
Comparison of BWT Construction Algorithms
for Very Large Read Collections

Markus J. Bauer1, Anthony J. Cox1 and Dirk J. Evers1

Illumina Cambridge Ltd.
Chesterford Research Park

CB10 1XL
United Kingdom

{mbauer,acox,devers}@illumina.com

With the advent of next-generation DNA sequencing technologies, datasets
containing billions of reads have become commonplace. Advanced text indexing
methods are needed to process such large datasets efficiently.

One universal tool in text indexing is the Burrows-Wheeler transform (BWT)
which is the core of the FM index [2]. Popular alignment programs (like bowtie [4]
or bwa [5]) use the FM index of the human genome to perform read mapping. An
alternative application was recently presented by Simpson and Durbin [6] who
describe an assembler that uses the FM index of a set of reads to find overlaps
between them and hence construct the string graph. The BWT of the human
genome can be built within hours on a standard PC today, but the computational
requirements increase substantially when switching to large read collections.

In recent years, a number of algorithms have been published that construct
the BWT either directly, like bwtdisk [1], or by constructing a suffix array first
and retrieving the BWT afterwards. Examples of the latter approach include
rlcsa by Sirén [7] or Simpson’s implementation of the Ko-Aluru algorithm [3].

In this contribution, we compare various methods to create the BWT and we
chart their computational requirements in terms of time and memory. We show
what data sets can be processed on a machine with 16Gb of memory and describe
the main bottlenecks for creating the BWT on very large read collections.

References

1. P. Ferragina, T. Gagie, and G. Manzini. Lightweight data indexing and compression
in external memory. In LATIN, volume 6034 of LNCS, pages 697–710. Springer,
2010.

2. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pages 390–, Washington, DC, USA, 2000. IEEE Computer Society.

3. P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, 3(2-4):143 – 156, 2005.

4. B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology,
10(3):R25+, 2009.

5. Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics (Oxford, England), 25(14):1754–1760, July 2009.

6. J. T. Simpson and R. Durbin. Efficient construction of an assembly string graph
using the FM-index. Bioinformatics, 26(12):i367–i373, June 2010.

7. J. Sirén. Compressed suffix arrays for massive data. In SPIRE, volume 5721 of
LNCS, pages 63–74. Springer, 2009.


