Almost monotonicity formulas for elliptic and parabolic
operators with variable coefficients

Norayr Matevosyan  Arshak Petrosyan
POMMRE  PURDUE
Workshop on Analysis of Nonlinear PDEs

.
{ l‘ and Free Boundary Problems:
PIMS  applications to homogenization

July 21, 2009

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS 1/ 25



Original Elliptic Monotonicity Formula

Theorem (Alt-Caffarelli-Friedman 1984)

Let u,. be two continuous functions in By in R" such that

uy >0, Au,>0, wu,-u_=0 in B \

then the functional

o) =g(runu) = [ icbas [ FrLas N

B, |x|"2 , Jx|n2

is monotone nondecreasing in r € (0,1].
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Original Elliptic Monotonicity Formula

Theorem (Alt-Caffarelli-Friedman 1984)

Let u,. be two continuous functions in By in R" such that

uy >0, Au,>0, wu,-u_=0 in B \

then the functional

o) =g(runu) = [ icbas [ FrLas N

B, |x|"2 , Jx|n2

is monotone nondecreasing in r € (0,1].

@ This formula has been of fundamental importance in the regularity
theory of free boundaries, especially in problems with two phases.
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Original Elliptic Monotonicity Formula

@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

cn| Vs (0)P[Vu-(0)* < 9(0+) < 9(1/2) < Culuta |yl u-1223,)
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@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

cn| Vs (0)P[Vu-(0)* < 9(0+) < 9(1/2) < Culuta |yl u-1223,)

o The proof is based on the following eigenvalue inequality of
Friedland-Hayman 1976.
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Original Elliptic Monotonicity Formula

@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

cn| Vs (0)P[Vu-(0)* < 9(0+) < 9(1/2) < Culuta |yl u-1223,)

o The proof is based on the following eigenvalue inequality of
Friedland-Hayman 1976.
@ For X c 0B define

_ g 2 IVeST _
MZ) = LR flaz =0
Define also a(X) so that A(2) = a(Z)(n -2+ a(X)).
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Original Elliptic Monotonicity Formula

@ One of the applications of the monotonicity formula is the ability to
produce estimates of the type

eal Vit ()PITu-(0) < 9(0+) < 9(1/2) < ol [Fay 1= 22 s

o The proof is based on the following eigenvalue inequality of
Friedland-Hayman 1976.
@ For X c 0B define

A(Z) = inf fsz;Zﬂ’ flaz=0

Define also a(X) so that A(2) = a(Z)(n -2+ a(X)).

Theorem (Friedland-Hayman 1976)
Let X, be disjoint open sets on 0B,. Then

a(Zy) +a(Z2) > 2.
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Parabolic Monotonicity Formula

Theorem (Caffarelli 1993)

Let u.(x,s) be two continuous functions in S; = R" x (-1,0]

u; >0, (A-05)uy >0, wuy-u_=0 in S
then

0
O(r,up,u_)=— f f |Vu+|2G(x,—s)dxds/2fR |Vu_*G(x, —s)dxds

is monotone nondecreasing for r € (0,1].
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Parabolic Monotonicity Formula

Theorem (Caffarelli 1993)

Let u.(x,s) be two continuous functions in S; = R" x (-1,0]

u; >0, (A-05)uy >0, wuy-u_=0 in S
then

0 0
O(r,uy,u_) = %4 [ﬂf[ﬁen |V, [*G(x, —s)dxds [rsz |Vu_*G(x, —s)dxds

is monotone nondecreasing for r € (0,1].

@ Note that . must be defined in a entire strip and we must have a
moderate growth at infinity.
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Parabolic Monotonicity Formula

@ The proof is now based on the eigenvalue inequality in Gaussian space.
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Parabolic Monotonicity Formula

@ The proof is now based on the eigenvalue inequality in Gaussian space.
For Q) c R" define

Jo |V fIPdv

, d =(2 711/2 7x2/2d .
N v=(2mr) e x

A(Q) =inf
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Parabolic Monotonicity Formula

@ The proof is now based on the eigenvalue inequality in Gaussian space.
For Q) c R" define

Jo |V fIPdv

, d =(2 711/2 7x2/2d .
NS v=(2mr) e x

A(Q) =inf

Theorem (Beckner-Kenig-Pipher)
Let Q. be two disjoint open sets in R". Then

A(Q) +A(Q) 22

@ The proof is reduced to the convexity result of Brascamp-Lieb 1976 for
first eigenvalues of —A + V(x) with convex potential V as a function of
the domain.
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Localized Parabolic Formula

Theorem (Caffarelli 1993)

Let u.(x,s) be two continuous functions in Q; = By x (-1, 0] such that
uy 20, (A-05)us 20, wu,-u_=0 in Q.
Let y € C3°(B) be a cutoff function such that

0<y<l, suppycBsyy Ylp,=1

then ®(r) = ®(r, u,y, u_y) is almost monotone in a sense that

—c/r?
O(0+) = D(r) < Ce™/" s 2 gy - 320 -
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Generalization: Caffarelli-Kenig Estimate

o Instead of the heat operator A — d; consider now uniformly parabolic

SPu=Lypui=div(d(x,s)Vu) + b(x,s) - Vu+ c(x,s)u — 0su
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Generalization: Caffarelli-Kenig Estimate

o Instead of the heat operator A — d; consider now uniformly parabolic
SPu=Lypui=div(d(x,s)Vu) + b(x,s) - Vu+ c(x,s)u — 0su

@ Assume s to be Dini continuous, b, ¢ uniformly bounded
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Generalization: Caffarelli-Kenig Estimate

o Instead of the heat operator A — d; consider now uniformly parabolic
SPu=Lypui=div(d(x,s)Vu) + b(x,s) - Vu+ c(x,s)u — 0su

@ Assume s to be Dini continuous, b, ¢ uniformly bounded

Theorem (Caffarelli-Kenig 1998)

Let u.(x,s) be two continuous functions in Q such that
U, 20, Lu, >0, wuy-u-=0 in Q.

Let y € C;° (By) be a cutoff function as before. Then ®(r) = O(r, ury, u_y) is
almost monotone in a sense that we have an estimate

2
(1) < Co (s [agqp) * lu-liar)) > r<ro-
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Generalization: Caffarelli-Jerison-Kenig Estimate

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u, be two continuous functions in By in R" such that
u, >0, Auy>-1, wu,-u_=0 in B

then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

9(r) < Co (1+ lualFagzy + lu-IF2ay) > 7 <10
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then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

9(r) < Co (1+ lualFagzy + lu-IF2ay) > 7 <10

@ The proof is based on a sophisticated iteration scheme.
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Let u, be two continuous functions in By in R" such that
u, >0, Auy>-1, wu,-u_=0 in B

then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

o(r) < Co (1+ [ 2oy + lu-lagay) > 7 <ro.

@ The proof is based on a sophisticated iteration scheme.

o The difficulties in CJK and CK estimates are of completely different nature
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Generalization: Caffarelli-Jerison-Kenig Estimate

Theorem (Caffarelli-Jerison-Kenig 2002)

Let u, be two continuous functions in By in R" such that
u, >0, Auy>-1, wu,-u_=0 in B

then the functional ¢(r) = ¢(r, u,, u_) satisfies

2

o(r) < Co (1+ [ 2oy + lu-lagay) > 7 <ro.

@ The proof is based on a sophisticated iteration scheme.
o The difficulties in CJK and CK estimates are of completely different nature

o The proof can be easily generalized to parabolic case (Edquist-% 2008).
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Almost Monotonicity Formulas

o In CJK and CK estimates there is essentially no monotonicity left
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Almost Monotonicity Formulas

o In CJK and CK estimates there is essentially no monotonicity left

e However, we still have an estimate of the type
9(0+) < C (sl 2(ayys lu-lli2cs,))
which is able to produce an estimate

Vi (0)]|Vu-(0)] < C (s |12 gmyys u-li2(m,) ) -

This is crucial in proving the optimal regularity in certain two-phase
problems (and not only!)
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Almost Monotonicity Formulas

o In CJK and CK estimates there is essentially no monotonicity left

e However, we still have an estimate of the type

9(0+) < C (sl 2(ayys lu-lli2cs,))

which is able to produce an estimate

Vi (0)]|Vu-(0)] < C (s |12 gmyys u-li2(m,) ) -

This is crucial in proving the optimal regularity in certain two-phase
problems (and not only!)

@ Under certain growth assumptions on u, such as [u(x)| < C|x|° one can
show the existence of ¢(0+). This is important in classification of blowup
solutions.
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CJK+CK

@ Natural question to ask whether there is a combination of CJK and CK
estimates.
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CJK+CK

@ Natural question to ask whether there is a combination of CJK and CK
estimates.

e Namely, do we have an almost monotonicity estimate for u.. satisfying

u. >0, Lypue>-1, wu,-u_-=0 in Q.
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CJK+CK

@ Natural question to ask whether there is a combination of CJK and CK
estimates.

e Namely, do we have an almost monotonicity estimate for u.. satisfying
u. >0, Lypue>-1, wu,-u_-=0 in Q.

@ We will see that the answer is positive when s{ is double Dini and b, ¢ are
uniformly bounded.
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
Q MEP <sl(x,5)E- &< 1|7

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS

11/ 25



Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that

Q MEP <sl(x,5)E- &< 1|7
Q |A(x,s)-A(0,0)] cw ((\x|2 + 5)1/2) with double Dini w:

[) f a)(p)d dr /1w(p)logpd
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@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
Q MEP <sl(x,5)E- &< 1|7
Q |A(x,s)-A(0,0)] cw ((\x|2 + 5)1/2) with double Dini w:

[) f a)(p)d dr /1w(p)logpd

Q [b(x,5)| +[c(x,8)| < u
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Main Results: Assumptions

@ We consider the uniformly parabolic operator
Lo pcth:=div(A(x,s)Vu) + b(x,s) - Vu + c(x,s)u — dsu

such that
Q MEP <sl(x,5)E- &< 1|7
Q |A(x,s)-A(0,0)] cw ((\x|2 + 5)1/2) with double Dini w:

[) f a)(p)d dr /1w(p)logpd

Q [b(x,5)| +[c(x,8)| < u

@ We make similar assumption on the uniformly elliptic operator

o pctti=div(A(x)Vu) + b(x) - Vu + c(x)u
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Global Parabolic Formula

Theorem (Matevosyan-% 2009)

Let u.(x,s) be two continuous functions in S such that
ur. 20, Lypcue>-1, u,-u_=0 in §
Assume also that u. have moderate growth at infinity, so that
M2 = /fs ui(x,s)ze_xz/z'zdxds < o0.
1
Then the functional ®(r) = ®(r, u,,u_) satisfies

O(r) < Co(1+ M2 + M?)%,  forO<r<r,.
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Localized Parabolic Formula

Theorem (Matevosyan-% 2009)

Let u.(x,s) be two continuous functions in Q| such that
u. >0, Lypcue>-1, u,-u_-=0 in Q
Let also y be a cutoff function such that
0<y<l, suppycBsy Ylp,=1

Then the functional ®(r) = ®(r, u,y, u_y) satisfies

2
O(r) < Cuy (1 + Hu+H%2(Q;) + ”Ll_Hiz(Q;)) , forO<r<r,.
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Elliptic Formula

Theorem (Matevosyan-% 2009)

Let u(x) be two continuous functions in By such that
uy >0, Cypcus>-1, wu,-u_=0 in B

Then the functional ¢(r) = ¢(r, us, u_) satisfies

2
p(r) < Co 1+ [uslagay + lu-iaay) » for0<r<ra.
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = /fs IVulG(x,-s)dxds, S,=R"x (-2 0]
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = /fs IVulG(x,-s)dxds, S,=R"x (-2 0]

o Define A% = A*(47%), b¥ = 4*F A% Then ©(47%) = 4* AT A}
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = f[s \Vul*G(x,-s)dxds, S,=R"x (-12,0]

o Define A% = A*(47%), b¥ = 4*F A% Then ©(47%) = 4* AT A}
Proposition
There exists Cy such that if b;; > Co then

Co

Co

k+1Ak+1 < A+Ak(1 ar 8k) Wlth 8k
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Proof: CJK Iteration Scheme for £ = A — 0

o Let A*(r) = f[s \Vul*G(x,-s)dxds, S,=R"x (-12,0]
o Define A% = A*(47%), b¥ = 4*F A% Then ©(47%) = 4* AT A}

Proposition

There exists Cy such that if b;; > Co then

Co

Co

k+1Ak+1 < A+Ak(1 ar 8k) Wlth 8k

Proposition

There exists Cy such that if by > Cy and 44Ak+1 > Ay, then

Al < (1-¢€0)AL.
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Proof: CJK Iteration Scheme for £, .

Define

P2 /42 \/2
e 0(r) = Cr+w(r'?) + (/0 %dp)
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Proof: CJK Iteration Scheme for £, .

Define
P2 a2 \M2
e 0(r)=Cr+aw(r?) + (/ Mdp)
0

p
o gt [ H2ap
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Proof: CJK Iteration Scheme for £, .

Define
P2 yayz 12
e 0(r)=Cr+aw(r?) + (/ Mdp)
0

p
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Proof: CJK Iteration Scheme for £, .

Define
P2 a2 \M2
e 0(r)=Cr+aw(r?) + (/ Mdp)
0

p
o gt [ H2ap

o A*(r) = e®IMA*(r), ®(r)=r*A*(r)A (r)
o At =A*(47F),b* = 4 AL,

Proposition

KJ‘,; satisfy the same iterative inequalities as A%, in the case of £ = A — 0.
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Proof: Key Technical Estimate

@ Normalize 54(0,0) = I, ¢ = 0.
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Proof: Key Technical Estimate
e Normalize #4(0,0) =1, ¢ = 0.

Proposition

Let u > 0 satisfy Ly, 04 > ~1in Sy. Suppose also [[s u(x, s)2e P 2dxds < 1.
Then

(1= ¢, 6(r)) ffs VPG (x, —s)dxds <

1/2

/
C0r4+Cnr2(/R u(x,—rz)zG(x,rZ)dx) +%‘[R u(x,—r*)>G(x,r*)dx

forany 0 < r < r,, where

1/42
9(r)=Cr+w(r1/2)+([0 (pp ) p)
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s

ue(x,s) =us(x), (x,8)eQ
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s
ue(x,s) =us(x), (x,8)eQ
o 1, satisfy now conditions of localized parabolic case with

Su=(€-0s)u=div(A(x)Vu) + b(x)Vu + c(x)u — dsu.

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS

18 / 25



Proof: Parabolic = Elliptic

o Add a “dummy” variable s
ue(x,s) =us(x), (x,8)eQ
o 1, satisfy now conditions of localized parabolic case with
Su=(€-0s)u=div(A(x)Vu) + b(x)Vu + c(x)u — dsu.
e Fixa cutoff function y > 0 such that y =1on B, ,. Note that

fB Tela<c, ffs |V (y(x)u(x)PG(x, ~s)dxds.

. |x|n—2
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Proof: Parabolic = Elliptic

o Add a “dummy” variable s
ue(x,s) =us(x), (x,8)eQ
o 1, satisfy now conditions of localized parabolic case with
Su=(€-0s)u=div(A(x)Vu) + b(x)Vu + c(x)u — dsu.
e Fixa cutoff function y > 0 such that y =1on B, ,. Note that

fB Tela<c, ffs |V (y(x)u(x)PG(x, ~s)dxds.

. |x|n—2
@ Hence
o(r,up,u_) < CyO(r, yity, yii_)

2

< Co (1+ [ 2oy + [ [200)
2

= Cw (1 + Hu+”i2(31) + H l/l_”iZ(Bl))

for r < rg.
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Application: Quasilinear Obstacle-Type Problem

@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.

©
Q@Q
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@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.
@ Problem appears in the description of

type II superconductors
(Berestycki-Bonnet-Chapman 1994)
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type II superconductors
(Berestycki-Bonnet-Chapman 1994)

@ One-phase problem, however, no O @ O
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|[Vu|=0 onQF,

where () is an apriori unknown open set.

@ Problem appears in the description of
type II superconductors
(Berestycki-Bonnet-Chapman 1994)

@ One-phase problem, however, no O @ O

assumption is made on the sign of u in Q

e A = Q° may break out into different
patches A; so that u = ¢; on A;
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Application: Quasilinear Obstacle-Type Problem

@ Let u be a solution of the system in B,

div(a(|Vul*)Vu) = f(x,u, Vi) xa,
|[Vu|=0 onQF,

where () is an apriori unknown open set.

@ Problem appears in the description of
type II superconductors
(Berestycki-Bonnet-Chapman 1994)

@ One-phase problem, however, no O @ O

assumption is made on the sign of u in Q

e A = Q° may break out into different
patches A; so that u = ¢; on A;

o Similar problem has been studied by Caffarelli-Salazar-Shahgholian 2004
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Application: Quasilinear Obstacle-Type Problem

Assumptions
Q@ acC([0,00))

loc
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Application: Quasilinear Obstacle-Type Problem

Assumptions
Q@ acC([0,00))

loc

Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
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Application: Quasilinear Obstacle-Type Problem

Assumptions
Q@ acCp([0,00))

Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
Q |f|+|Vaf|+|0-f|+|Vpfl < Mfor (x,2,p) € Dx Rx R".
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Application: Quasilinear Obstacle-Type Problem

Assumptions
Q@ acC([0,00))

loc

Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
Q |f|+|Vaf|+|0-f|+|Vpfl < Mfor (x,2,p) € Dx Rx R".

Theorem (Matevosyan-% 2009)

Under conditions above, u € Cll(’)lc( By) and
|l cragz, ) < € (Car s 1, Ao, M, 1] o 5,) )

with C, = ”aHCL“([O,R(n,/lo,M,HuHLoo(Bl))])'
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Assumptions
Q@ acC([0,00))

loc

Q a(q),a(q) +24a’(q)q € [Mo,1/Ag] forany g > 0
Q |f|+|Vaf|+|0-f|+|Vpfl < Mfor (x,2,p) € Dx Rx R".

Theorem (Matevosyan-% 2009)

Under conditions above, u € Cll(’)lc( By) and
|l cragz, ) < € (Car s 1, Ao, M, 1] o 5,) )

with C, = ”aHCL“([O,R(n,/lo,M,HuHLoo(Bl))])'

@ Generalizes a theorem of Shahgholian 2003 for

Au= f(x,u)xa, |Vul=00nQ".
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Application: Quasilinear Obstacle-Type Problem

o Connection with the almost monotonicity formulas:
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Application: Quasilinear Obstacle-Type Problem

o Connection with the almost monotonicity formulas:

Lemma

For any direction e the functions w.. = (d.u)* = max{+0d.u, 0} satisfy
wy 20, div(d(x)Vwe) +b(x)Vwe +c(x)we >-M, w,-w_=0,
where

sh(x) = a(|Vu(x)P)I + 24" (|Vu(x)P) Vu(x) ® Vu(x),
b(x) = =(Vpf)(x u(x), Vu(x)),
c(x) = =(9=1) (%, u(x), Vu(x)).
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)

o u e W>P, p > n, hence twice differentiable a.e.
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)
o u e W>P, p > n, hence twice differentiable a.e.

o take e 1 Vu(xo) and apply almost monotonicity formula to w. = (d.u)*:

_ 2
[Fw(xo)|" < Cag(0+, w,w™) < (14 [wlas, )
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)
o u e W>P, p > n, hence twice differentiable a.e.

o take e 1 Vu(xo) and apply almost monotonicity formula to w. = (d.u)*:

B 2
Tl < Cap(0r,ww7) < (14 g )
o this implies that

|0cett(x0)| < C, fore L Vu(xp)
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Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)

o u e W>P, p > n, hence twice differentiable a.e.

take e L Vu(xp) and apply almost monotonicity formula to w.. = (d.u)*:

_ 2
[T ()l < Cop(0+,ww7) < (14 [l )

this implies that
|0cett(x0)| < C, fore L Vu(xp)

@ to obtain the estimate in the missing direction e || Vu(xo), we use the
equation.
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A Variant of the Almost Monotonicity Formula

Theorem (Matevosyan-% 2009)
Let uy satisfy u, >0, Ly p the > =1ty -u_=0in S, and
us(x,5) < o((|x +[s)'?) for (x,5) € Qr
for a Dini modulus of continuity o(r). Then ®(r) = O(r, u,y, u_y) satisfies
O(r) <[1+a(p)]P(p) + Cay,o0x(p)s 0<r<p<ry,

where a(r) = Cy [r +a(r?) + [] U(’)Tl/z)dp + [y @dp] and
M = |ui2(qr) + lu-lz2qr)-
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A Variant of the Almost Monotonicity Formula

Theorem (Matevosyan-% 2009)
Let uy satisfy u, >0, Ly p the > =1ty -u_=0in S, and
us(x,5) < o((|x +[s)'?) for (x,5) € Qr
for a Dini modulus of continuity o(r). Then ®(r) = O(r, u,y, u_y) satisfies
O(r) <[1+a(p)]P(p) + Cay,o0x(p)s 0<r<p<ry,

where a(r) = Cy [r +a(r?) + [] U(’)Tl/z)dp + [y @dp] and
M = |ui2(qr) + lu-lz2qr)-

o This guaranties the existence of ®(0+) = lim,_q; (7).
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.

e For x¢ € dQ) (free boundary) consider rescalings

up(x) =ty (x) = o+ N:z) - ”(xO)'

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS

24/ 25



Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.

e For x¢ € dQ) (free boundary) consider rescalings

u(xo +rx) — u(xo)'

Ur(x) = thyy,r(x) = 2

@ Limits of u, over r = r; — 0+ are called blowups of u at xo
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@ Limits of u, over r = r; — 0+ are called blowups of u at xo

o Key question: what are the possible blowups?
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.

e For x¢ € dQ) (free boundary) consider rescalings

u(xo +rx) — u(xo)'

up(x) =ty (x) = 2

@ Limits of u, over r = r; — 0+ are called blowups of u at xo

o Key question: what are the possible blowups?

Theorem (Matevosyan-% 2009)

The blowups are either one-dimensional or quadratic polynomial.
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.

e For x¢ € dQ) (free boundary) consider rescalings

u(xo +rx) — u(xo)'

up(x) =ty (x) = 2

@ Limits of u, over r = r; — 0+ are called blowups of u at xo

o Key question: what are the possible blowups?

Theorem (Matevosyan-% 2009)

The blowups are either one-dimensional or quadratic polynomial.

@ One dimensional means uy(x) = v(x - eg) for some direction e
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Application: Classification of Blowups

o Let u solve div(a(|Vul*)Vu) = f(x,u, Vu)xq, |[Vu| = 0 on Q°.

e For x¢ € dQ) (free boundary) consider rescalings

u(xo +rx) — u(xo)'

Ur(x) = thyy,r(x) = 2

@ Limits of u, over r = r; — 0+ are called blowups of u at xo

o Key question: what are the possible blowups?

Theorem (Matevosyan-% 2009)

The blowups are either one-dimensional or quadratic polynomial.

@ One dimensional means uy(x) = v(x - eg) for some direction e

e Equivalently, d.u has a sign in R" for any direction e.

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)
o Recall that £}, (d.u)* > —M for any direction e
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)
o Recall that £}, (d.u)* > —M for any direction e
@ We also have that |(d.u)*(x)| < C|x|*

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas

PIMS

25/ 25



Application: Classification of Blowups

Idea of the proof (assuming xy = 0)
o Recall that £}, .(d.u)* > —M for any direction e
@ We also have that |(d.u)*(x)| < C|x|*
o Thus, ¢(0+, (d.u)*, (deu)™) = co exists.
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)

o Recall that £}, (d.u)* > —M for any direction e

@ We also have that |(d.u)*(x)| < C|x|*

o Thus, ¢(0+, (d.u)*, (deu)™) = co exists.

o If Uy, = tho in W2P, then we have

@(r, (9euo) ™, (9euo)”) = ]lin; (r, (ae”r7)+a (ae”r;)i)
= lim @(rrj, (Qeu)™, (deu)™)
j—oo

= CO

ie. o(r, (deug)™, (9ettg)™) = const
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Application: Classification of Blowups

Idea of the proof (assuming xy = 0)

o Recall that £}, .(d.u)* > —M for any direction e
We also have that |(d.u)*(x)| < C|x|*
Thus, ¢(0+, (deu)*, (0.u)~) = co exists.

If u,, — ug in W?2P then we have

@(r, (9euo) ™, (9euo)”) = ]lin; (r, (ae”r7)+a (ae”r;)i)
= lim @(rrj, (Qeu)™, (deu)™)
j—oo
= CO

ie. o(r, (deug)™, (9ettg)™) = const
@ Problem is reduced to analyzing the case of equality for the original

Alt-Caffarelli-Friedman montonicity formula
(Caftarelli-Karp-Shahgholian 2000)
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