Calgary workshop on abelian varieties: June 2016 Pries - sample problems about supersingular curves

Review material

Let p be an odd prime and let $k = \overline{\mathbb{F}}_p$.

Supersingular elliptic curves:

Let $h(x) \in k[x]$ be a degree 3 polynomial with no repeated roots. Let E/k be the elliptic curve with equation $y^2 = h(x)$.

Fact 1: The elliptic curve *E* is supersingular if and only if $c_{p-1} = 0$ where c_{p-1} is the coefficient of x^{p-1} in $h(x)^{(p-1)/2}$.

Fact 2: If *E* has complex multiplication by a quadratic imaginary field *K* and *p* is inert in \mathcal{O}_K then *E* is supersingular.

Review problems:

- 1. Use Fact 1 to determine the set of primes for which E is supersingular when:
 - A. $h(x) = x^3 x;$ B. $h(x) = x^3 + 1;$
- 2. Use Fact 2 to find the primes for which E is supersingular (h(x) as in Problem 1).
- 3. Consider the Hermitian curve $X : y^q + y = x^{q+1}$ where $q = p^a$.
 - (a) Find the genus of X. Hint: Riemann-Hurwitz formula.
 - (b) Find the number of points in $X(\mathbb{F}_{q^2})$. Hint: LHS is the trace map $\operatorname{Tr} : \mathbb{F}_{q^2} \to \mathbb{F}_q$ and RHS is the norm map $N : \mathbb{F}_{q^2}^* \to \mathbb{F}_q^*$.
 - (c) Show that X is maximal over \mathbb{F}_{q^2} . Hint: Hasse-Weil bound.
- 4. If X is maximal (resp. minimal) over \mathbb{F}_{q^2} , prove that X is supersingular. Hint: show that its L-polynomial is

$$L(T) := L(X/\mathbb{F}_{q^2}, T) = (1 + qT)^{2g} \text{ (resp. } (1 - qT)^{2g}).$$

For $0 \leq i \leq 2g$, let κ_i be the coefficient of x^i in L(T). Show that $v_p(\kappa_i)/2a \geq i/2$ and show the Newton polygon of L(T) is a line segment of slope 1/2.

5. For g = 3, 4, 5, find all the possible Newton polygons of an abelian variety A/k of dimension g and draw a graph showing how they are partially ordered.

Harder problems about supersingular curves: rachelpries@gmail.com

If you make progress on these problems after the workshop, please let me know!

- 1. Supersingular curves in characteristic 2.
 - A. Read Van der Geer and Van der Vlugt's paper On the Existence of Supersingular Curves of Given Genus http://xxx.lanl.gov/abs/alg-geom/9404007.
 - B. Pick a genus g and use their method to construct a supersingular curve of genus g defined over $\overline{\mathbb{F}}_2$.
 - C. When p is odd, why does their method not produce a supersingular curve of every genus over $\overline{\mathbb{F}}_p$?
 - D. Can you improve this result? Karemaker/Pries: Let $g = Gp(p-1)^2/2$ where $G = \sum_{i=1}^t p^{s_i}(1+p+\cdots p^{r_i})$. Then there exists a supersingular curve over $\overline{\mathbb{F}}_p$ of genus g.
 - E. Other references: Bouw et al Zeta functions of a class of Artin-Schreier curves with many automorphisms https://arxiv.org/abs/1410.7031
- 2. For which p and d is the Fermat curve $x^d + y^d = 1$ supersingular over $\overline{\mathbb{F}}_p$? Helpful reference: Yui On the Jacobian variety of the Fermat curve
- 3. Suppose X is a curve of genus g having complex multiplication by a field K (of dimension 2g). Under what conditions on p is X supersingular? Generate families of supersingular curves with complex multiplication.

Helpful reference: Sugiyama On a generalization of Deuring's results.

- 4. Let ℓ be an odd prime. For which p is $y^2 = x^{2\ell+1} x$ supersingular? Helpful reference Gonzales Hasse-Witt matrices for the Fermat curves of prime degree: http://projecteuclid.org.ezproxy2.library.colostate.edu:2048/euclid.tmj/1178225144
- 5. Learn about Katz's sharp slope estimate.
 - (a) How it can be used to find the first slope of the Newton polygon?
 - (b) In what situations has it been used to prove that curves are supersingular?
 - (c) In what situations has it been used to prove that no supersingular curve of a certain type exists?
 - (d) Find a new example where it gives information about the Newton polygon.
- 6. Under what congruence conditions on p are any of the following curves supersingular: $y^2 = x^9 - x, y^2 = x^9 - 1, y^2 = x^{10} - 1$?

Calgary workshop on abelian varieties: June 2016 Pries - sample problems about *p*-ranks of curves

Review material: The *p*-rank of a hyperelliptic curve:

Let X/k be a smooth hyperelliptic curve of genus g. Then X has an equation of the form $y^2 = h(x)$ for a polynomial $h(x) \in k[x]$ having degree 2g + 1 or 2g + 2 which has distinct roots. A basis for the set of holomorphic 1-forms on X is $\{x^i dx/y \mid 0 \le i \le g - 1\}$.

Let c_s denote the coefficient of x^s in the expansion of $h(x)^{(p-1)/2}$. For $0 \leq \ell \leq g-1$, let M_ℓ be the $g \times g$ matrix whose *ij*th entry is $(c_{ip-j})^{p^\ell}$. The matrix M_0 is the Hasse-Witt matrix of X. The Cartier-Manin matrix is $M = M_{g-1}M_{g-2}\cdots M_0$.

Fact 3: X is not ordinary if and only if M_0 has determinant 0.

Fact 4: The *p*-rank of X is $\sigma_X = \operatorname{rank}(M)$.

Review problems:

- 1. Prove that M_0 is the matrix for the Cartier operator on $X : y^2 = h(x)$ with respect to the basis $\{x^i dx/y \mid 0 \le i \le g-1\}$ for $H^0(X, \Omega^1)$.
- 2. Check that the Cartier operator has rank 0 on the Hermitian curve $y^p + y = x^{p+1}$.
- 3. Prove there exists (or find) a smooth curve of genus 3 which has *p*-rank 0 but is not supersingular.
- 4. Let ℓ be prime and let $1 \leq a \leq \ell 1$. Let X be the curve with affine equation $y^{\ell} = x^{a}(x-1)$.
 - (a) What is the genus of X? Hint: use Riemann-Hurwitz.
 - (b) Show that X admits a \mathbb{Z}/ℓ -cover $\phi: X \to \mathbb{P}^1$. What is the Galois action?
 - (c) Show that ϕ is branched at n = 3 points and compute the inertia type.
 - (d) Show that any \mathbb{Z}/ℓ -cover $\phi: X \to \mathbb{P}^1$ branched at 3 points is isomorphic to one of these.
 - (e) Compute the number of isomorphism classes of such curves, in terms of ℓ .

Harder problems about the *p*-ranks of curves: rachelpries@gmail.com

If you make progress on these problems after the workshop, please let me know!

- 1. There is a bug in the current SAGE algorithm to find the *p*-rank of a hyperelliptic curve. The problem is the formula for the Cartier-Manin matrix in Yui's paper is erroneously listed as $M = M_0 M_1 \cdots M_{g-1}$ (wrong) rather than $M = M_{g-1} \cdots M_1 M_0$ (correct).
 - (a) Fix the implementation. Also implement the algorithm for h(x) with even degree.
 - (b) Implement Elkin's algorithm for the *p*-rank of a \mathbb{Z}/ℓ -cover of the projective line.
- 2. Let $p \ge 5$ odd and X a generic hyperelliptic curve with genus g = 3 and p-rank 0. Does the Cartier matrix on $H^0(X, \Omega^1)$ have rank 2?

Write $X: y^2 = h(x)$ with $h(x) = x^7 + ax^6 + bx^5 + cx^4 + dx^3 + ex^2 + x$. The condition $M_2M_1M_0 = [0]$ is true for a dimension 2 subspace in (a, b, c, d, e). For each component, does M_0 generically have rank 2? (Start with p = 5)

3. Let $\ell \neq p$ be prime and let $1 \leq a \leq \ell - 1$. Under what conditions on p, ℓ and a is the curve $y^{\ell} = x^{a}(x-1)$ not ordinary?

Use formulae of Elkin to compute the matrix M_0 for the Cartier operator, starting with the cases (i) $\ell = 5$ and a = 1, (ii) $\ell = 7$ and a = 1, 2, and (iii) $\ell = 11$ and a = 1, 2. When is M_0 not invertible?

Reference Elkin: The rank of the Cartier operator on cyclic covers of the projective line: https://arxiv.org/pdf/0708.0431.pdf