multidimensional 
screening problems, our results give a simple, operational form of the first order 
conditions that characterize the solutions to these problems. Combined with the 
numerical techniques that we develop elsewhere (Chon6 and Rochet (1997)), 
this provides a powerful instrument, applicable to a wide range of such prob- 
lems, where similar patterns are likely to emerge. For example, Biais et al. 
(1996) study a mechanism design problem under bidimensional adverse selec- 
tion, motivated by initial price offerings. The solution involves complete bunch- 
ing in one direction, a pattern that may appear also in other contexts. Among 
many other potential applications one can cite auctions with externalities (Jehiel 
et al. (1996)) or the analysis of collusion under asymmetric information (Laffont 
and Martimort (1997)). 

IDEI-GREMAQ and Institut Uniuersitaire de France, Uniuersite' de Toulouse I, 
Place Anatole France, 31042 Toulouse Cedex, France; rochet@cict.fr 

and 
ENSAE, 3, arlenue Pierre Larousse, 92241 Malakoff Cedex, France; 

CHONE@ENSAE. FR; http: //www.ENSAE. FR 

Manuscript receiced March, 1995; final recision received June, 1997. 

APPENDIX 1 

PROOFOF THEOREM1: The functional 4 is concave and continuous on K* (which is closed and 
convex). Thus we have only to check that 4 is coercive on K* (see, e.g., Kinderlehrer and 
Stampacchia (1980, Chapter 111, i.e. that +(U) tends to - z  when IUIH'tends to +=. For all U in 
H 1 ( 0 ) ,  we denote by Q the mean value of U in 0 :  

29 This conjecture was suggested to the first author by Bob Wilson. 

mailto:rochet@cict.fr
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We recall Poincart's inequality (see, e.g., l n d e r l e h r e r  and Stampacchia (1980, Chapter 1)). It 
asserts that there exists a constant M ( R ) such that, for all U in H 1 ( R ) ,  IU - / I L ~ 5 M ( R ) I V U I L ~ .  

Using the decomposition U = / + U -LJ, we obtain 

2 2( A . l )  l ~ t =2 -U' + I U  - / I t 2  jVUl~2,s g 2+ ~ ( 0 )  

which leads to 

Remark that 

By assumption, f is bounded away from zero: f 2 a > 0 on R .  It follows from (A.1) and (A.3)that 

< - / { ~ ~ v u I ~ +  V U -  ( U - / ) ) f ( t ) d t - /  - V C ( O ) .  ~ ~ f ( t ) ) d t + / { t .  

The coerciveness of + follows from (A.2) and (A.4). Let us now prove the uniqueness of the 
solution. Suppose by contradiction that Ul and U2 are two distinct solutions of the relaxed problem. 
The first order conditions imply 

which leads to 

We conclude (using the strict convexity of C ) that jlV(Ul - (i2)12= 0, which means that Ul- U2 
is a constant. Given the form of the functional +, 4 ( U l ) and +(U2) differ by the same constant, 
which contradicts the fact that U, and U2 are both solutions of the relaxed problem. Q.E.D. 

PROOFOF THEOREM1':  The proof is exactly identical to that of Theorem 1. The only thing which 
needs to be proved is that I f  is closed. In other words if a sequence (U,) of convex functions 
converges (for the HI-norm) to g, is it true that I/ is convex? In fact, this property results 
immediately from the much stronger result of Dudley (1977):if a sequence (U,) of convex functions 
converges to a generalized function T E ~ ' ( R )(see, for instance, Kinderlehrer and Stampacchia 
(1980) for a definition of the space 9 ' ( R )  of generalized functions on R ) ,  then T is a convex 
function. Since the topology on g ' ( R ) is weaker than the norm-topology on H ' ,  this implies the 
desired property that is closed. Q.E.D. 
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APPENDIX 2 

PROOFOF LEMMA2: It consists of two steps: 

Step 1: Show that, for all h in H', 

The first integral corresponds to the linear part of 4 and requires no proof. The second integral is 
obtained by remarking that 

C ( V U * ( t )  + ~ V h ( t ) )- C(VU*( t ) )
lim = VC(VU*( t ) ) .  Vh( t ) ,  

€ +  o t  E 

the difference being bounded by (1 /2)~ l lvh( t ) l l* ,  thanks to assumption (4.5). 

Step 2: Transform the above formula by using the divergence theorem. We obtain 

/ i v ~ ( ~ * ( t ) )- t ) .  v h ( t ) f ( t ) d t  = 1 p ( t )  dt + 1div[(t - VC(U*(t)))f( t)]h(t)  d t ,  
dn n 

and the result is established. 

PROOFOF LEMMA3: + is concave and K *  is convex; therefore the maximum U* of + on K* is 
characterized by the first order condition 

(A.5) {U* E K *  and VU E K*4 ' (U*)(U-  U*) 5 0).  

Let us apply this condition in turn to U =  U, and U =  (1/2XU, + U*), which both belong to K*.  
We obtain: +'(U*XUo - U*) I 0 and (1/2)4'(U*)(U* - U,) 5 0. 

This implies +'(U*XU* - Uo) = 0, and the second property is established. Using this, and the 
fact that U - U* = (U - U,) - (U* - Uo), we see that (AS) is then equivalent to the first property. 
The converse is immediate. Q.E.D. 

PROOFOF THEOREM2: The properties of m(t) and p( t )  result directly from the decomposition of 
+'(U*)h (relation (3.9)) and Lemma 2. It remains to establish that U* is g'on 3,or equivalently 
that q*  is continuous on 3 .  This property is immediate in the interiors of no(since q*(t) = g o )  and 
0,  (since q*  satisfies the partial differential equation a ( t )  = 0). The only difficulty is to prove that 
q*(t) tends to qo when t tends to the free boundary T.This "smooth pasting" condition is in fact 
standard in obstacle problems and is established by a direct application of the penalization methods 
of Kmderlehrer and Stampacchia (1980). A complete proof is available from the authors upon 
request. 

PROOFOF PROPOSITION5: It follows directly from Cartier's theorem and Theorem 1 of Luen- 
berger (1969, Chapter 11, which guarantees the existence of a Lagrange multiplier A for the 
constraint h 2 0. Indeed, by the assumption of Proposition 2 we have 

0 = i n f { l h d p ,  h convex, h 2 01. 

Taking X = Z = 8 ( 3 ) ,  B the set of convex functions on fi and C: u + -u,  we can apply 
Theorem 1 of Luenberger. Thus there exists a positive measure A such that 
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In other words, the measure p - A is nonnegative on 8.By Cartier's theorem (see Meyer (196611, 
there exists a sweeping operator T such that ( p - A), = T (  p - A)-. 

Let v = ( p - A)-. We have thus p = A + Tv- v , which was to be proven. Q.E.D. 

APPENDIX 3 

PROOFOF PROPOSITION obtained in 6: It results from the application of the characterization 
Theorem 2 to the condition (6.2): 

(A .6)  [ ( U ( t )  - ( i o ( t ) )  d ( h  + T v -  v ) ( t )  = 0. 

Since U - Uo is nonnegative and A is a positive measure, we have 

Moreover 0- Uo is convex, T is a sweeping operator and v is a positive measure. Therefore 

Putting together relations (A.61, (A.71, and (A.81, we see that relations (A.8)and (A.9) are in fact 
equalities. In particular, 

which means exactly that supp Ac0,. We also have, for the same reason, 

Recall now the incentive compatibility conditions, 

V s , t  U ( s )2 U ( t )  + ? j ( t ) . ( s - t ) ,  

with equality if and only if s and t belong to the same bunch. We also have, naturally, 

V s , t  U( , (S)= U o ( t )  + q , . ( s  - t ) .  

By definition of a sweeping operator (property (6.511,these two properties imply 

Integrating this relation with respect to the positive measure v ,  we obtain 

Comparing with (A.10)we see that we have in fact equality: this can only be true if ( A . l l ) is an 
equality for v a.e. t ,  which in turn implies that the support of T ( t ; )  is included in the "bunch" 
a ( q ( t ) )for u a.e, t .  Q.E.D. 

PROOFOF THEOREM2': Let us start by proving the properties of a( . )and P(.). They result from 
Proposition 3. For example in the nonbunching region R , ,  A  is zero and T is trivial so that p+=  p-
or equivalently p = 0. Therefore for all t in a,na,m(t)= 0 and for all t in R ,  n d R ,  P ( t )  = 0. 



Similarly for all t belonging to the bunch R(q),  the second part of Proposition 3 implies that 
T(t, . )  is supported by R(q). Therefore the restriction of T to R ( q )  is a sweeping operator on R ( q )  
and the restriction of p to R(q)  satisfies Cartier's property: 

Finally in the nonparticipation region R o ,  we only have that p = A + T v -  v ,  where T is a 
sweeping operator on n o ,  and A, v are positive measures supported by n o .  This tells us only two 
things: 

(i) p (R, )  = 1 (this comes from the joint facts that p ( R )  = - I#J ' (~)I= 1, and p ( R B )  = 0,given 
that T preserves the mass). 

(ii) If t is an extreme point of R,, we have P(t)  2 0,since a sweeping operator T is necessarily 
trivial on the set goof such extreme points. Therefore on a , :  p = A 2 0. 

Finally, the proof that q is continuous (Proposition 7) is technical: we will skip it for the sake of 
conciseness. It is available from the authors upon request. 

APPENDIX 4 

PROOFOF PROPOSITION = [a,  b]), recall that, for t €]a,  b[, 8: In the unidimensional case ( K =  1, R 

As is well known, there is never any bunching "at the top," so that P(b) = 0.If there is no 
bunching either "at the bottom," i.e. when R,, = (a ) ,  condition (5.8) means exactly. that A is 
concentrated in a .  Therefore A = P(a)6,, where 6, denotes the Dirac measure in a .  Moreover, 
since A has unit mass, P(a)  equals one, which means C1(q(a))= a - (l/f(a)). Similarly, at any 
interior point t where there is no bunching, we have a ( t )  = 0, which by continuity of q(.) implies 

Suppose now that R ( q )  = [ t , ,  t ? ]  is an interior bunch. Then Proposition 3 means that m(t) changes 
sign on [t,,t ,],  with, moreover, a ( t ) d t  = /,: t a ( t ) d t  = 0.Now by definition, for all t in [ t , , t ? ] ,  

This is the derivative of A(t) = [t - C1(q)]f(t)+ F ( t )  - 1. Therefore the first condition means 

By continuity of q( . )at t,  and t? ,  this quantity necessarily equals 1, so that 

The second condition can be transformed by integrating by parts: 
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Since A(tz) =A( t , )  = 0, this condition is satisfied if the integral of A(t) on [ t , ,  t2]  equals 0. Now, 
we also have that 

where 

A ( t , )  = A ( t 2 )  = 0,  

and 

The last condition to be checked is that n ( t )  is indeed obtained by a sweeping operation. This 
means that for any convex function h: [ t , ,  t2]  -, R one has 

i ; 2 h ( f ) n ( t )  dt 2 0. 

Since n( t )  =A'([) and A([,) = A(t2) = 0, an integration by parts shows that this is equivalent to 

for all nondecreasing function k = h '  (the derivative of a convex function). As is well known, this is 
satisfied.if and only if 

It is easy to see that the above conditions correspond exactly to the "ironing" conditions obtained 
by Mussa and Rosen (1978) for dealing with bunching in dimension one. Therefore, our "sweeping" 
procedure is the natural extension of "the ironing procedure" to multidimensional contexts. Q.E.D. 

PROOFOF PROPOSITION9: We start by computing the measure p .  For t in 0 we have 

~ ( t )= f ( t )  + div((t - q( t ) ) f ( t ) )  

d 0  consists of two types of points: 

det 
(i) M,(T) = (a ,  T - a )  where Z(IM,(T)) = - ( I ,  0) and P(M1(r)) = (a  - q,(a,  T - a))exp(2a - 7). 

de t 
(ii) M2(7) = (T- a ,  a )  where <(M2(7)) = -(0,1), and P(M2(r))  = (a  - q2(7- a ,  a))exp(2a - 7). 

Let us check the conditions obtained in Theorem 2'. We start by a,,,where we have 

q ( t )  = 0, so that ~ ( t )= (3 - ~ ) e x p ( 2 a- T )  and 

P ( M , )  = p ( M 2 )  =aexp(2a  - TI.  

The first free boundary T, is determined by condition (5.1): p(l2,)) = 1. After easy computations, 
we find that this is equivalent to the equation: (7,) - ~ u ) ( T , ,- 1) = 1. The relevant solution (i.e. such 
that T,, > 20) is 



Notice that p r 0 on d,R but that a can be positive or negative. In the nonbunching region R , ,  
Li satisfies the Euler equation, 

Together with the boundary condition 

This equation has solutions (which only differ by a constant term) if and only if the following 
compatibility condition is satisfied: 

This is easily shown to be equivalent to the following equation, which determines the second free 
boundary T = (r, r ,  + r2 = 7,): (7, - 2a)* = (7, - 2a) + 1. The relevant solution (i.e. such that T, > 
2n) is 

Finally, in the bunching region 0, = (r, 71,< r I  + t, < T,), Li only depends on t l  + t,, so that 

are equal. In other words, all consumers such that r E 0, consume the same quantity of the two 
goods. We denote this quantity by q , ( ~ ) .  On each bunch f l(q)  = (t, r ,  + t2 = T, with q , ( ~ )  = q) we 
have 

a ( t )  = exp(2n - 7)(3 - T - 2 q , ( ~ )+ 2q,(7)), 

and 

Notice that a is constant on each bunch and that P is symmetric. Therefore the sweeping 
conditions reduce to p(O(q)) = 0 (total mass is preserved), and P ( M , )  = / 3 ( M 2 )2 0 (positive part is 
on the boundary). 

The first condition gives a differential equation in q,: 

Its solutions have the following form: 

where k is an arbitrary constant. The continuity of ("smooth pasting") implies two conditions: 

q , ( ~ , , )= 0 and q , ( ~ , )= a 
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There is apparently an overdetermination of k ,  but it turns out that k = 0 leads to a qJ.1 that 
satisfies both conditions. Therefore the expression of q ,  in the bunching region 0, is actually very 
simple: 

Notice that q,(.) is increasing (so that u is indeed convex on O,),'" and that the sign condition 
p > 0 (i.e., q B ( r )< a )  is satisfied. Clearly, the optimal solution involves offering a limited choice 
ql = qZ= qB for all quantities below n (this is usually referred to as "commodity bundling"). All the 
consumers who only want to consume small quantities of the goods are restricted to choose the 
bundle ( q B ,  q B )  that maximizes their net util~ty: 

The first order condition gives T =  2 q B ( 7 )  + P;l(q,(~)) .Comparing with the expression of q,(r) 
given above, we find P;l(q,) = ~ ( q , )- 2q,, where r ( q B )is the greatest solution of the equation 

This gives 

and finally 

Notice that P'(0)  = T,, > 2n and that P 1 ( a )= T ,  - 2a.  
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