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Getting Started 

Get connected: Select the "ubcvisitor" wireless network on your wireless device. Open up a web browser, and you will be 

directed to the login page. 

FAQs 

Q: Where do I check in on the first day?  Check- in and package pick up can be done in the Earth Sciences Building (ESB) Atrium. 

Q: Where are the sessions?  

 All plenary sessions will be in the ESB Room 1013 

 Breakout sessions on Tuesday, Thursday and Friday will be in ESB 1013 and 1012 

 You will find a campus map at the end of the program. 

Q: Will the program change?  Program changes and updates will be announced at each session.  

Q: When should I wear my badge? Please wear your name badges at all times on site so that PIMS Staff recognize you as a guest. 

Q: Where can I go for help on site? If you need assistance or have a question during the conference, please connect with the 

conference organizers or with PIMS Staff. 

Q: Where can I get refreshments and meals? For snacks or quick meals, please view the list of UBC eateries attached online  at 

http://www.food.ubc.ca/feed-me/ . Coffee breaks are provided each day of the workshop  

Q:  Where can I get a cab to pick me up from the Venue? You can call Yellow Cab (604-681-1111) and request to be picked up at the 

intersection of West Mall and Bio. Sciences Road. Use the south entrance and walk straight down to the intersection.  

Q:  How can I get around? 

 UBC Map link:  Here  

 Public Transit:  Feel free to search and plan your public transport rides by visiting http://www.translink.ca/, where directions, 

ticket costs and bus schedules are indicated. 

 Parking at UBC:  http://www.parking.ubc.ca/visitor.html 

Q:  What emergency numbers should I know? 

 Campus security (604-822-2222);  

 General Emergencies (911);  

 UBC hospital (604-822-7121). 

 

 

  

http://www.food.ubc.ca/feed-me/
https://planning.ubc.ca/sites/planning.ubc.ca/files/images/planning-services/UBCMap-Portrait.pdf
http://www.translink.ca/
http://www.parking.ubc.ca/visitor.html
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Sunday July 16, 2017 

5:30pm - 7:00pm Optional Meet and Greet:  

 Light refreshments and nibbles served 

 UBC Mahoney and Sons,  

 5990 University Blvd, Vancouver, BC V6T 1Z3 

 

 

Monday July 17, 2017 

8:30am - 8:55am Registration and Check- in (ESB Atrium) 

9:00am - 9:25am Opening 

9:30am - 10:25am                  Matias Menni, Universidad Nacional de La Plata, Argentina 

 On a problem in Objective Number Theory  

10:30am - 11:00am               Coffee Break (ESB Atrium) 

11:00am - 11:25am              Francisco Marmolejo, Universidad Nacional Autónoma de México 

 The canonical intensive quality of a pre-cohesive topos     

11:30am - 11:55am Fabio Pasquali, University of Padova, Italy 

 Quasi-toposes as elementary quotient completions  

12:00pm - 12:25pm               Jacopo Emmenegger, Stockholms Universitet, Sweden 

 On the local Cartesian closure of exact completions 

12:30pm - 2:00pm                 Lunch- Own (See list of Campus eateries online at http://www.food.ubc.ca/feed-me/ )    

2:00pm - 2:25pm               Juan Pablo Quijano, University of Lisbon, Portugal 

 Functoriality and topos representations for quantales of coverable groupoids  

2:30pm - 2:55pm               Guilherme Frederico Lima, University of Cambridge, UK 

 Duality theorems for essential inclusions of Grothendieck toposes  

3:00pm - 3:30pm               Coffee Break (ESB Atrium) 

3:30pm -  5:25pm Kan Extension Seminar (organized by Emily Riehl) 

  

 

Tuesday July 18, 2017 

9:00am - 9:55am               Rory Lucyshyn-Wright, Mount Allison University, Canada 

 Algebraic duality and the abstract functional analysis of distribution monads 

10:00am - 10:25am              Alexander Campbell, Macquarie University, Sydney, Australia 

 Enriched algebraic weak factorization systems     

10:30am - 11:00am Coffee Break (ESB Atrium) 

 

http://www.food.ubc.ca/feed-me/
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11:00am - 11:25pm               Martin Szyld, Universidad de Buenos Aires – CONICET, Argentina 

 A general limit lifting theorem for 2-dimensional monad theory 

11:30pm  - 11:55pm Maria Emilia Descotte, Universidad de Buenos Aires – CONICET, Argentina 

 On flat 2-functors 

12:00pm - 12:25pm Christina Vasilakopoulou, Université Libre de Bruxelles, Belgium 

 Hopf categories as Hopf monads in enriched matrices 

12:30pm - 2:00pm               Lunch- Own  (See list of Campus eateries online at http://www.food.ubc.ca/feed-me/ )  

2:00pm - 2:25pm               Lauchie MacDonald, University of British Columbia, Vancouver, Canada 

 Two dimensional algebra and natural distributive laws 

2:30pm - 2:55pm Timmy Fieremans, Vrije Universiteit Brussel, Belgium 

 Frobenius and Hopf  V-categories 

3:00pm - 3:30pm Coffee Break (ESB Atrium) 

3:30pm - 3:55pm Parallel Sessions 

 ESB 1012: Paolo Perrone, Max Planck Institute for Mathematics in the Sciences, Leipzig, 

Germany 

The Wasserstein monad in categorical probability 

 ESB 1013 : Nelson Martins-Ferreira, Polytechnic Institute of Leiria, Portugal 

 Triangulations, triangulated surfaces and the multiplicative structure of internal groupoids 

4:00pm - 4:25pm  Parallel Sessions 

 ESB 1012: Partha Pratim Ghosh, University of South Africa, Gauteng, South Africa 

Internal neighbourhood spaces 

 ESB 1013:  Michael Lambert, Dalhousie University, Canada 

Generalized principal bundles 

4:30pm - 5:30pm Discussion 

 

 

Wednesday July 19, 2017 

9:00am - 9:25am               Jiri Adamek, Technical University Braunschweig, Germany 

 Codensity and double-dualization monads 

9:30am - 9:55am              Michael Barr, McGill University, Montreal, Canada 

 Simplicial acyclic models  

10:00am - 10:25am Susan Niefield, Union College, New York, USA 

 Topological groupoids and exponentiability 

10:30am - 11:00am               Coffee Break (ESB Atrium)  

11:00am - 11:25am  Dorette Pronk, Dalhousie University, Canada 

 The orbifold construction for join restriction categories 

 

http://www.food.ubc.ca/feed-me/
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11:30am - 11:55am Robin Cockett, University of Calgary, Canada 

 General Ehresmann connections and torsor bundles 

12:00pm - 12:25pm Geoffrey Cruttwell, Mount Allison University, Canada 

 Differential equations in tangent categories 

12:30pm - 1:15pm Lunch- Own (See list of Campus eateries online at http://www.food.ubc.ca/feed-me/ )  

1:15pm - 1:25pm Excursion to Granville Island  

 (Please assemble at the registration table by 1:15pm. We will then board Lynch Buses at 2175 West Mall) 

5:30pm - 9:00pm Harbor Dinner Cruise  

 Boarding Vessel from Granville Island: Dock A, 1698 Duranleau St. Vancouver BC V6H 3S4 

 Point of contact:  Maret Christiansen- 604-319-1448     

9:15pm Bus pick-up back to UBC conference venue 

 

 

Thursday July 20, 2017 

9:00am - 9:55am  Tim Van der Linden, Université catholique de Louvain, Belgium 

 Categorical-algebraic methods in group cohomology 

10:00am - 10:25am              Julia Goedecke,  University of Cambridge, UK 

 Hopf formulae for Tor    

10:30am - 11:00am Coffee Break (ESB Atrium) 

11:00am - 11:25am              Marino Gran, Université catholique de Louvain, Belgium 

 A characterization of central extensions in the variety of quandles 

11:30am -  11:55am Pierre-Alain Jacqmin, Université catholique de Louvain, Belgium 

 An embedding theorem for regular Mal’tsev categories 

12:00pm -  12:25pm Diana Rodelo, CMUC & Universidade do Algarve, Faro, Portugal 

 Stability properties for n-permutable categories 

12:30pm - 2:00pm Lunch- Own (See list of Campus eateries online at http://www.food.ubc.ca/feed-me/ ) 

2:00pm - 2:25pm Alan S. Cigoli, Université catholique de Louvain, Belgium 

 A relative monotone-light factorization system for internal groupoids 

2:30pm - 2:55pm Xabier Garcia-Martinez, University of Santiago de Compostela, Spain 

 A characterization of Lie algebras amongst alternating algebras 

3:00pm - 3:30pm Coffee Break (ESB Atrium) 

3:30pm - 3:55pm  Parallel Sessions 

 ESB 1012: Jonathon Gallagher, Dalhousie University, Canada 

Coherently closed tangent categories and the link between SDG and the differential λ-calculus 

 ESB 1013: Sean Moss, University of Cambridge, UK  

The Diller-Nahm model of type theory 

 

http://www.food.ubc.ca/feed-me/
http://www.food.ubc.ca/feed-me/
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4:00pm – 4:25pm  Parallel Sessions 

 ESB 1012: Jean-Simon Lemay, University of Calgary, Canada 

Integration in tangent categories 

 ESB 1013: Evangelia Aleiferi, Dalhousie University, Canada 

Towards a characterization of the double category of spans 

4:30pm - 4:55pm  Parallel Sessions 

 ESB 1012: Ben MacAdam, University of Calgary, Canada 

Vector bundles and dependent linear logic in differential geometry 

 ESB 1013: Darien DeWolf, Dalhousie University, Canada 

An element-based reformulation of restriction monads 

 

 

Friday July 21, 2017 

9:00am – 9:55am Dirk Hofmann, Universidade de Aveiro, Portugal 

 Duality theory, convergence, and enriched categories 

10:00am – 10:25am Maria Manuel Clementino, Universidade de Coimbra, Portugal 

 On simple monads in ordered structures and the factorisations they induce 

10:30am – 11:00am Coffee Break (ESB Atrium) 

11:00am – 11:25am Walter Tholen, York University, Toronto, Canada 

 Topological theories 

11:30am – 11:55am Lurdes Sousa, CMUC, University of Coimbra & Polytechnic Institute of Viseu, Portugal 

 Aspects of algebras of KZ-monads 

12:00pm – 12:25pm Giulia Frosoni, University of Genoa, Italy 

 Properites of  ΣΣ(-)-algebras in Equ 

12:30pm – 2:00pm Lunch- Own (See list of Campus eateries online at http://www.food.ubc.ca/feed-me/ )  

2:00pm – 2:25pm Piotr Jedrzejewicz, Nicolaus Copernicus University, Toruń, Poland 

 Towards a categorification of integers 

2:30pm – 2:55pm George Janelidze, University of Cape Town, South Africa 

 Infinite addition, real numbers, and taut monads 

3:00pm – 3:30pm Coffee Break (ESB Atrium) 

3:30pm – 3:55pm Parallel Sessions  

 ESB 1012: Laura Scull, Fort Lewis College, Colorado, USA 

 Fundamental groupoids for orbifolds 

 ESB 1012: Jun Yoshida, The University of Tokyo, Japan 

Graphical calculus in symmetric monoidal (∞-)categories with duals  

 

  

http://www.food.ubc.ca/feed-me/
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4:00pm – 4:25pm  Parallel Sessions 

 ESB 1012: Marzieh Bayeh, Dalhousie University, Canada 

Orbit class and its application 

 ESB 1012: Daniel Cicala, University of California, Riverside, USA 

Modeling graphical calculi with symmetric monoidal compact closed bicategories 

4:30 – 4:55pm  Parallel Sessions 

 ESB 1012: Jonas Frey, CMU Pittsburgh, USA 

 Modelling homotopy type theory in Cartesian cubical sets 

 ESB 1012: Francisco Rios, Dalhousie University, Canada 

A categorical model for a quantum circuit description language 

6:00pm CT 2017: Buffet Dinner:  

 University Golf Club  

 5185 University Blvd, Vancouver, BC V6T 1X5  

 (15 min walk or 5 min bus ride on the #4/ #14 trolley buses) 

 Point of contact: Maret Christiansen- 604-319-1448      

 

 

Saturday July 22, 2017 

9:00am - 9:55am  Robert Paré, Dalhousie University, Canada 

   Hypercategories 

10:00am - 10:25am David Jaz Myers, Oberlin College, USA 

   String diagrams for (virtual) proarrow equipments 

10:30am - 11:00am Coffee Break (ESB Atrium) 

11:00am - 11:25am Murray Bremner, University of Saskatchewan, Canada 

   Commutativity in double interchange semigroups 

11:30am - 11:55am Emily Riehl, John Hopkins University, Baltimore, USA 

   A synthetic theory of ∞-categories in homotopy type theory  

12:00pm - 12:25pm Robert Rosebrugh, Mount Allison University, Canada 

   Symmetric lenses and universality 

12:25pm - 12:30pm Wrap- up  

 

 



Abstracts



Jǐŕı Adámek ∗

Technical University Braunschweig, Germany

Codensity and double-dualization monads

It is known since 1970’s that the codensity monad of the embedding of finite sets

into Set is the ultrafilter monad. Leinster proved in [1] that the full embedding of

finite-dimensional vector spaces into K-V ec has the codensity monad given by the

double-dualization monad (−)∗∗. And he asked for generalizations covering the two

examples above. We present a solution working in categories K that are monoidal

closed and have a strong cogenerator D. The functor (−)∗ = [−, D] is left adjoint to

its dual, and the resulting monad (−)∗∗ is called the double-dualization monad.

Example. Varieties of algebras have a ’natural’ tensor product, representing bimor-

phisms. Monoidal closedness means precisely that the variety (or, equivalently, its

monad) is commutative, see [2]. Analogously, varieties of ordered algebras, presented

by operations and inequations, are monoidal closed iff they are commutative.

Definition. By the finite double-dualization monad is meant the largest sub-

monad of (−)∗∗ whose unit has invertible components at all finitely presentable ob-

jects.

Theorem. Let K be a commutative variety of (possibly ordered) algebras. Let D

be a strong cogenerator with Dn finitely presentable for all n ∈ N . Then the finite

double-dualization monad is the codensity monad of the full embedding of all finitely

presentable objects into K.

Examples. (a) K is a strong cogenerator of K-V ec. Since for finitely-dimensional

spaces the unit ηA : A → A∗∗ is invertible, we obtain Leinster’s result that the

codensity monad is all of (−)∗∗ .

(b) The category J SL of join semilattices has the two-element chain as a strong

cogenerator. Again, finite semilattices have invertible units, hence, the codensity

monad of their embedding is also (−)∗∗ .

(c) For Set the two-element set as a cogenerator yields X∗ = PX. The finite double-

dualization monad is the ultrafilter monad.

(d) Analogously for Pos: take the two-element chain as a strong cogenerator. Then

X∗ is the poset PuX of all up-sets of X, ordered by the dual of inclusion. The finite

double-dualization monad is the prime-filter monad on Pos.

Remark. We further study codensity monads of set functors. Every accessible func-

tors posseses a codensity monad. The converse does not hold:

Example. (1) For the power-set functor P the codensity monad assigns to X the

product
∏
Y⊆X PY .

∗Joint work with Lurdes Sousa.
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(2) For the subfunctor P0 of all nonempty subsets the codensity monad is P0 itself.

(3) In contrast, the following modification P ′ of P does not posses a codensity monad:

on objects P ′X = PX, on morphisms f : X → Y , for every M ⊆ X put P ′f(M) =

Pf(M) in case f/M is monic, else ∅.

References:

[1] T. Leinster, Codensity and the ultrafilter monad. Theory and Applications of Categories

28 (2013), 332–370.

[2] B. Banaschewski and N. Nelson, Tensor products and bimorphisms. Canad. Math. Bull.

19 (1976), 385–402.
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Evangelia Aleiferi
Dalhousie University

Towards a characterization of the double category of spans

In [1] it was shown that the bicategory of spans in a category with finite limits can

be characterized as a Cartesian bicategory in which every comonad has an Eilenberg-

Moore object and every left adjoint arrow is comonadic. Motivated by this result,

we study whether or not a characterization of spans as a Cartesian double category

is possible. In this talk, we will define a Cartesian double category to be a double

category D for which the diagonal double functor ∆ : D→ D×D and the unique double

functor ! : D → 1 have right adjoints. We will describe some of their properties and

we will specifically talk about Cartesian categories that are also fibrant. We will

study the double category of comonads over a fibrant Cartesian double category that

satisfies the Frobenius axiom and we will extend the theory of Eilenberg-Moore objects

to double categories. It is worth mentioning that there are some results about the

double category of spans already proven in [2], which will be very useful in our work.

References:

[1] S. Lack, R. F. C. Walters and R. J. Wood, Bicategories of spans as cartesian bicategories,

Theory and Applications of Categories 24 (2010) 1–24.

[2] S. Niefield, Span, Cospan, and other double categories, Theory and Applications of Cat-

egories 26 (2012) 729–742.
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Michael Barr
McGill University, Montreal, Canada

Simplicial acyclic models

In 1974 Kleisli published a paper on acyclic models for semi-simplicial complexes

(also known as face complexes). This differed from the theorem for chain complexes

in that the “presentation” mapping was required to commute with all face operators

except d0. I extend this to simplicial complexes, adding that the presentation commute

with all degeneracies. I also show that the standard resolution of any cotriple satisfies

these conditions with respect to the cotriple.



Marzieh Bayeh ∗

Dalhousie University

Orbit class and its application

In this talk we introduce a new concept to study topological spaces endowed with

an action of a topological group. We call this concept orbit class and is often a good

replacement for the well-known concept orbit type. We define a partial ordering on

the set of all orbit classes. We apply the properties of orbit classes to define and study

the equivariant LS-category and the invariant topological complexity. Furthermore,

we consider the category of orbit classes. This is a progress report of an ongoing

research topic.

References:

[1] M. Bayeh and S. Sarkar. Orbit class and remarks on invariant topological complexity.

Submitted (2016).

[2] H. Colman and M. Grant. Equivariant topological complexity. Algebr. Geom. Topol. 12

(2012) 2299–2316.

[3] W. Lubawski and W. Marzantowicz. Invariant topological complexity. Bull. Lond. Math.

Soc. 47 (2015) 101–117.

∗Joint work with Soumen Sarkar.
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Murray Bremner ∗

Department of Mathematics and Statistics,

University of Saskatchewan, Canada

Commutativity in double interchange semigroups

We extend the work of Kock [1] and Bremner & Madariaga [2] on commutativity

in double interchange semigroups (DIS) to 10 arguments, motivated by potential

applications to double categories. Our methods involve algebraic operads: the free

symmetric operad generated by two binary operations with no symmetry, its quotient

by the two associative laws, its quotient by the interchange law, and its quotient by

all three. We also consider a geometric realization of free double interchange magmas

by rectangular partitions of the unit square I2. We define morphisms between these

structures which allow us to represent elements of free DIS both algebraically as tree

monomials and geometrically as rectangular partitions. With these morphisms we

reason diagrammatically about free DIS and prove our new commutativity relations.

References:

[1] J. Kock, Note on commutativity in double semigroups and two-fold monoidal categories,

Journal of Homotopy and Related Structures 2 (2007) no. 2, 217–228.

[2] M. Bremner and S. Madariaga, Permutation of elements in double semigroups, Semigroup

Forum 92 (2016) 335–360.

∗Joint work with Fatemeh Bagherzadeh. Research supported by a Discovery Grant from NSERC.
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Alexander Campbell
Macquarie University

Enriched algebraic weak factorisation systems

A modification of Garner’s small object argument shows that if V is a monoidal

model category in which every object is cofibrant, then any cofibrantly generated

V-enriched model category has a cofibrant replacement V-comonad and a fibrant re-

placement V-monad [4]. Conversely, an elementary argument shows that if a monoidal

model category V with cofibrant unit object has a cofibrant replacement V-comonad,

then every object of V is cofibrant [2].

These results leave open the following question: what extra structure, if not an

enrichment in the ordinary sense, is naturally possessed by the (co)fibrant replacement

(co)monad of an enriched model category when not every object of the base monoidal

model category is cofibrant? The purpose of this talk is to answer this question.

An analysis of the monoidal model category 2-Cat of 2-categories (in which not

every object is cofibrant, and which is monoidal under the Gray tensor product) sug-

gests the decisive concept. For while the cofibrant replacement comonad st on 2-Cat,

which sends a 2-category A to its pseudofunctor classifier stA, fails to extend to a

Gray-comonad, it is nevertheless a monoidal closed comonad, and so comes equipped

with pseudofunctors Gray(A,B) −→ Gray(stA, stB) enriching st with the structure

of a “locally weak Gray-comonad”. Generally, given a monoidal/closed comonad Q

on a monoidal/closed category V, one can define a 2-category of V-categories, “locally

Q-weak V-functors”, and “locally Q-weak V-natural transformations”.

Abstracting from these observations, I will introduce notions of monoidal, closed,

and enriched algebraic weak factorisation systems (which are strengthenings of the

notions of bi(co)lax morphisms of awfs [3]) and demonstrate that the cofibrant re-

placement comonad Q for a monoidal/closed awfs (L,R) on a monoidal/closed cat-

egory V is a monoidal/closed comonad on V, and that the (co)fibrant replacement

(co)monad for an (L,R)-enriched awfs (H,M) on a V-category A is a locally Q-weak

V-(co)monad on A, and moreover that the category of weak maps [1] for (H,M) is

enriched over the skew-monoidal/closed category of weak maps for (L,R).

References:

[1] John Bourke and Richard Garner. Algebraic weak factorisation systems II: Categories of

weak maps. J. Pure Appl. Algebra 220 (2016), no. 1, 148–174.

[2] Stephen Lack and Jǐŕı Rosický. Homotopy locally presentable enriched categories. Theory

Appl. Categ. 31 (2016), no. 25, 712–754.

[3] Emily Riehl. Monoidal algebraic model structures. J. Pure Appl. Algebra 217 (2013), no.

6, 1069–1104.

[4] Emily Riehl. Categorical homotopy theory, volume 24 of New Mathematical Monographs.

Cambridge University Press, Cambridge, 2014.
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Daniel Cicala
University of California, Riverside

Modeling graphical calculi with symmetric monoidal compact closed bicategories

Compositionality is playing an increasingly large role in the study of complex sys-

tems. With this viewpoint, one studies a complex system by analyzing its smaller

components and their connections. This is particularly useful for open systems ad-

mitting a graphical syntax. Two common features of such systems are the use of

diagrams with ‘inputs’ and ‘outputs’, and an equality given by rewrite rules. In this

talk, we introduce a framework in which these systems fit. In particular, we organize

an open system into a symmetric monoidal and compact closed bicategory whose 0-

cells are input and output types, 1-cells are the system’s diagrams, and 2-cells are

their rewritings. We illustrate our framework by giving a bicategorical syntax for a

commutative monoid.

7



Alan S. Cigoli ∗

Université catholique de Louvain

A relative monotone-light factorization system for internal groupoids

It is a well-known fact that a Barr-exact category C can be seen as a reflective

subcategory of the category Gpd(C) of its internal groupoids:

Gpd(C)
π0

⊥
//
C

D
oo (1)

where D sends each object in C to the corresponding discrete internal groupoid, and π0

is the connected components functor. This adjunction gives rise to an associated (re-

flective) factorization system (E ,M), where E is the class of internal functors inverted

by π0. As we will easily see, this factorization system does not admit an associated

monotone-light factorization system in the sense of [1].

We will then restrict our attention to the case where C is also a Mal’tsev category.

As explained in [3], in this case the adjunction (1) presents C as a Birkhoff subcategory

of Gpd(C) and the general theory of central extensions developed in [4] applies here.

In particular, central extensions are characterized in [3] as regular epimorphic internal

discrete fibrations. We will show that, together with the class of internal final functors,

these form a relative monotone-light factorization system (in the sense of [2]) for

regular epimorphic internal functors.

References:

[1] A. Carboni, G. Janelidze, G. M. Kelly and R. Paré, On localization and stabilization of

factorization systems, Appl. Categ. Struct. 5 (1997) 1–58.

[2] D. Chikhladze, Monotone-light factorization for Kan fibrations of simplicial sets with

respect to groupoids, Homol. Homot. Appl. 6 (2004) 501–505.

[3] M. Gran, Central extensions and internal groupoids in Maltsev categories, J. Pure Appl.

Algebra 155 (2001) 139–166.

[4] G. Janelidze and G. M. Kelly, Galois theory and a general notion of central extension,

J. Pure Appl. Algebra 97 (1994) 135–161.

∗Joint work with T. Everaert and M. Gran.
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Maria Manuel Clementino ∗

CMUC, Universidade de Coimbra

On simple monads in ordered structures and the factorisations they induce

We recall the notion of simple monad [2, 3] in order-enriched categories, that

generalises the notion of simple reflection of Cassidy-Hébert-Kelly [1], and study the

factorisations they induce. These factorisations are lax orthogonal, as defined in [2],

and can be characterised by a cancellation property that, once again, includes the

orthogonal case studied in [1].

References:

[1] C. Cassidy, M. Hébert and G.M. Kelly, Reflective subcategories, localizations and fac-

torization systems, J. Austral. Math. Soc. (Series A) 38 (1985) 287–329.

[2] M.M. Clementino and I. López Franco, Lax orthogonal factorisation systems, Adv. Math.

302 (2016) 458–528.

[3] M.M. Clementino and I. López Franco, Lax orthogonal factorisations in ordered struc-

tures, DMUC Preprint 17-06, University of Coimbra; arXiv 1702.02602.

∗Joint work with Ignacio López Franco.
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Robin Cockett ∗

University of Calgary

General Erhesmann connections and torsor bundles

In a tangent category [1,2] it is normal to define a connection on a differential

bundle [3], however, there is a more general notion – originally explored in the classical

case by Erhesmann – which works on an arbitrary bundle (that is an arbitrary map

from E to M). The purpose of this talk is to explore this more general notion and,

in particular, to explore the theory of principal G-bundles expressed in a novel way

using torsors. Of particular interest is when the torsor structure and the connection

are “compatible”: this allows a re-expression of the data.

References:

[1] J. Rosický, Abstract tangent functors, Diagrammes 12 (1984) Exp. No. 3.

[2] J.R.B. Cockett and G.S.H. Cruttwell, Differential Structure, Tangent Structure and SDG,

Applied Categorical Structures 22 (2014) 331–417.

[3] J.R.B. Cockett and G.S.H. Cruttwell, Differential bundles and fibrations for tangent cat-

egories, Cahiers de topologie et geometrie differentielle categoriques (2017), to be pub-

lished, https://arxiv.org/abs/1606.08379.

∗Joint work with Geoff Cruttwell.
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Geoffrey Cruttwell ∗

Mount Allison University

Differential equations in tangent categories

Tangent categories, first defined by Rosický [7], are an abstract setting for differ-

ential geometry. Recent work has shown that within their formalism one can define

and work with many of the fundamental ideas of differential geometry such as the

Lie bracket [3], vector bundles [4], connections [5], and de Rham cohomology [6]. A

variety of models for the axioms have also been identified, ranging from examples in

ordinary differential geometry to examples in algebraic geometry, synthetic differential

geometry, and abelian functor calculus [2, 7, 1]

In this talk, we discuss how to define and work with solutions to ordinary differ-

ential equations in tangent categories. This requires several additions to the tangent

category axioms. First of all, since solutions to differential equations need not be

totally defined, we work in the more general setting of a tangent restriction category

(described in [2]) in which maps need only be partially defined. Second, we assume the

existence of a special “curve” object which translates vector fields into flows (that is,

an object which “solves certain ordinary differential equations”). We will then discuss

various consequences of these axioms in this general setting, such as the relationship

between the Lie bracket of vector fields and the commutativity of their respective

flows.
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On flat 2-functors

The main theorem of the theory of flat functors ([1], [4]) states that A
P−→ Ens

is flat if and only if P is a filtered colimit of representable functors, i.e. there is a

filtered category I and a diagram I
X−→ A such that P is the colimit of the composition

Iop
X−→ Aop

h−→ Hom(A, Ens) where h is the Yoneda embedding. For an arbitrary

base category V instead of Ens, Kelly ([3]) has developed a theory of flat V-enriched

functors A
P−→ V, but there is no known generalization of the theorem above for any

V other than Ens.
In [2] we have established a 2-dimensional version of this theorem, i.e. for a

2-functor A P−→ Cat, where A is a 2-category and Cat is the 2-category of categories.

As it is usually the case for 2-categories, the Cat-enriched notions are not adequate

for most purposes and the relaxed bi and pseudo notions are the important ones.

We define a 2-functor A P−→ Cat to be flat when its left bi-Kan extension

Homs(Aop, Cat)
P ∗
−→ Cat along the Yoneda 2-functor A h−→ Homs(Aop, Cat) is left

exact. Homs(Aop, Cat) denotes the 2-category of 2-functors, 2-natural transforma-

tions and modifications. By left bi-Kan extension we understand the bi-universal

pseudonatural transformation P =⇒ P ∗h, and by left exact we understand preserva-

tion of finite weighted bilimits. Let (A, Σ) be a pair where A is a 2-category and Σ a

distinguished 1-subcategory. A σ-cone for a 2-functor A F−→ B is a lax cone such that

the 2-cells corresponding to the distinguished arrows are invertible. The σ-limit of

F is a universal σ-cone (characterized up to isomorphism). We introduce a notion of

2-filteredness of A with respect to Σ, which we call σ-filtered. Our main result states

the following:

A 2-functor A P−→ Cat is flat if and only if there is a σ-filtered pair (Iop, Σ)

and a 2-diagram I X−→ A such that P is pseudo-equivalent to the σ-bicolimit of the

composition Iop X−→ Aop h−→ Homs(A, Cat). As in the 1-dimensional case, X can be

chosen as the 2-fibration associated to P .
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An element-based reformulation of restriction monads

Last year, I introduced restriction monads: monads in a bicategory equipped with

a restriction 2-cell satisfying axioms reminiscent of those satisfied in a restriction

category. This talk will give a reformulation of restriction monads in bicategories

with an initial object. An immediate benefit of this reformulation is a pair of one-to-

one correspondences between (i) small restriction categories and restriction monads

in Span(Set) and (ii) small restriction categories and restriction monads in Set-Mat.

These correspondences form the motivation for defining internal restriction categories

and restriction enriched categories, respectively.
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Stockholms Universitet

On the local cartesian closure of exact completions

Carboni and Rosolini have given in [1] a characterisation of (local) cartesian clo-

sure of exact completions in terms of a property of their projectives, but a recently

discovered oversight in their argument entails that such characterisation is only valid

when the projectives are internally projectives, i.e. closed under products (pullbacks

for local cartesian closure).

We will introduce a different condition on a category with weak finite limits which

alone implies that its exact completion is locally cartesian closed. This condition

was inspired by an axiom in the context of constructive set theory and originally

applied to a category defined from Martin-Löf type theory. However, we will see

how this condition arises in the homotopy-theoretic context as well, where homotopy

categories provide natural examples of categories with weak finite limits.

References:

[1] A. Carboni and G. Rosolini, Locally cartesian closed exact completions, J. Pure Appl.

Algebra 154 (2000) 103–116.

14
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Vrije Universiteit Brussel

Frobenius and Hopf V-categories

We define Frobenius V-categories, for any monoidal category V. We also recall

basic notions of Hopf V-categories as introduced in [1]. When V is the category of

modules over a commutative ring, we show that the classical Larson-Sweedler theorem

can be generalised to this many-object setting by giving equivalent definitions of

Frobenius k-linear categories in terms of Casimir elements and self-duality in the

same style as ordinary Frobenius algebras.
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Modelling homotopy type theory in cartesian cubical sets

Starting from the observation that Voevodsky’s model [KL12] of homotopy type

theory is not constructive, Coquand et al. [BCH14] developed a constructive model

in a category of cubical sets, with the aim of solving the canonicity problem.

I will present work in progress on a variation of this model in the presheaf cat-

egory of cartesian cubical sets [Awo16] where types are interpreted as uniform Kan

complexes, and identity types are interpreted using an algebraic weak factorization

system [BG16] based on a notion of path object given by exponentiation by an interval

object.

A goal of our work is to construct a univalent universe that can be internalized in

a topos with a small complete subcategory, such as Hyland’s effective topos [Hyl82].

This construction is based on recent work of Gambino and Sattler [GS17, Sat17].
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Properties of ΣΣ(−)
-algebras in Equ

The category Equ of equilogical spaces, introduced in [2], provides a useful locally

cartesian closed extension of the category Top0 of T0-spaces and continuous maps; the

embedding of T0-spaces is full and preserves all the existing locally cartesian closed

structure ([5, 6]). The Sierpinski space Σ, consisting of two elements, one open and

one closed, is the open-subset classifier, i.e. given a T0-space S, for every T0-space

X, a continuous map f : X → ΣS determines precisely an open subset of X × S;

nevertheless, ΣS is an equilogical space which need not be a topological space. In

other words, Equ allows one to work with T0-spaces as if they were a cartesian closed

category.

The monad of the double power of Σ was considered in different settings in

many papers, see for example [3, 4]. This led us to analyze the self-adjoint func-

tor Σ(−) : Equ → Equop and the monad of the double power of Σ on the category

of equilogical spaces. Interestingly, in [1], this double power monad on Equ gives an

intrinsic description of the soberification of a T0-space.

In this talk we investigate the category of the algebras for the double power monad

of Σ on Equ, pointing out a connection with the category of frames and frame homo-

morphisms; in particular, we recall how the structure of ΣΣ(−)
-algebra on an equilogi-

cal space gives rise to a frame on the set of its global sections. We then focus on some

particular subcategories of Equ: the category of continuous lattices, the category of

algebraic lattices and Top0 itself, restricting the double power monad to each of them

and analyzing the algebras in each case. Finally, we introduce a full subcategory

REqu of Equ, involving algebraic lattices and equivalence relations on them, and use

an algebraic approch to determine the ΣΣ(−)
-algebras in REqu and their relationship

with spatial frames.
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University of Calgary

Coherently closed tangent categories
and the link between SDG and the differential λ-calculus

Type theories for smooth maps have been independently studied by two schools

of thought with different motivations. The first is synthetic differential geometry

(SDG) [1, 2, 3]. Here, one uses the type theory of a topos to reason about microlinear

spaces. The motivation is the development of a rigorous foundation for synthetic

arguments used in differential geometry. The second is the differential λ-calculus, an

explicit type theory for reasoning in smooth models of linear logic (Köthe sequence

spaces, convenient vector spaces) [4, 5, 6, 7]. The motivation is to provide a syntax

for resource sensitive proofs/computations [8].

The type theories are linked in a simple manner: categorical models of either are

always tangent categories [9, 10]. Surprisingly, they are more intimately related as

well. This talk will develop a direct relationship between Euclidean vector bundles in

SDG, and the differential λ-calculus.

More generally, we will show that the differential bundles over a fixed base B

(the analog of vector bundles in a tangent category) of any coherent, locally cartesian

closed tangent category are a model of the differential λ-calculus. Thus, in SDG, the

local reasoning in the category of vector bundles over B is captured by the differential

λ-calculus. Having an explicit logic for vector bundles makes lifting certain parts

of classical differential geometry, for example, Lagrangian systems and symplectic

geometry, more direct.
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A characterisation of Lie algebras amongst alternating algebras

The aim of this talk is to prove that, if a variety of alternating algebras—not

necessarily associative, where xx = 0 is a law—over an infinite field admits algebraic

exponents in the sense of James Gray’s Ph.D. thesis [1], so when it is locally alge-

braically cartesian closed (or (LACC) for short), then it must necessarily be a variety

of Lie algebras.

The number of examples of (LACC) semi-abelian categories currently known is

very small, and almost all happen to consist of group objects in a cartesian closed

category: groups, crossed modules, and cocommutative Hopf algebras over a field of

characteristic zero being the principle ones. The only known exception is the category

of Lie algebras over a commutative ring [2]. In the quest of finding new examples, we

ended up showing that if a variety of alternating algebras is (LACC), then the Jacobi

identity is amongst its laws.
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Internal neighbourhood spaces

The talk generalises the construction of pretopological spaces and pseudotopo-

logical spaces to a context where the ground category of sets is replaced with an

arbitrary finitely complete category equipped with a proper factorisation system and

each lattice of admissible subobjects is a complete distributive lattice. It is shown

that the categories of internal weak neighbourhood spaces and internal pretopological

spaces are topological over the base category. The category of internal weak neigh-

bourhood spaces is shown to be bireflective in the category of internal pretopological

spaces. In the special case when each lattice of admissible subobjects is a pseudocom-

plemented complete distributive lattice and each change of base a homomorphism

of pseudocomplemented complete lattices, the category of internal pseudotopological

spaces is shown to contain the category of internal pretopological spaces bireflectively

and is itself topological over the base category. There are neighbourhood structures

over each object which are similar to the neighbourhoods obtained from a topology

on a set. If every change of base is a homomorphism of pseudocomplemented com-

plete lattices then the category of internal neighbourhood spaces is topological over

the base category and is a bireflective full subcategory of the category of internal weak

neighbourhood spaces. The special neighbourhood structures on an object whose open

subsets make a topology give rise to topological structures on the object. In the special

case when each lattice of admissible subobjects is a frame and each change of base is

a homomorphism of pseudocomplemented complete lattices the category of internal

topological spaces is isomorphic to the category of internal neighbourhood spaces and

hence is topological over the base category. Thus, in particular, the classical case for

the context of sets and functions is obtained as a special case of the results presented

in a more general context in this talk.
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University of Cambridge

Hopf formulae for Tor

A Hopf formula expresses a homology object in terms of a projective presentation,

its kernel and certain (generalised) commutators. The first such formula, for second

group homology, was given by Hopf in 1942. Over the last 13 years or so, Everaert,

Gran, Van der Linden and others have developed Hopf formulae in more general cate-

gorical contexts. One of these general contexts is that of a semi-abelian category with

a Birkhoff subcategory where the reflector factors through a protoadditive functor.

In that generality, some elements of the Hopf formula are necessarily very abstract.

With Tim Van der Linden and Guram Donadze, I am studying the special situation

of subvarieties of categories of R-modules. It can be seen using properties of algebraic

theories that every such subvariety is again a category of modules. Here we can find

explicit and easy formulations of the generalised commutators. Since the reflector in

this situation turns out to be tensoring, the resulting homology functors are Tor func-

tors. Through these fairly simple formulations we obtain new ways of calculating, for

example, homology of Lie algebras, and Hochschild homology of an associative unital

algebra. More generally, our results apply to any abelian Birkhoff subcategory of any

semi-abelian variety, using a factorisation through the abelian core.

∗Joint work with Tim Van der Linden and Guram Donadze.
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A characterization of central extensions in the variety of quandles

During the last years some categorical properties of the category Qnd of quandles

have been investigated [1, 2, 3]. We shall first recall some of these results that will

be useful for the present work [4], and then consider the subvariety SymQnd of Qnd

consisting in symmetric quandles. This latter is a Mal’tsev variety, whose subvariety

AbSymQnd of abelian symmetric quandles turns out to be an admissible subcategory

(in the sense of categorical Galois theory) in the larger category Qnd. We shall give

an algebraic description of the quandle extensions that are central for the adjunction

between the variety of quandles and its subvariety of abelian symmetric quandles.
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CIDMA, University of Aveiro

Duality theory, convergence, and enriched categories

The principal aim of this talk is to combine the three keywords of the title in a

suitable way. It is probably impossible to talk about duality theory without men-

tioning Stone’s famous duality results for Boolean algebras and distributive lattices,

which motivated many other duality results, typically involving some kind of lattices.

Our first goal is to develop a systematic method, based on enriched category theory,

for extending these duality theorems to categories including all compact Hausdorff

spaces. Keeping in mind that ordered sets can be viewed as categories enriched in

the two-element quantale, our thesis is that the passage from the two-element space to

the compact Hausdorff space [0, 1] (a cogenerator of the category of compact Hausdorff

spaces) on one side of the duality should be matched by a move from ordered struc-

tures to categories enriched in [0, 1] on the other side. Accordingly, we present duality

theory for ordered compact Hausdorff spaces and monoids of categories enriched in

the quantale [0, 1] with finite weighted colimits. One should think of these monoids

as “[0, 1]-enriched lattices”.

However, doing so is somehow inconsequential, as we still consider ordered com-

pact Hausdorff spaces. Our next step aims at an extension of these results to compact

Hausdorff spaces equipped with a quantale-enriched category structure, which consti-

tute a generalisation of Nachbin’s ordered spaces (see [6, 7]) and are closely related to

Hermida’s representable multi-categories [4]. Arguably, these spaces are best studied

within the framework of “quantale-enriched topological spaces”; that is, lax algebras

for the ultrafilter monad à la Barr’s description of topological spaces as relational

algebras [1]. We use this opportunity to recall the setting of monad-quantale enriched

categories [5] and in particular the important notion of distributor. We sharpen some

results on Cauchy-completeness presented earlier, and give a more systematic study

of enriched compact Hausdorff spaces. If time permits, we will also consider the case

of an enrichment in a symmetric monoidal closed category (see [2]).

Finally, already Halmos [3] observed that it is often beneficial to study duality

theory “at a slightly more general level than might appear relevant at first sight”, and

proved that the category of Boolean spaces and Boolean relations is dually equivalent

to the category of Boolean algebras and maps preserving finite suprema

BooRel ' FinSupop
boo;

here BooRel is actually the Kleisli category of the Vietoris monad, and the latter cat-

egory we describe as the full subcategory of the category of finitely complete ordered

sets defined by Boolean algebras. Using again the theory of monad-quantale enriched

categories, we introduce and study enriched versions of the classical Vietoris monad.

With these tools at our disposal, we develop duality theory for [0, 1]-enriched compact

Hausdorff spaces and distributors on one side, and categories enriched in the quantale
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[0, 1] with finite weighted colimits on the other side. These results entail the duality

results mentioned before; surprisingly or not, the general theory seems to work better

in this setting. We also use these results to show that the dual of the category of

partially ordered compact Hausdorff spaces is a ℵ1-ary quasivariety and give a partial

description of its algebraic theory, which is sufficient to identify also the dual of the

category of Vietoris coalgebras as a ℵ1-ary quasivariety.

This talk is based on joint work with Maria Manuel Clementino, Renato Neves,

Pedro Nora, Carla Reis, Isar Stubbe and Walter Tholen.
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An embedding theorem for regular Mal’tsev categories

Barr’s embedding theorem for regular categories [1] provides, for each small regular

category C, a full and faithful embedding C ↪→ SetP preserving finite limits and regular

epimorphisms into a presheaf category. In the abelian context, Lubkin’s embedding

theorem [6] states that any small abelian category A admits a faithful conservative

exact embedding A ↪→ Ab into the category of abelian groups. The aim of this talk is

to present similar embedding theorems in the non-abelian context, and in particular

for regular Mal’tsev categories.

A regular category is a Mal’tsev category when the composition of equivalence

relations on each object is commutative, or equivalently, when each reflexive relation

is an equivalence relation [2, 3]. I shall show a construction of a particular regular

Mal’tsev locally finitely presentable category M in terms of (partial) operations and

identities. This category can be thought of as a ‘representing Mal’tsev category’ in

the sense that the following embedding theorem holds [4]: each small regular Mal’tsev

category C admits a faithful conservative embedding C ↪→Mn which preserves finite

limits and regular epimorphisms. Here, n is the (cardinal) number of subobjects of

the terminal object 1 of C. This embedding theorem allows one to prove results about

finite limits and regular epimorphisms for regular Mal’tsev categories using elements

and operations in an (essentially) algebraic way.

Similar embedding theorems also hold for regular unital, regular strongly unital,

regular subtractive and n-permutable categories [5].
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Infinite addition, real numbers, and taut monads

Classically, in a category C, finite coproducts canonically coincide with finite

products if and only if C admits addition of morphisms satisfying well-known standard

conditions [3]. In fact having such an addition is the same as having an enrichment in

the symmetric monoidal closed category of commutative monoids, and that classical

observation of Mac Lane has a straightforward infinite counterpart, which can also

be formulated for all infinite cardinals separately. In particular, the countable case

is considered in [2] (referring to [1] and other papers); the countable counterparts of

commutative monoids are called series monoids there.

In this talk we recall some results of the first four sections of [2], and add new

ones. In particular, we shall say more about what was called the series monoid of

paradoxical positive reals in [2]; it turns out that its construction, out of the ordi-

nary monoid of positive reals, can be extended to algebras over any taut monad on

an extensive category with pullbacks. Note that, say, 0.999... 6= 1 in the “paradoxi-

cal”context, which excludes the existence of negation, and this agrees with the fact

that the (abelian) group monad is not taut in contrast to the (commutative) monoid

monad.

References:

[1] Denis Higgs, A universal characterization of [0,∞], Nederl. Akad. Wetensch. Indag. Math.

40(4) (1978) 448–455.

[2] George Janelidze and Ross Street, Real sets, arXiv:1704.08787 [math.CT], 2017.

[3] Saunders Mac Lane, Duality for groups, Bull. Amer. Math. Soc. 56 (1950) 485–516.

∗Joint work with Ross Street.

27



Piotr Jedrzejewicz
Faculty of Mathematics and Computer Science

Nicolaus Copernicus University, Toruń, Poland

Towards a categorification of integers

The motivation comes from Stephen Schanuel’s question:

“Where are negative sets?

Though ill-posed, the question is suggestive; a good answer should complete the

diagram

S ⊂→ E
↓ ↓
N ⊂→ Z

where S is the category of finite sets; we seek an enlargement E, the isomorphism

classes of which should give rise to all integers, rather than just natural numbers

([4]).”

We would like to present a background for constructing a positive answer to the

above question, based on generalized multisets. A multiset is a set with multiple

elements. The first known observation that one can define a generalized multiset

with arbitrary integer (positive, negative or zero) multiplicities, belongs to Hassler

Whitney ([5]). Systematic studies in this field started with the works of Wolfgang

Reisig ([3], ch. 9), Wayne D. Blizard ([1]) and Daniel Loeb ([2]).

When we restrict multiplicities to: 1, 0, −1, we obtain a generalized set which

is a pair of disjoint sets (A,B), where A is the positive part and B is the negative

one. Generalized union and intersection are defined by max and min of multiplicities,

respectively, so

(A,B)
g

∪ (C,D) = (A ∪ C,B ∩D), (A,B)
g

∩ (C,D) = (A ∩ C,B ∪D).

Inclusion is defined by inequality between multiplicities, so

(A,B)
g

⊂ (C,D)⇔ A ⊂ C, D ⊂ B.

If A and B are finite disjoint sets, we put |A| − |B| to be the generalized cardinality

of (A,B). Natural candidates for a direct sum and a direct product of (A,B) and

(C,D) are:

(A t C,B tD), (A× C tB ×D,A×D tB × C).

Now, we can precise Schanuel’s question if it is possible to define in some natural

way maps between finite generalized sets in order to obtain a category extending the

category of finite sets. It may be also interesting to look for some similar constructions

in other categories, where two pairs of objects (A,B) and (C,D) are isomorphic if

and only if A⊕D and B ⊕ C are isomorphic in the initial category.
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Generalized principal bundles

A “generalized principal bundle” for an ordinary 1-category will be defined as a

certain category-valued pseudo-bimodule that, roughly speaking, is a filtered category

in each of its total fibres. This definition provides a possible generalization of a version

of the classical definition found in [1].

For any pseudo-bimodule, an explicit construction of a pointwise Kan extension

will be given. This gives a concrete computation of certain weighted pseudo-colimits.

The Kan extension is expressible as a pseudo-coequalizer and admits a right calculus

of fractions under certain further hypotheses. The main result is that a bimodule is a

generalized principal bundle if, and only if, its induced Kan extension preserves finite

weighed pseudo-limits in a suitable sense.

Finally, we will discuss the extent to which 2-categories of indexed categories can

be seen as classifying categories for generalized principal bundles.
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Integration in tangent categories

Since the turn of the 21st century, the theory of differential categories has lead

to significant progress in the abstract understanding of differentiation in a variety of

settings. In particular, tangent categories [5, 3], which come equipped with a tangent

functor, provide an axiomatic setting for differential geometry, while cartesian differ-

ential categories [2], which come equipped with a differential combinator, axiomatizes

the directional derivative. Recently there has been effort put into studying the axiom-

atization of integration and antiderivatives in the various differential category settings

[1]. In this talk we will introduce the notion of integration in a tangent category, which

involves integrating linear bundle morphisms between differential bundles [4]. We will

also discuss integration for cartesian differential categories and show the relation with

tangent category integration. With this, we will be able to formalize a number of

properties of integration, such as Fubini’s theorem, the Fundamental Theorems of

Calculus, integration of forms, and Stoke’s theorem for tangent categories.
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Duality theorems for essential inclusions of Grothendieck toposes

An inclusion of toposes is said to be essential if the inverse image functor has an

extra left adjoint. In their paper of 1989 entitled ‘On the Complete Lattice of Essential

Localizations’ [1], Kelly and Lawvere gave a characterisation of essential inclusions of

Grothendieck toposes, and also established a duality between essential inclusions of

presheaf toposes and idempotent ideals on the respective base category. In the talk

we will see extensions of both of these results, which appear in the speaker’s Ph.D.

thesis [2].

We shall analyse the cases where the extra left adjoint of an essential inclusion

has specific exactness properties, such as preserving finite limits or preserving finite

products, and exhibit the corresponding characterisations. We shall give a final answer

to the question posed in the 100th PSSL in Cambridge regarding the stability of

essential inclusions under pullback, and explain how it relates to their stability under

the inclusion-surjection factorisation.

We shall also generalise the aforementioned duality result of Kelly and Lawvere

from presheaf toposes to general Grothendieck toposes, and show how when applied

to the special case of localic toposes one can find another proof for the result of

Johnstone and Moerdijk [3] which characterises local geometric morphisms between

toposes over a topological space.
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Algebraic duality and the abstract functional analysis of distribution monads

Given a commutative ring S in a suitable category V , the familiar process of

dualization of S-modules leads to a form of abstract functional analysis, in terms of

which certain measure and distribution monads can be studied [5, 6]. Generalizing

from S-modules to T -algebras for a suitable V -enriched algebraic theory T on a

system of arities J [4], we arrive at the notions of functional-analytic context and

functional distribution monad [1], which capture several kinds of measures, probability

measures, distributions, and filters, as well as certain hyperspaces of closed subsets.

In this talk, we study a notion of dualization with respect to a given object S

of an arbitrary J -algebraic V -category A , leading to a general study of dualities

between algebraic categories. Building on an insight of Freyd, we show that every

dual adjunction ∆ a ∇ : Bop → A between J -algebraic V -categories is given by

dualizing with respect to a bifold algebra S , i.e. an object of V equipped with a pair

of commuting algebra structures for specified J -theories T and S . Calling such

adjunctions J -algebraic dualities, we characterize those whose inducing bifold algebra

S exhibits T and S as commutants of each other [2, 3], leading to the notion of stable

J -algebraic duality. This yields an equivalent formulation of functional-analytic

contexts as certain stable J -algebraic dualities. We discuss several examples of J -

algebraic dualities, functional-analytic contexts, and functional distribution monads.
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Vector bundles and dependent linear logic in differential geometry

Multicategories provide a categorical semantics for multi-linear maps in linear

algebra, and Hermida showed that representable multicategories are equivalent to

monoidal categories [1]. Blute-Cockett-Seely introduced systems of linear maps to

provide a language for multilinear maps in categories of “smooth” maps, and described

when these multilinear maps gave rise to a representable multicategory or a storage

comonad [2]. Topological vector bundles - epimorphisms q : E → B so that for every

b ∈ B, q−1(b) is a vector space - give a model of local linear structure which is a basic

building block in differential geometry.

In this talk, indexed systems of linear maps are developed to model the fibrewise

linearity of topological vector bundles. Indexed systems of linear maps gives rise to

fiberwise notions of monoidal representability and storage, which in turn gives rise to

an indexed monoidal category and the categorical semantics of dependent linear logic

[3][4]. This structure is then applied to the differential bundle fibration in a tangent

category [5], which was first explored by Cockett and Cruttwell [6], to cleanly express

the basic concepts of differential forms and symplectic geometry in a tangent category.
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Two dimensional algebra and natural distributive laws

Our structures of interest here are general two dimensional monads, algebras and

adjunctions and the natural distributive laws that show up within.
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The canonical intensive quality of a pre-cohesive topos

In the context of Lawvere’s Axiomatic Cohesion [2], an essential and local geo-

metric morphism p : E → S between toposes is cohesive if

i) p! : E → S preserves finite products.

ii) (“Continuity”) for every E ∈ E and S ∈ S the induced morphism p!(E
(p∗S))→

(p!E)S is an isomorphism.

iii) (“Nullstellensatz”) the canonical map θ : p∗ → p! is epi.

Without the continuity condition ii), we refer to p : E → S as pre-cohesive [4]. For

any pre-cohesive p : E → S, [2] constructs the associated canonical intensive quality

as the full subcategory L of E of those objects X for which θX : p∗X → p!X is an

isomorphism. We call L the Leibniz category associated to p.

In this talk we will review some of the basic properties of the category L, we will

give elementary constructions of the left and right adjoints of the inclusion functor

L → E , and we will determine sufficient conditions for a pieces preserving geometric

morphism [3] g : F → E between two pre-cohesive toposes over S to restrict to a

geometric morphism between the corresponding Leibniz categories.

Furthermore, we will produce a subcanonical site for the Leibniz category de-

termined by the cohesive site over sets of piecewise linear functions constructed in

[5].
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Triangulations, triangulated surfaces
and the multiplicative structure of internal groupoids

A triangulation [1] is a straightforward generalization of a directed graph. In the

same way as a directed graph, internal to an arbitrary category, consists of two objects

and two parallel morphisms between them, a triangulation consists of two objects (the

object of triangles and the object of vertices) and three parallel morphisms between

the two objects.

Every triangulated surface gives rise to a collection of triangles and hence a tri-

angulation. Another example of a triangulation is obtained from the multiplicative

structure of an internal groupoid, or an internal category.

In this talk we will see how to detect whether a given triangulation is the structure

of a triangulated surface or the structure of an internal groupoid.
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On a problem in Objective Number Theory

I will sketch the proof of a result extending some of the work by Schanuel, Lawvere,

Blass and Gates cited below.
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The Diller-Nahm model of type theory

Gödel’s Dialectica interpretation is a proof interpretation of Heyting arithmetic

into a system of computable functionals of finite type. De Paiva [1], Hyland [2] and

others have worked on the idea of a semantic version of Dialectica: starting with a cat-

egory of types and a fibration of predicates over it, a new structured category is built

whose morphisms correspond to the Dialectica interpretation of logical implication.

Recently, von Glehn [3] has adapted this idea for the original Dialectica interpreta-

tion to categorical models of dependent type theory. I will discuss how we can build

categorical models of dependent type theory based on other variants of Dialectica,

including the Diller-Nahm variant.

References:

[1] V.C.V. de Paiva, The Dialectica categories, Categories in Computer Science and Logic,

American Mathematical Society (1989) 47–62.

[2] J.M.E. Hyland, Proof theory in the abstract, Annals of Pure and Applied Logic 114

(2002) 43–78.

[3] T.L. von Glehn, Polynomials and Models of Type Theory, PhD thesis, University of

Cambridge (2014).

41



David Jaz Myers
Johns Hopkins University

String diagrams for (virtual) proarrow equipments

String diagrams for monoidal categories make computations tactile and intuitive

affairs. Complicated diagram chases can be expressed in a few pictures and redis-

covered with a shoelace. In this talk, I will extend the usual string diagrams for

monoidal categories to (virtual) proarrow equipments with the hopes of bringing the

diagrammatic method to formal category theory. I will then give some applications

of the diagrams.

The proof that the string diagrams for equipments have invariant meaning under

deformation builds off the analogous proofs of Joyal and Street [2] for monoidal cate-

gories, together with the work of Dawson and Paré [3] on tile orders and Dawson [4]

on composition in double categories.

In his paper [5] on enriched category theory, Lawvere mentions that not only are

the common objects of mathematics organized into categories, but they are often en-

riched categories in their own right. Using the diagrams, I will embed any virtual

equipment into the virtual equipment of categories enriched in it. This extends Law-

vere’s claim by showing that as long as our objects of interest are organized into a

virtual equipment, they are enriched categories of a sort.
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Topological groupoids and exponentiability

We consider exponentiable objects and morphisms in the 2-category Gpd(C) of

internal groupoids in a category C with finite coproducts when C is: (1) finitely

complete, (2) cartesian closed, and (3) locally cartesian closed. The examples of

interest include (1) topological spaces, (2) compactly generated spaces, and (3) sets,

respectively. It is well known that if C is the category of sets or any topos, then

G → B is exponentiable in Gpd(C)/B if and only it is a fibration. We will see that

the sufficiency of this condition extends to the case when C is merely finitely complete

if each Gi → Bi is exponentiable in C, where the Gi and Bi are the objects of objects,

objects of morphisms, and objects of composable pairs, for i = 0, 1, 2, respectively.

When C is the category of compactly generated spaces, this includes the case where

each Bi is weakly Hausdorff.

We will also consider pseudo-exponentiable morphisms in the pseudo-slice cate-

gories Gpd(C)//B. Since the latter is the Kleisli category of a monad T on the strict

slice over B, we can apply a general theorem from [1] which states that if TY is ex-

ponentiable in a 2-category K, then Y is pseudo-exponentiable in the Kleisi category

KT . Consequently, we will see that Gpd(C)//B is pseudo-cartesian closed, when C
is the category of compactly generated spaces and each Bi is weakly Hausdorff, and

Gpd(C) is locally pseudo-cartesian closed when C is the category of sets or any locally

cartesian closed category.
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A generalized Hochschild-Kostant-Rosenberg theorem

The Hochschild-Kostant-Rosenberg theorem relates the modules of differential

forms for a smooth commutative algebra to its Hochschild homology. Consequently,

geometric properties of the affine scheme associated to the algebra may be interpreted

in terms of its Hochschild homology. This is particular interesting for those working

in differential categories, where the modules of differential forms and related objects

are salient.

In this talk we look at a generalization of the HKR theorem, which utilizes cate-

gory theoretic language to extend its purview to not only commutative algebras, but

associative algebras as well. In particular, from this perspective we have that for any

associative algebra modality - a monad whose free T -algebras inherit an associative

algebra structure - there is an associated HKR-type theorem. The upshot of this

is a framework for the investigation of smoothness in a variety of contexts; here we

focus on the HKR-type theorem associated to the free associative algebra monad,

which demonstrably holds for the noncommutative smooth algebras of Kontsevich

and Rosenberg.
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Hypercategories

Hypercategories are just Cat-indexed categories. A small hypercategory is (rep-

resented by) a small strict double category. Small weak double categories can also be

viewed as hypercategories and these are essentially small, i.e. weakly equivalent to

small ones. 2-categories are double categories whose vertical arrows are identities and

thus may be considered as hypercategories. Even large 2-categories produce hyper-

categories with small homs. This was our motivation for appropriating the old name

for 2-categories, “hypercategories”.

Another source of hypercategories is the indexing of Cat by itself. There is the

standard way, via slice categories, but there are several other possibilities and sorting

them out poses interesting questions. In general, 2-categories of categories with extra

structure will give examples of large hypercategories.

Derivators are also hypercategories and provide a wealth of examples. We will

comment on some of the implications they have for hypercategories and vice versa.
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Quasi-toposes as elementary quotient completions

In [11] the notion of elementary quotient completion of an elementary doctrine1

is introduced as a generalization of the notion of the exact completion of a category

with finite products and weak equalizers, presented in [4], see also [2, 10, 13] for other

examples.

Such a completion is the free elementary doctrine with stable effective quotients

of equivalence relations (in the sense of the doctrine). In general the base category

of the completion need not be exact though the exact completion of a category with

finite limits turns out to be an instance of this construction.

In this talk we focus on the special class of Lawvere’s elementary doctrines called

triposes, introduced in [7], to build elementary toposes by means of what is now

known as the tripos-to-topos construction, see [5]. We characterize those triposes

whose elementary quotient completion is an arithmetic quasi-topos—i.e. a quasi-

topos equipped with a natural number object—as base category.

To obtain the characterization, we extend some known results about exact comple-

tions such as Carboni and Vitale’s characterization of exact completions in terms of

its projective objects in [4], Menni’s characterization of the exact completions which

are toposes in [12] and Carboni and Rosolini’s characterization of the locally cartesian

closed exact completions [3]. In particular, we show that

• an elementary doctrine P : Cop −→ InfSL closed under effective quotients is the

elementary quotient completion of the doctrine determined by the restriction of

P to the full subcategory of C on its projective objects;

• the base category of the elementary quotient completion of P turns weak uni-

versal properties of C into (strong) universal properties of the base of the el-

ementary quotient completion. Those include binary co-products, a natural

number object, a parametrized list object, a subobject classifier, a cartesian

closed structure, a locally cartesian structure.

We conclude by pointing out some relevant examples of arithmetic quasi-toposes aris-

ing as non-exact elementary quotient completions. Most notably they include the

category of equilogical spaces of [14, 15, 1], that of assemblies over a partial combina-

tory algebra (see [6, 16]), and the category of total setoids, in the style of E. Bishop,

over Coquand and Paulin’s Calculus of Inductive Constructions which is the theory

at the base of the proof-assistant Coq.

∗Joint work with M. E. Maietti (University of Padova) and G. Rosolini (University of Genova).
1Following Lawvere [8, 9], an elementary doctrine is a functor P : Cop −→ InfSL from a category

C with finite products to the category of inf-semilattices such that maps of the form P (< idA, idA >)

have a left adjoint satisfying Beck-Chevalley condition.
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The Wasserstein monad in categorical probability

In existing approaches to categorical probability theory, one works with a suitable

category of measurable spaces and equips it with a monad, which associates to ev-

ery space X the space of probability measures on X. This applies e.g. to the Giry

monad [1] or the Radon monad [2]; see also [3] for a more general setup. These mon-

ads constitute an extra piece of structure that needs to be put in by hand. Here,

we introduce another such monad—the Wasserstein monad—and prove that it arises

from a colimit construction on the underlying category CMS (compact metric spaces).

Besides the utility of this colimit characterization, an advantage of the Wasser-

stein monad over the existing ones is as follows. Deriving quantitative bounds on

approximations is a standard tool in probability theory. Therefore we also expect

that working with metric spaces will allow us more easily to find categorical proofs

and perhaps generalizations of probability theory’s basic results, such as the law of

large numbers, or similarly the Glivenko-Cantelli theorem on the convergence of the

empirical distribution.

Another advantage is that the Wasserstein monad is a monoidal monad with

respect to the closed monoidal structure on CMS given by adding the distances [4,

Section 2]; as one would expect, the monoidal structure encodes the formation of

product distributions. The Giry monad on the category of measurable spaces does

not have both properties: the category of measurable spaces is not cartesian closed;

and while there is another monoidal structure with respect to which the category is

closed, in this one the Giry monad does not even permit a strength [5], and therefore

it lacks an essential piece of structure needed for probability theory.
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The orbifold construction for join restriction categories

It is natural to describe a geometric object by an atlas in a variety of contexts. We

are most familiar with manifolds; other examples include orbifolds [2] and foliations.

A drawback of this approach is the difficulty of defining maps between the objects:

for manifolds, for instance, one needs to first find a suitable refinement of the atlas on

the domain object and then follow this by a map of atlases. A similar approach can

be used to define maps between orbifolds, but here it is further complicated by the

difficulty in determining whether two such maps are the same or not, since unlike the

case for manifolds, two distinct maps between orbifolds may induce the same map on

the underlying spaces.

Grandis [1] introduced an elegant way around the need for refinements for man-

ifolds. His idea was to view a manifold as a type of diagram of charts with partial

maps between them, indexed by a chaotic category (with precisely one arrow between

any two objects). Maps between such diagrams are then given by a matrix of par-

tial maps satisfying certain properties. This makes the category of manifolds easier

to work with, and also allows us to define manifold objects for any join restriction

category.

We generalize this construction to a more orbifold-like context where one needs

a more complicated indexing category, with parallel arrows and non-identity auto-

morphisms. We introduce an orbifold construction for join restriction categories. We

define orbifolds using inverse categories as indexing categories, and then defining orb-

ifold objects as linking functors from our index category into a given join restriction

category B. Maps between these orbifolds will be (isomorphism classes of) a partic-

ular type of modules over the base category B. With this approach, we can define

a category of orbifold objects for B which is again a join restriction category. We

will show that this construction defines a monad on the category of join restriction

categories, and discuss how our construction relates to the standard orbifolds.
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Functoriality and topos representations for quantales of coverable groupoids

In [3] it has been seen that for a well behaved open localic groupoid G (a coverable

groupoid) there is a strong form of embedding of the quantale O of G into the quantale

Q of an étale groupoid Ĝ that covers G in the sense that there is a surjective morphism

J : Ĝ → G which restricts to an isomorphism Ĝ0
∼= G0. For instance, any locally

compact Hausdorff groupoid in the sense of harmonic analysis [2], regarded as a localic

groupoid, is of this kind, and so, in particular, Lie groupoids are coverable. Let us

refer to such a pair (Q,O) as a quantal pair. The main motivation in [3] has been

to provide a quantale-theoretic description of (at least some) open groupoids which,

similarly to the situation with étale groupoids, does not require the multiplicativity

axiom.

The purpose of this talk is to give an overview of new results that improve our

understanding of coverable groupoids and quantal pairs. One set of results concerns

the functoriality of the quantal pair associated to a coverable groupoid: an appropriate

notion of action for quantal pairs yields an equivalence of categories G-Loc ∼= (Q,O)-

Loc, where (Q,O) is the quantal pair associated to G, and based on this we obtain

quantale-theoretic descriptions of equivariant sheaves on groupoids, principal bundles,

Hilsum–Skandalis maps and Morita equivalence in a way that extends the functoriality

results for quantales of étale groupoids developed in [7, 6, 4].

Another set of results concerns global element representations of groupoid quan-

tales. For an étale groupoid G the domain map d : G1 → G0 equipped with the left

G-action given by multiplication is regarded as an object G of the classifying topos

BG, and the quantale Q of G is isomorphic to the quantale of global sections of the

internal quantale of binary relations P (G×G). This has been previously mentioned

in [5] and a written proof appeared in the work of Simon Henry [1]. A reasonable

generalization of this for general open groupoids is unlikely to exist, but for a cover-

able groupoid G, if we now write G for the domain map d : G1 → G0 regarded as an

internal locale in BG, the internal sup-lattice tensor product G⊗G yields an internal

quantale in BG whose quantale of global elements is isomorphic to the quantale of G.
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A synthetic theory of ∞-categories in homotopy type theory

One of the observations that launched homotopy type theory is that the rule of

identity-elimination in Martin-Löf’s identity types automatically generates the struc-

ture of an ∞-groupoid. In this way, homotopy type theory can be viewed as a “syn-

thetic theory of ∞-groupoids.” It is natural to ask whether there is a similar directed

type theory that describes a “synthetic theory of (∞, 1)-categories,” but on account

of a number of technical obstructions, this has long proven elusive.

In this talk, we propose foundations for a synthetic theory of (∞, 1)-categories in

homotopy type theory [1] motivated by the model of homotopy type theory in the

category of Reedy fibrant simplicial spaces [2], which contains as a full subcategory

the ∞-cosmos of Rezk spaces (aka complete Segal spaces) [3], a well-known model

of (∞, 1)-categories whose category theory can be developed synthetically [4]. We

introduce simplices and cofibrations into homotopy type theory to probe the internal

categorical structure of types, and define Segal types, in which binary composites exist

uniquely up to homotopy, and Rezk types, in which the categorical isomorphisms are

equivalent to the type-theoretic identities — a “local univalence” condition. In the

simplicial spaces model these correspond exactly to the Segal and Rezk spaces. We

then demonstrate that these simple definitions suffice to develop the synthetic theory

of (∞, 1)-categories. So far this includes functors, natural transformations, co- and

contravariant type families with discrete (∞-groupoid) fibers, a “dependent” Yoneda

lemma that looks like “directed identity-elimination,” and the theory of coherent

adjunctions closely resembling [5].
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A categorical model for a quantum circuit description language

Quipper is a practical programming language for describing families of quantum

circuits. In this talk, we formalize a small, but useful fragment of Quipper called

Proto-Quipper-M. Unlike its parent Quipper, this language is type-safe and has a

formal denotational and operational semantics. Proto-Quipper-M is also more general

than Quipper, in that it can describe families of morphisms in any symmetric monoidal

category, of which quantum circuits are but one example. We design Proto-Quipper-

M from the ground up, by first giving a general categorical model of parameters

and states. After finding some interesting categorical structures in the model, we

then define the programming language to fit the model. We cement the connection

between the language and the model by proving type safety, soundness, and adequacy

properties.

∗Joint work with Peter Selinger.
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Stability properties for n-permutable categories

The purpose of this talk is two-fold. A first and more concrete aim is to characterise

n-permutable categories through certain stability properties of regular epimorphisms.

These characterisations allow us to recover the ternary terms and the (n + 1)-ary

terms describing n-permutable varieties of universal algebras.

A second and more abstract aim is to explain two proof techniques, by using the

above characterisation as an opportunity to provide explicit new examples of their

use:

- an embedding theorem for n-permutable categories which allows us to follow the

varietal proof to show that an n-permutable category has certain properties;

- the theory of unconditional exactness properties which allows us to remove the

assumption of the existence of colimits, in particular when we use the approxi-

mate co-operations approach to show that a regular category is n-permutable.

∗Joint work with Pierre-Alain Jacqmin.
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Symmetric lenses and universality

A lens between two domains of model states is an important example of what is

known in Computer Science as a bidirectional transformation (BX ). A symmetric lens

has both state synchronization data and operations to restore synchronization after

state change. They have applications in model-driven engineering. An asymmetric

lens has only one-way synchronization data and restoration operations. They define

a strategy to lift a state change (update) in the target model domain back through

the one-way synchronization, and for databases to solve view update problem.

If the domains of model states are categories, lenses are called delta-(or d-)lenses.

Earlier we showed that spans of asymmetric d-lenses represent symmetric d-lenses.

The one-way synchronization for an asymmetric d-lens is a functor. In the special case

that we named (asymmetric) c-lenses the update lifting satisfies a universal property.

This makes c-lenses what the BX community calls least change (and makes the functor

exactly a split op-fibration). We might define spans of c-lenses to be symmetric c-

lenses with the hope that they characterize those symmetric d-lenses satisfying a least

change universal property. However, we will explain why we now do not expect this.

Instead, motivated by applications to database interoperation, we consider cospans

of c-lenses. We show that such cospans do indeed generate symmetric d-lenses with

a universal property. We also consider how to characterize those symmetric d-lenses

that arise from cospans of c-lenses.

∗Joint work with Michael Johnson.
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Fundamental groupoids for orbifolds

In equivariant topology, we often study G-spaces by regarding them as a diagram

of fixed sets XH = {x ∈ X|hx = x} for various subgroups H. This diagram is

indexed over the orbit category OG, and various topological invariants can be defined

by thinking of G-spaces as functors from OG to Top. One such invariant is tom Dieck’s

fundamental groupoid, a category defined by taking the fundamental groupoid functor

Π : OG → Gpoid defined by Π(XH), and then combining these using a Grothendieck

colimit construction ΠG(X) =
∫
OG

Π(X−) [3, 5].

Orbifolds are locally modelled by group actions, but can be created from charts

carrying the action of many different groups, so it is not immediately clear how to

create a category to play the role of OG and organize the fixed point data. Addi-

tionally, the orbifold structure can be modeled locally by group actions and globally

by groupoids, but this representation is not unique, but only defined up to Morita

equivalence. So creating an analogous category for orbifolds presents some challenges.

The category defined by Haefliger [1, 2] incorporates some but not all of the

information captured by the tom Dieck construction. It includes some of the internal

jumps present in the Grothendieck colimit, but does not include the stratification of

the fixed point sets. This category is equivalent to Thurston’s deck transformations

of the universal cover [5], and to the fundamental group of the classifying space BG
[3]. In this talk, I will expand on the relationship between this category and the tom

Dieck category, and discuss ways that the various definitions could lead to an orbifold

definition of a tom Dieck fundamental groupoid category.
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Aspects of algebras of KZ-monads

We investigate interesting categories between the Kleisli category and the Eilen-

berg-Moore category for a Kock-Zöberlein monad on an order-enriched category,

namely, the idempotent split completion and the (weighted) limit completion of the

free algebras, for an appropriate base category. The first completion was shown to

be equivalent to the category of split Eilenberg-Moore algebras in [2], and we give

a characterization of those split algebras which are indeed free algebras. Numerous

examples of KZ-monads have algebras characterized by a colimit-construction. In [1],

the authors introduced the notion of completion KZ-monad for capturing this typi-

cal behaviour. The downset monad over posets, whose algebras are posets with all

suprema and maps preserving them, is a simple example of a completion KZ-monad.

In contrast, the filter, the proper and the prime filter KZ-monads over topological

spaces are not; however, their algebras have a certain completion behaviour. For

these special three monads we give a concrete description of the idempotent split and

the limit completions. For that we make use of the notion of regular cogenerator in

an order-enriched sense. In any order-enriched category the existence of a such cogen-

erator and weighted limits assures the existence of weighted colimits. In particular,

for the filter monad, the idempotent split completion of the Kleisli category has as

objects the algebraic lattices whose subposet of compact elements form a frame.
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A general limit lifting theorem for 2-dimensional monad theory

An important question for monad theory is the possibility of lifting limits along the

forgetful functor of the category of algebras. The article I will present [1] deals with

this subject within the theory of 2-categories. For strict morphisms of algebras, it is

well known [2] that all limits lift. However, as it is usually the case, the relevant notions

for its applications are the weaker pseudo and lax notions, and for these notions it

is no longer the case that all limits lift. There are in the literature significant lifting

results [3], [4] for the 2-categories of pseudo and lax morphisms of algebras.

Let T be a 2-monad on a 2-category K, and let Ω be a family of 2-cells of K.

We consider in [1] the notion of a lax morphism such that its structural 2-cell is in

K. There are three distinguished families of 2-cells which can be considered in any

2-category, and by doing so we recover the notions of lax, pseudo and strict T -algebra

morphisms. We also consider a notion of weak limit which is a weighted version of

Gray’s cartesian quasi-limits [5], and define what it means for such a limit to be

compatible with another family of 2-cells. These concepts allow to state and prove a

limit lifting theorem which unifies and generalizes the results of [2], [3], [4] above.

Another result of [1], which simplifies the proof of our theorem by allowing to con-

sider only conical limits, is the following: every (weighted) weak limit can be expressed

as a conical weak limit, with respect to the same family of 2-cells. By considering

the three distinguished families of 2-cells as above, our result yields previously known

weighted-as-conical results for lax limits, σ-limits [6] and Street’s result [7], expressing

any strict limit as a cartesian quasi-limit.
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Topological theories

In his 2007 paper [1], Hofmann provided a notion of topological theory, involv-

ing a Set-monad T , a (commutative and unital) quantale V, and a (lax) T -algebra

structure on V that makes the operations of the Sup-enriched monoid V (lax) T -

homomorphisms; in addition, the T -structure must satisfy a certain compatibility

condition with suprema, which proves to be essential in applications, but does not

appear to be well aligned with the other conditions of the notion. Furthermore, in

its current form, the notion does not seem to lend itself to generalization, beyond the

Set-based and quantalic context.

The aim of this talk is to frame Hofmann’s notion in the context of a lax version

of one of the cornerstones of monad theory. In its strict form, given two monads T ,P
on any category C, it describes the interaction and equivalence of the following four

algebraic gadgets: distributive laws of T over P; extensions of T to the Kleisli category

of P; liftings of P to the Eilenberg-Moore category of T ; composite monad structures

for PT . In the case at hand, T may be any Set-monad, but is normally assumed to

satisfy the Beck-Chevalley condition, and P is the V-powerset (or presheaf) monad,

the Kleisli category of which is the (dual of) the category V-Rel of sets and V-relations.

We show how the various conditions of Hofmann’s notion can be made to fit within

this framework and to naturally lead to generalizations beyond its current context,

as alluded to in part in [2]. Time permitting, we will also discuss examples in the

generalized context.
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Categorical-algebraic methods in group cohomology

In the article [8], Janelidze introduced the concept of a double central extension

in order to analyse the Hopf formula for the third integral homology of a group [2].

Later it turned out that this “double extension” viewpoint on group homology may

be extended to higher degrees, and at the same time generalised to the framework of

semi-abelian categories [5]. Indeed, categorical Galois theory gives rise to the concept

of an n-fold central extension (n ≥ 1), which is such that the higher Hopf formulae

of [2, 3], suitably reinterpreted in terms of these higher central extensions, give an

explicit description of the derived functors of any reflector from a semi-abelian variety

to one of its subvarieties. In the particular case of the abelianisation reflection from

the category of groups to the category of abelian groups, the Hopf formulae for integral

group homology are thus regained.

Central extensions do however also appear in group cohomology, in the interpreta-

tion of the second cohomology group with coefficients in a trivial Z-module A, which

is one of the derived functors of the functor Hom(−, A). This result extends to semi-

abelian categories [7] and to non-trivial coefficients (via the concept of a torsor [1]).

On the other hand, in the abelian case there is Yoneda’s classical interpretation of

these derived functors via classes of exact sequences of a certain fixed length [10]. In

Barr-exact categories, the higher-dimensional torsors of [4] play essentially the same

role.

The aim of this talk is to explain how, in a semi-abelian context, these two de-

velopments are related. Through an equivalence between higher torsors (with trivial

coefficients) and higher central extensions we obtain a duality, in a certain sense, be-

tween homology and cohomology [9, 6]. Even in the case of groups this viewpoint is

new, but it is automatically valid as well for other non-abelian algebraic structures

such as Lie algebras, crossed modules, associative algebras, and so on.

In its most general version, the theory depends on some non-trivial recent devel-

opments in categorical algebra. Part of the talk focuses on these categorical-algebraic

aspects: how questions in homological algebra naturally lead to categorical conditions

and results. The need for further development of categorical algebra becomes partic-

ularly apparent in the case of cohomology with non-trivial coefficients. This case is

much more complicated, because here the techniques of categorical Galois theory are

no longer available.
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Hopf categories as Hopf monads in enriched matrices

Hopf categories, as many-object generalizations of Hopf algebras, were introduced

in [1]. In this talk, we present a framework for viewing them as Hopf monads in

the bicategory of V-matrices [2]. We also explore a double categorical perspective for

such structures, involving a notion of a Hopf monad in fibrant double categories a.k.a.

proarrow equipments.
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Graphical calculus in symmetric monoidal (∞-) categories with duals

Graphical calculi are a sort of techniques to compute morphisms in monoidal

categories, and a really general and geometric formalization was given by Joyal and

Street [3]. In this talk, we focus on that in symmetric monoidal categories with duals.

They are examples of pivotal categories, and it is vaguely believed by researchers in

quantum representation theory that pivotal categories are described by a calculus of

planar tangles (see [2] for example). We give a purely geometric description for this

calculus and, using the Cobordism Hypothesis [1] (proved by Lurie [4]), show every

symmetric monoidal category admits a graphical calculus in a coherent way so that

we can extend it to the ∞-contexts. This also gives an extension of [5].
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Map Directory
Site or Building Name & Address              Grid
Abdul Ladha Science Student Ctr, 2055 East Mall ........................................D4
Acadia/Fairview Commonsblock & Front Desk, 2707 Tennis Cres.................G7
Acadia House, 2700-2720 Acadia Rd .............................................................G7
Acadia Park Residence (Student Family Housing) ..................................F/H-6/7
Acadia Park Highrise, 2725 Melfa Rd .............................................................G7
Allard Hall [Faculty of Law], 1822 East Mall ................................................... B4
Alumni Centre (Robert H. Lee), 6163 University Blvd ....................................D4
AMS Student Nest (new student union building), 6133 University Blvd .........D4
Anthropology & Sociology (ANSOC) Bldg, 6303 NW Marine Dr .................... A3
Aquatic Centre (New - opening Jan. 2017), 6080 Student Union Blvd ...........C5
Aquatic Centre (Old), 6121 University Blvd ....................................................D5
Aquatic Ecosystems Research Lab (AERL), 2202 Main Mall ......................... E3
Asian Centre, 1871 West Mall ....................................................................... .B2
Audain Art Centre (in Ponderosa Commons), 6398 University Blvd ..............D3
Auditorium Annex Offices A & B, 1924 West Mall ...........................................C3
Barn (“Owl” child care), 2323 Main Mall ........................................................ E3
Baseball Indoor Training Centre, 3085 West Mall ...........................................J5
B.C. Binning Studios, 6373 University Blvd ....................................................D3
Beaty Biodiversity Centre & Museum, 2212 Main Mall  ............................... E3/4
Belkin (Morris & Helen) Art Gallery, 1825 Main Mall ....................................... B3
Berwick Memorial Centre, 2765 Osoyoos Cres ..............................................G6
Bioenergy Research & Demonstration Facility (BRDF), 2337 Lower Mall ..... E2
Biological Sciences Bldg, 6270 University Blvd ..............................................D3
Biomedical Research Ctr, 2222 Health Sciences Mall ................................... E4
Bollert (Mary) Hall, 6253 NW Marine Dr ......................................................... A4
Bookstore, 6200 University Blvd .....................................................................D4
Botanical Garden Centre/Gatehouse, 6804 SW Marine Dr ............................H1
Botanical Garden Pavilion (enter at Gatehouse, 6804 SW Marine Dr) ...........J2
Botan. Gard. Greenhses/ Workshops, 3929 Wesbrook Mall .......South Campus
Brimacombe Building, 2355 East Mall ............................................................ F4
Brock Commons - Tallwood House (construction), 6088 Walter Gage Rd ..... B4
BROCK HALL: Student Services & Welcome Centre, 1874 East Mall ...........C4
Brock Hall Annex, 1874 East Mall ..................................................................C4
Buchanan Building (Blocks A, B, C, D, & E) [Arts], 1866 Main Mall ............ B3/4
Buchanan Tower, 1873 East Mall ...................................................................C4
Building Ops Nursery/Greenhouses, 6029 Nurseries Rd ............South Campus
C.K. Choi Building for the Institute of Asian Research, 1855 West Mall ........ B2
Campus & Community Planning, 2210 West Mall .......................................... E3
Campus Energy Centre, 6130 Agronomy Rd ................................................. F5
Campus Security, 2133 East Mall ...................................................................D4
Carey Centre / Theological College, 5920 Iona Drive/1815 Wesbrook Mall... B6
Cecil Green Park Coach House, 6323 Cecil Green Park Rd ........................ .A3
Cecil Green Park House, 6251 Cecil Green Park Rd ..................................... A3
Centre for Brain Health (Djavad Mowafaghian), 2215 Wesbrook Mall ........... E5
Centre for Comparative Medicine (CCM), 4145 Wesbrook Mall..South Campus
Chan Centre for the Performing Arts, 6265 Crescent Rd ............................... B4
Chan Gunn Pavilion (new sports med. construction), 2553 Wesbrook Mall ...G5
Chemical & Biological Engineering Bldg, 2360 East Mall ............................... F4
Chemistry A Block - Chemistry Physics Building, 6221 University Blvd .........D4
Chemistry B.C,D & E Blocks, 2036 Main Mall ................................................D3
Child Care Services Administration Bldg, 2881 Acadia Rd .............................H7
Child Care Services Bldgs, Osoyoos Crescent and Revelstoke Crt ...............H7
CIRS (Centre for Interactive Research on Sustainability), 2260 West Mall .... E3
Civil & Mechanical Engineering Bldg (CEME), 6250 Applied Science Lane .. E4
Civil & Mechanical Eng. Labs (“Rusty Hut”), 2275 East Mall .......................... E4
Coal & Mineral Processing Lab, 2332 West Mall ........................................... E3
Continuing Studies Bldg [English Language Institute], 2121 West Mall .........D2
Copp (D.H.) Building, 2146 Health Sciences Mall ......................................... .D5
Cunningham (George) Building, 2146 East Mall ............................................ E4
David Lam Learning Centre, 6326 Agricultural Rd ........................................C3
David Lam Management Research Ctr, 2033 Main Mall ................................C3
David Strangway Building, 5950 University Blvd ............................................D5
Donald Rix Building, 2389 Health Sciences Mall ............................................ F4
Doug Mitchell Thunderbird Sports Centre, 6066 Thunderbird Blvd ................G5
Dorothy Somerset Studios, 6361 University Blvd ...........................................D3
Earth Sciences Building (ESB), 2207 Main Mall ............................................ E3
Earth & Ocean Sciences (EOS) - Main and South, 6339 Stores Rd .............. E3
Earthquake Engineering Research Facility (EERF), 2235 East Mall .............. E4
Engineering High Head Room Lab, 2225 East Mall ....................................... E4
Engineering Student Centre, 2335 Engineering Road ................................... E4
English Language Institute (E.L.I.) — see Continuing Studies Building
Environmental Services Facility, 6025 Nurseries Rd ...................South Campus
Fairview Crescent Residence, 2600-2804 Fairview Cres .............................. F6
Fire Hall, 2992 Wesbrook Mall .......................................................................H6
First Nations Longhouse, 1985 West Mall ......................................................C2
Flag Pole Plaza (Main Mall & Crescent Rd) ................................................... B3
Food, Nutrition and Health Bldg, 2205 East Mall ............................................ E4
Forest Sciences Centre [Faculty of Forestry], 2424 Main Mall ....................... F4
Forward (Frank) Building, 6350 Stores Rd ..................................................... E3
FPInnovations, 2601 & 2665 East Mall ..........................................................H4
Fraser Hall, 2550 Wesbrook Mall ...................................................................G6
Fraternity Village, 2880 Wesbrook Mall ..........................................................H6
Frederic Wood Theatre, 6354 Crescent Rd .................................................... B3
Friedman Bldg, 2177 Wesbrook Mall ............................................................. E5
Gage (Walter H.) Residence, 5959 Student Union Blvd ................................C5
Geography Building, 1984 West Mall .............................................................C3
Gerald McGavin Building, 2386 East Mall ...................................................... F4
Gerald McGavin UBC Rugby Centre, 2765 Wesbrook Mall ...........................G5
Graduate Student Centre — see Thea Koerner House
Green College, 6201 Cecil Green Park Rd .................................................... A4
Hebb Building, 2045 East Mall.......................................................................D4
Hennings Building, 6224 Agricultural Rd ........................................................C4
Henry Angus Building [Sauder School of Business], 2053 Main Mall .............D3
Hillel House, 6145 Student Union Blvd ...........................................................C4
Horticulture Building/Greenhouse, 6394 Stores Rd ..................................... E2/3

Hugh Dempster Pavilion, 6245 Agronomy Rd ................................................ F4
ICICS/CS (Institute for Computing, Information
     & Cognitive Systems/Computer Science), 2366 Main Mall ....................... F4
Instructional Resources Centre (IRC), 2194 Health Sciences Mall ................ E5
International House, 1783 West Mall .............................................................. B2
In-Vessel Composting Facility, 6035 Nurseries Road ..................South Campus
Irving K. Barber Learning Centre, 1961 East Mall ..........................................C4
Jack Bell Building for the School of Social Work, 2080 West Mall ................D3
Kaiser (Fred) Building [Faculty of Applied Science], 2332 Main Mall ............ E3
Kenny (Douglas T) Building, [Psychology] 2136 West Mall ............................D3
Kids Club, 2855 Acadia Rd .............................................................................G7
Klinck (Leonard S.) Bldg, 6356 Agricultural Rd ..............................................C3
Koerner (Walter C.) Library, 1958 Main Mall ..................................................C3
Landscape Architecture Annex, 2371 Main Mall ............................................ F3
Lasserre (Frederic) Building, 6333 Memorial Rd ............................................C3
Library Preservation Archives (PARC), 6049 Nurseries Rd .........South Campus
Life Sciences Centre, 2350 Health Sciences Mall .......................................... F5
Liu Institute for Global Issues, 6476 NW Marine Dr ....................................... B2
Lower Mall Research Station, 2259 Lower Mall ............................................. E2
Macdonald (J.B.) Building [Dentistry], 2199 Wesbrook Mall .......................... E5
MacLeod (Hector) Building, 2356 Main Mall ................................................... F3
MacMillan (H.R.) Bldg [Faculty of Land & Food Systems], 2357 Main Mall ... F3
Marine Drive Residence (Front Desk in Bldg #3), 2205 Lower Mall ............... E2
Material Recovery Facility, 6055 Nurseries Rd ............................South Campus
Mathematics Annex, 1986 Mathematics Rd ...................................................C3
Mathematics Building, 1984 Mathematics Rd ................................................C3
Medical Sciences Block C, 2176 Health Sc. Mall ........................................... E4
Michael Smith Laboratories, 2185 East Mall ..................................................D4
Museum of Anthropology (MOA), 6393 NW Marine Dr ............................... A2/3
Music Building, 6361 Memorial Rd ..............................................................B/C3
National Soccer Development Centre, 3065 Wesbrook Mall .........................H5
Networks of Ctrs of Excellence (NCE), 2125 East Mall ..................................D4
Nitobe Memorial Garden, 1895 Lower Mall .................................................B/C2
Nobel Biocare Oral Heath Centre, 2151 Wesbrook Mall  ............................... E5
Norman MacKenzie House, 6565 NW Marine Dr ........................................... B2
NRC Institute for Fuel Cell Innovation, 4250 Wesbrook Mall ......South Campus
Old Administration Building, 6328 Memorial Rd ............................................C3
Old Auditorium, 6344 Memorial Rd .................................................................C3
Old Barn Community Centre, 6308 Thunderbird Blvd ....................................G3
Old Firehall, 2038 West Mall ..........................................................................D3
Orchard Commons, 6363 Agronomy Rd ........................................................ F3
Osborne (Robert F.) Centre/Gym, 6108 Thunderbird Blvd .............................G4
Pacific Museum of Earth (in EOS-Main), 6339 Stores Rd ............................. E3
Panhellenic House, 2770 Wesbrook Mall .......................................................G6
Peter Wall Institute for Advanced Studies (PWIAS), 6331 Crescent Rd......... B3
Pharmaceutical Sciences Building, 2405 Wesbrook Mall ............................... F5
Place Vanier Residence, 1935 Lower Mall ................................................. C/D2
Plant Science Field Station & Garage, 2613 West Mall .................................H2
Point Grey Apartments, 2875 Osoyoos Cresc ................................................H6
Police (RCMP) & Fire Department, 2990/2992 Wesbrook Mall ......................H6
PONDEROSA COMMONS, University Blvd & West Mall ............................D2/3
     Arbutus & Maple Houses, 6488 University Blvd. .......................................D2
     Cedar House (Ponderosa Commons Front Desk), 2075 West Mall ..........D2
     Oak House, 6445 University Blvd ..............................................................D2
     Spruce House, 2118 West Mall .................................................................D3

Ponderosa Office Annexes: A, B, & C, 2011-2029 West Mall ..................... C/D2
Ponderosa Office Annexes: E, F & G, 2008-2044 Lower Mall .................... C/D2
Power House, 2040 West Mall .......................................................................D3
Pulp and Paper Centre, 2385 East Mall ......................................................... F4
Ritsumeikan-UBC House, 6460 Agronomy Rd .............................................. F2
Rose Garden .................................................................................................. B3
Rugby Pavilion, 2584 East Mall ......................................................................G4
Scarfe (Neville) Building [Education], 2125 Main Mall ...................................D3
School of Population & Public Health (SPPH), 2206 East Mall ...................... E4
SERC (Staging Environmental Research Ctr), 6045 Nurseries Rd ....S.Campus
Sing Tao Building, 6388 Crescent Rd ............................................................. B3
Sopron House, 2730 Acadia Rd .....................................................................G7
South Campus Warehouse, 6116 Nurseries Rd ..........................South Campus
Spirit Park Apartments, 2705-2725 Osoyoos Cresc .......................................G8
St. Andrew’s Hall/Residence, 6040 Iona Dr .................................................... B5
St. John Hospice, 6389 Stadium Road ...........................................................H3
St. John’s College, 2111 Lower Mall ...............................................................D2
St. Mark’s College, 5935 Iona Dr. ................................................................... B6
Stores Road Annex, 6368 Stores Rd .............................................................. E3
Student Family Housing (Acadia Park Residence) ..................................F/H-6/7
Student Recreation Centre, 6000 Student Union Blvd ...................................C5
Student Union Bldg (old) (Old SUB), 6138 Student Union Blvd .....................C4
TEF3 (Technology Enterprise Facility 3), 6190 Agronomy Rd ....................... F4
Thea Koerner House [Faculty of Graduate Studies], 6371 Crescent Rd ........ B3
Theatre-Film Production Bldg, 6358 University Blvd ......................................D3
Thunderbird Residence, 6335 Thunderbird Cresc ...................................... F3/4
Thunderbird Arena (in Doug Mitchell Centre), 2555 Wesbrook Mall ..............G5
Thunderbird Stadium, 6288 Stadium Rd .........................................................J3
Totem Field Studios, 2613 West Mall .............................................................H2
Totem Park Residence, 2525 West Mall ......................................................F/G2
TRIUMF, 4004 Wesbrook Mall .....................................................South Campus
Triumf House (TRIUMF Visitors’ Residence), 5835 Thunderbird Blvd ...........G6
UBC Bookstore, 6200 University Blvd...........................................................D4
UBC Farm, 3461 Ross Drive .......................................................South Campus
UBC Football Academic Centre, 6298 Stadium Rd .............................. H3
UBC Hospital, 2211 Wesbrook Mall ............................................................... E5
UBC Parking Impound Lot, 2451 East Mall .................................................... F4
UBC Tennis Centre, 6160 Thunderbird Blvd...................................................G4
University Centre (Leon & Thea Koerner), 6331 Crescent Rd ....................... B3
University Services Building (USB), 2329 West Mall ...................................... E2
Vancouver School of Theology (VST), 6015 Walter Gage Rd ....................... B5
Vantage College (in Orchard Commons, Fall 2016), 6363 Agronomy Rd ...... F3
War Memorial Gymnasium, 6081 University Blvd .........................................D5
Wayne & William White Engineering Design Ctr, 2345 East Mall................... E4
Wesbrook Bldg, 6174 University Blvd ............................................................D4
Wesbrook Community Centre, 5998 Berton Ave .........................South Campus
Wesbrook Village commercial centre ..........................................South Campus
West Mall Annex, 1933 West Mall ..................................................................C2
West Mall Swing Space Bldg, 2175 West Mall ...............................................D2 
Wood Drying Laboratory, 2324 West Mall ...................................................... E3
Woodward IRC, 2194 Health Sciences Mall ................................................ E4/5
Woodward Library, 2198 Health Sciences Mall ........................................... E4/5
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Need help �nding your way on campus?

Call the Campus & Community Planning
MapInfo Line at 604-827-5040, M-F, 8:30-4:30

Or use the interactive online maps at
www.maps.ubc.ca; OR m.ubc.ca

UBC also has an o�cial app for prospective
undergraduate students available as a free
download from the Apple iTunes store.
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