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Original Elliptic Monotonicity Formula

�eorem (Alt-Ca�arelli-Friedman 1984)
Let u± be two continuous functions in B in Rn such that

u± ≥ , ∆u± ≥ , u+ ⋅ u− =  in B

then the functional

φ(r) = φ(r, u+, u−) =

r
∫
Br

∣∇u+∣


∣x∣n−
dx ∫

Br

∣∇u−∣


∣x∣n−
dx

is monotone nondecreasing in r ∈ (, ].

u−>
∆u−≥

u+>
∆u+≥

�is formula has been of fundamental importance in the regularity
theory of free boundaries, especially in problems with two phases.
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Original Elliptic Monotonicity Formula

One of the applications of the monotonicity formula is the ability to
produce estimates of the type

cn∣∇u+()∣∣∇u−()∣ ≤ φ(+) ≤ φ(/) ≤ Cn∥u+∥

L(B)

∥u−∥

L(B)

�e proof is based on the following eigenvalue inequality of
Friedland-Hayman 1976.
For Σ ⊂ ∂B de�ne

λ(Σ) = inf ∫Σ
∣∇θ f ∣



∫Σ f
 , f ∣∂Σ = 

De�ne also α(Σ) so that λ(Σ) = α(Σ)(n −  + α(Σ)).

�eorem (Friedland-Hayman 1976)
Let Σ± be disjoint open sets on ∂B.�en

α(Σ+) + α(Σ−) ≥ .
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Parabolic Monotonicity Formula

�eorem (Ca�arelli 1993)
Let u±(x , s) be two continuous functions in S = Rn × (−, ]

u± ≥ , (∆ − ∂s)u± ≥ , u+ ⋅ u− =  in S

then

Φ(r, u+, u−) =

r
∫



−r
∫

Rn
∣∇u+∣

G(x ,−s)dxds∫


−r
∫

Rn
∣∇u−∣

G(x ,−s)dxds

is monotone nondecreasing for r ∈ (, ].

Note that u± must be de�ned in a entire strip and we must have a
moderate growth at in�nity.
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Parabolic Monotonicity Formula

�e proof is now based on the eigenvalue inequality in Gaussian space.

For Ω ⊂ Rn de�ne

λ(Ω) = inf ∫Ω
∣∇ f ∣ dν

∫Ω f  dν
, dν = (π)−n/e−x

/dx .

�eorem (Beckner-Kenig-Pipher)
Let Ω± be two disjoint open sets in Rn.�en

λ(Ω+) + λ(Ω−) ≥ 

�e proof is reduced to the convexity result of Brascamp-Lieb 1976 for
�rst eigenvalues of −∆ + V(x) with convex potential V as a function of
the domain.
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Localized Parabolic Formula

�eorem (Ca�arelli 1993)
Let u±(x , s) be two continuous functions in Q−

 = B × (−, ] such that

u± ≥ , (∆ − ∂s)u± ≥ , u+ ⋅ u− =  in Q−
 .

Let ψ ∈ C∞ (B) be a cuto� function such that

 ≤ ψ ≤ , suppψ ⊂ B/, ψ∣B/ = 

then Φ(r) = Φ(r, u+ψ, u−ψ) is almost monotone in a sense that

Φ(+) −Φ(r) ≤ Ce−c/r

∥u+∥


L(Q− )

∥u−∥

L(Q− )

.
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Generalization: Ca�arelli-Kenig Estimate

Instead of the heat operator ∆ − ∂s consider now uniformly parabolic

Lu = LA,b,cu ∶= div(A(x , s)∇u) + b(x , s) ⋅ ∇u + c(x , s)u − ∂su

AssumeA to be Dini continuous, b, c uniformly bounded

�eorem (Ca�arelli-Kenig 1998)
Let u±(x , s) be two continuous functions in Q−

 such that

u± ≥ , Lu± ≥ , u+ ⋅ u− =  in Q−
 .

Let ψ ∈ C∞ (B) be a cuto� function as before.�en Φ(r) = Φ(r, u+ψ, u−ψ) is

almost monotone in a sense that we have an estimate

Φ(r) ≤ C (∥u+∥

L(Q− )

+ ∥u−∥

L(Q− )

)

, r < r.
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Generalization: Ca�arelli-Jerison-Kenig Estimate

�eorem (Ca�arelli-Jerison-Kenig 2002)
Let u± be two continuous functions in B in Rn such that

u± ≥ , ∆u± ≥ −, u+ ⋅ u− =  in B

then the functional φ(r) = φ(r, u+, u−) satis�es

φ(r) ≤ C ( + ∥u+∥

L(B)

+ ∥u−∥

L(B)

)

, r < r.

�e proof is based on a sophisticated iteration scheme.
�e di�culties in CJK and CK estimates are of completely di�erent nature
�e proof can be easily generalized to parabolic case (Edquist-P 2008).
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Almost Monotonicity Formulas

In CJK and CK estimates there is essentially no monotonicity le�

However, we still have an estimate of the type

φ(+) ≤ C (∥u+∥L(B), ∥u−∥L(B))

which is able to produce an estimate

∣∇u+()∣∣∇u−()∣ ≤ C (∥u+∥L(B), ∥u−∥L(B)) .

�is is crucial in proving the optimal regularity in certain two-phase
problems (and not only!)
Under certain growth assumptions on u, such as ∣u(x)∣ ≤ C∣x∣є one can
show the existence of φ(+).�is is important in classi�cation of blowup
solutions.
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CJK+CK

Natural question to ask whether there is a combination of CJK and CK
estimates.

Namely, do we have an almost monotonicity estimate for u± satisfying

u± ≥ , LA,b,cu± ≥ −, u+ ⋅ u− =  in Q−
 .

We will see that the answer is positive whenA is double Dini and b, c are
uniformly bounded.
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Main Results: Assumptions

We consider the uniformly parabolic operator

LA,b,cu ∶= div(A(x , s)∇u) + b(x , s) ⋅ ∇u + c(x , s)u − ∂su

such that

1 λ∣ξ∣ ≤ A(x , s)ξ ⋅ ξ ≤ 
λ
∣ξ∣

2 ∥A(x , s) −A(, )∥ ≤ ω ((∣x∣ + s)/) with double Dini ω:

∫






r
∫

r



ω(ρ)

ρ
dρdr = ∫





ω(ρ) log 
ρ

ρ
dρ <∞

3 ∣b(x , s)∣ + ∣c(x , s)∣ ≤ µ

Wemake similar assumption on the uniformly elliptic operator

ℓA,b,cu ∶= div(A(x)∇u) + b(x) ⋅ ∇u + c(x)u
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Global Parabolic Formula

�eorem (Matevosyan-P 2009)
Let u±(x , s) be two continuous functions in S such that

u± ≥ , LA,b,cu± ≥ −, u+ ⋅ u− =  in S

Assume also that u± have moderate growth at in�nity, so that

M
± ∶=∬

S
u±(x , s)e−x

/dxds <∞.

�en the functional Φ(r) = Φ(r, u+, u−) satis�es

Φ(r) ≤ Cω( +M
+ +M

−)
, for  < r ≤ rω .
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Localized Parabolic Formula

�eorem (Matevosyan-P 2009)
Let u±(x , s) be two continuous functions in Q−

 such that

u± ≥ , LA,b,cu± ≥ −, u+ ⋅ u− =  in Q−


Let also ψ be a cuto� function such that

 ≤ ψ ≤ , suppψ ⊂ B/, ψ∣B/ = .

�en the functional Φ(r) = Φ(r, u+ψ, u−ψ) satis�es

Φ(r) ≤ Cω,ψ ( + ∥u+∥

L(Q− )

+ ∥u−∥

L(Q− )

)

, for  < r ≤ rω .
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Elliptic Formula

�eorem (Matevosyan-P 2009)
Let u±(x) be two continuous functions in B such that

u± ≥ , ℓA,b,cu± ≥ −, u+ ⋅ u− =  in B.

�en the functional φ(r) = φ(r, u+, u−) satis�es

φ(r) ≤ Cω ( + ∥u+∥

L(B)

+ ∥u−∥

L(B)

)

, for  < r ≤ rω .
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Proof: CJK Iteration Scheme for L = ∆ − ∂s

Let A±(r) =∬
Sr
∣∇u∣G(x ,−s)dxds, Sr = Rn × (−r, ]

De�ne A±k = A±(−k), b±k = 
kA±k .�en Φ(−k) = kA+kA

−
k .

Proposition
�ere exists C such that if b

±
k ≥ C then

A+k+A
−
k+ ≤ A+kA

−
k( + δk) with δk =

C
√
b+
k

+
C

√
b−
k

.

Proposition
�ere exists C such that if b

±
k ≥ C and A+k+ ≥ A+k then

A−k+ ≤ ( − є)A
−
k .
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Proof: CJK Iteration Scheme for LA,b,c

De�ne

θ(r) = Cr + ω(r/) + (∫

r



ω(ρ/)

ρ
dρ)

/

(r) = ∫
r



θ(ρ)

ρ
dρ

Ã±(r) = ec (r)A±(r), Φ̃(r) = r−Ã+(r)Ã−(r)

Ã±k = Ã±(−k), b̃± = k Ã±k .

Proposition

Ã±k satisfy the same iterative inequalities as A±k in the case of L = ∆ − ∂s.
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Ã±k satisfy the same iterative inequalities as A±k in the case of L = ∆ − ∂s.

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS 16 / 25



Proof: CJK Iteration Scheme for LA,b,c

De�ne

θ(r) = Cr + ω(r/) + (∫

r



ω(ρ/)

ρ
dρ)

/

(r) = ∫
r



θ(ρ)

ρ
dρ
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Proof: Key Technical Estimate

NormalizeA(, ) = I, c = .

Proposition

Let u ≥  satisfy LA,b,u ≥ − in S. Suppose also ∬S
u(x , s)e−x

/dxds ≤ .
�en

( − cn θ(r))∬
Sr
∣∇u∣G(x ,−s)dxds ≤

Cr

+ Cnr


(∫

Rn
u(x ,−r)G(x , r)dx)

/
+

 ∫Rn

u(x ,−r)G(x , r)dx

for any  < r ≤ rω, where

θ(r) = Cr + ω(r/) + (∫

r



ω(ρ/)

ρ
dρ)

/

.
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Proof: Parabolic⇒ Elliptic

Add a “dummy” variable s

ũ±(x , s) = u±(x), (x , s) ∈ Q−


ũ± satisfy now conditions of localized parabolic case with

Lu = (ℓ − ∂s)u = div(A(x)∇u) + b(x)∇u + c(x)u − ∂su.

Fix a cuto� function ψ ≥  such that ψ =  on B/. Note that

∫
Br

∣∇u(x)∣

∣x∣n−
dx ≤ Cn∬

Sr
∣∇(ψ(x)u(x))∣G(x ,−s)dxds.

Hence

φ(r, u+, u−) ≤ CnΦ(r,ψũ+,ψũ−)

≤ Cω ( + ∥ũ+∥

L(Q− )

+ ∥ũ−∥

L(Q− )

)


= Cω ( + ∥u+∥

L(B)

+ ∥ u−∥

L(B)

)


for r < rω.
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+ ∥ũ−∥

L(Q− )

)


= Cω ( + ∥u+∥

L(B)

+ ∥ u−∥

L(B)

)


for r < rω.
Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS 18 / 25



Application: Quasilinear Obstacle-Type Problem

Let u be a solution of the system in B

div(a(∣∇u∣)∇u) = f (x , u,∇u)χΩ ,
∣∇u∣ =  on Ωc ,

where Ω is an apriori unknown open set.

Problem appears in the description of
type II superconductors
(Berestycki-Bonnet-Chapman 1994)
One-phase problem, however, no
assumption is made on the sign of u in Ω
Λ = Ωc may break out into di�erent
patches Λi so that u = ci on Λi

c

c

Similar problem has been studied by Ca�arelli-Salazar-Shahgholian 2004
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Application: Quasilinear Obstacle-Type Problem

Assumptions
1 a ∈ C,αloc([,∞))

2 a(q), a(q) + a′(q)q ∈ [λ, /λ] for any q ≥ 
3 ∣ f ∣ + ∣∇x f ∣ + ∣∂z f ∣ + ∣∇p f ∣ ≤ M for (x , z, p) ∈ D ×R ×Rn.

�eorem (Matevosyan-P 2009)

Under conditions above, u ∈ C,loc(B) and

∥u∥C,(B/) ≤ C (Ca , α, n, λ,M , ∥u∥L∞(B))

with Ca = ∥a∥C,α([,R(n,λ ,M ,∥u∥L∞(B))])
.

Generalizes a theorem of Shahgholian 2003 for

∆u = f (x , u)χΩ , ∣∇u∣ =  on Ωc .
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Application: Quasilinear Obstacle-Type Problem

Connection with the almost monotonicity formulas:

Lemma
For any direction e the functions w± = (∂eu)

± = max{±∂eu, } satisfy

w± ≥ , div(A(x)∇w±) + b(x)∇w± + c(x)w± ≥ −M , w+ ⋅w− = ,

where

A(x) = a(∣∇u(x)∣)I + a′(∣∇u(x)∣)∇u(x)⊗∇u(x),
b(x) = −(∇p f )(x , u(x),∇u(x)),
c(x) = −(∂z f )(x , u(x),∇u(x)).

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS 21 / 25



Application: Quasilinear Obstacle-Type Problem

Connection with the almost monotonicity formulas:

Lemma
For any direction e the functions w± = (∂eu)

± = max{±∂eu, } satisfy

w± ≥ , div(A(x)∇w±) + b(x)∇w± + c(x)w± ≥ −M , w+ ⋅w− = ,

where

A(x) = a(∣∇u(x)∣)I + a′(∣∇u(x)∣)∇u(x)⊗∇u(x),
b(x) = −(∇p f )(x , u(x),∇u(x)),
c(x) = −(∂z f )(x , u(x),∇u(x)).

Matevosyan, Petrosyan (Cambridge, Purdue) Almost monotonicity formulas PIMS 21 / 25



Application: Quasilinear Obstacle-Type Problem

Idea of the proof (Shahgholian 2003)
u ∈W,p, p > n, hence twice di�erentiable a.e.

take e ⊥ ∇u(x) and apply almost monotonicity formula to w± = (∂eu)
±:

∣∇w(x)∣

≤ Cnφ(+,w+,w−

) ≤ ( + ∥w∥

L(B/))


,

this implies that

∣∂eeu(x)∣ ≤ C , for e ⊥ ∇u(x)

to obtain the estimate in the missing direction e ∥ ∇u(x), we use the
equation.
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A Variant of the Almost Monotonicity Formula

�eorem (Matevosyan-P 2009)

Let u± satisfy u± ≥ , LA,b,cu± ≥ −, u+ ⋅ u− =  in S, and

u±(x , s) ≤ σ((∣x∣ + ∣s∣)/) for (x , s) ∈ Q−


for a Dini modulus of continuity σ(r).�en Φ(r) = Φ(r, u+ψ, u−ψ) satis�es

Φ(r) ≤ [ + α(ρ)]Φ(ρ) + CM ,ψ,σ ,ωα(ρ),  < r ≤ ρ ≤ rω ,

where α(r) = C [r + σ(r/) + ∫
r


σ(ρ/)
ρ

dρ + ∫
r


θ(ρ)

ρ
dρ] and

M = ∥u+∥L(Q− ) + ∥u−∥L(Q− ).

�is guaranties the existence of Φ(+) = limr→+Φ(r).
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Application: Classi�cation of Blowups

Let u solve div(a(∣∇u∣)∇u) = f (x , u,∇u)χΩ, ∣∇u∣ =  on Ωc .

For x ∈ ∂Ω (free boundary) consider rescalings

ur(x) = ux ,r(x) =
u(x + rx) − u(x)

r
.

Limits of ur over r = r j → + are called blowups of u at x
Key question: what are the possible blowups?

�eorem (Matevosyan-P 2009)
�e blowups are either one-dimensional or quadratic polynomial.

One dimensional means u(x) = υ(x ⋅ e) for some direction e
Equivalently, ∂eu has a sign in Rn for any direction e.
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Application: Classi�cation of Blowups

Idea of the proof (assuming x = )
Recall that LA,b,c(∂eu)

± ≥ −M for any direction e

We also have that ∣(∂eu)±(x)∣ ≤ C∣x∣α

�us, φ(+, (∂eu)+, (∂eu)−) = c exists.
If ur j → u inW,p, then we have

φ(r, (∂eu)+, (∂eu)−) = lim
j→∞

φ(r, (∂eur j)
+, (∂eur j)

−
)

= lim
j→∞

φ(rr j , (∂eu)+, (∂eu)−)

= c

i.e. φ(r, (∂eu)+, (∂eu)−) ≡ const

Problem is reduced to analyzing the case of equality for the original
Alt-Ca�arelli-Friedman montonicity formula
(Ca�arelli-Karp-Shahgholian 2000)
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