Amalgamated Free Product \[G = A * \mathbf{B} \]
Aut = stable automorphisms

Theorem: There is an exact sequence
\[\hat{\text{Aut}}_c(k) \to \hat{\text{Aut}}_a(k) \times \hat{\text{Aut}}_b(k) \to \hat{\text{Aut}}_c(k) \to T(G) \xrightarrow{\text{res}_G^{\mathbf{A}} \times \text{res}_G^{\mathbf{B}}} T(A) \times T(B) \xrightarrow{\text{res}_G^c} T(C) \]

Naive approach: Given \(M \in h\mathbf{A}\)-Mod, \(N \in h\mathbf{B}\)-Mod, such that \(M \mid_c \cong N \mid_c \) (i.e., stably isomorphic) we can arrange representatives in the stable isomorphism classes such that \(M \mid_c \cong N \mid_c \) (genuine isomorphism) (ex).

Let \(\varphi: M \mid_c \to N \mid_c \) be such an isomorphism.

Define a \(hG \)-module \(C(M,N;\varphi) \) to be \(M \) as a vector space with \(G \)-action:

\[a \cdot m = am \]
\[b \cdot m = \varphi^{-1}(b \varphi(m)) \]

Call this \(\varphi^* N \), \(\varphi^* N \xrightarrow{\text{iso}} N \)

these agree on \(C \) so do define a \(hG \)-module.

Note: \(C(M,N;\varphi) \downarrow_A = M \), \(C(M,N;\varphi) \downarrow_B = \varphi^* N \cong N \)
More sophisticated approach:

Define \(D(M,N; \varphi) \) as follows:

\[
M \leftarrow \uparrow G \\
\varphi \downarrow \\
N \leftarrow \uparrow G
\]

\[
\begin{array}{cccc}
M \leftarrow \uparrow G & \rightarrow & M \uparrow G \\
\varphi \downarrow & & \downarrow \\
N \leftarrow \uparrow G & \rightarrow & N \uparrow G
\end{array}
\]

This only depends on stable data.

Fact: \(A \ast B \) acts on a graph; two orbits of vertices stabilisers \(A, B \) and one orbit of edges stabiliser \(C \)

Chain complex:

\[
\begin{array}{cccc}
M \leftarrow \uparrow G & \rightarrow & M \uparrow G & \rightarrow & C(M,N; \varphi)
\end{array}
\]

Tensor with \(C(M,N; \varphi) \):

\[
\begin{array}{cccc}
M \leftarrow \uparrow G & \rightarrow & M \uparrow G & \rightarrow & \varphi N \uparrow G & \rightarrow & C(M,N; \varphi)
\end{array}
\]

\[
\begin{array}{cccc}
g \downarrow & (g \downarrow, g \varphi(g)) \rightarrow & C(M,N; \varphi)
\end{array}
\]

So \(C(M,N; \varphi) \otimes D(M,N; \varphi) \).

To see that \(\delta \) is a group homomorphism note that by construction

\[
C(C(h, \hat{h}; \varphi_1) \otimes C(h, \hat{h}; \varphi_2)) = C(k \hat{h}, k \hat{h}; \varphi_1 \otimes \varphi_2)
\]
If M and N are endotrivial then so is $C(M,N;\varphi)$. This is because we only have to check the restrictions to finite subgroups and any finite subgroup is conjugate to a subgroup of A or of B.

This proves exactness at $T(A)\times T(B)$.

The map $\hat{\text{Aut}}_c(k) \xrightarrow{\delta} T(c)$ is $\varphi \mapsto C(k,k;\varphi)$.

We need to check that

i) This is a group homomorphism

ii) It only depends on the stable class of φ (later).

If $M \in k\text{-}\text{Mod}$ and $M \xrightarrow{\Theta_1} k$, $M \xrightarrow{\Theta_2} k$ then $M \otimes B_c \otimes B_c$ gives a map $\varphi = \Theta_2 \Theta_1^{-1} \in \hat{\text{Aut}}_c(k)$.

and $M \cong C(k,k;\varphi)$ (check).

This proves exactness at $T(c)$ and $\hat{\text{Aut}}_c(k)$.
HNN extension \[G = G = H \ast_{(f; A)} (A \leq H, \ f: A \rightarrow H). \]

\[G = \langle H, t \mid t^{-1} = f(a) \rangle \]

Theorem. There is an exact sequence

\[\hat{\text{Aut}}(H) \rightarrow \hat{\text{Aut}}_H(k) \rightarrow \text{Aut}_A(k) \overset{\delta}{\rightarrow} T(G) \overset{\text{res}_H^G}{\rightarrow} T(H) \overset{\text{res}_H^A - \text{res}_H^H}{\rightarrow} T(A) \]

Claim: Given \(M \in \text{Mod}_H \) and \(\phi: M \rightarrow f^*M \) \(f: H \rightarrow A \), i.e., \(\phi(a) = f(a) \phi(m) \)
we can arrange that \(\phi \) is a genuine isomorphism of modules.

Define \(E(M; \phi) \) to be \(M \) as a vector space, with \(G \) acting

\[h \cdot m = hm, \]

\[t \cdot m = \phi(m) \]

Check: \((t a t^{-1}) m = \phi(a \phi^{-1}(m)) = f(a) \phi \phi^{-1}(m) = f(a) m \).

Any finite subgroup of \(G \) is conjugate to a subgroup of \(H \) and \(E(M; \phi) \downarrow_{H} \cong M \), so if \(M \) is endomivial so is \(E(M; \phi) \).

Define \(S(\phi) = E(k; \phi) \).
Consider $\text{gem } M \downarrow_{A}^{\uparrow G} \rightarrow M^{\uparrow G}$

\[\text{gem } M \downarrow_{(\text{gem })}^{\uparrow G} \rightarrow M^{\uparrow G}\]

\[\text{gem } M \downarrow_{(\text{gem })}^{\uparrow G} \rightarrow M^{\uparrow G}\]

\[\text{gem } M \downarrow_{(\text{gem })}^{\uparrow G} \rightarrow M^{\uparrow G}\]

\[\text{gem } M \downarrow_{(\text{gem })}^{\uparrow G} \rightarrow M^{\uparrow G}\]

Let $F(M; \Theta)$ be the cone.
More generally, if G is the fundamental group of a graph of groups we have

$$\hat{\text{Aut}}_G (k) \rightarrow \hat{T} \hat{\text{Aut}}_{G_v} (k) \rightarrow \hat{T} \hat{\text{Aut}}_{G_e} (k) \rightarrow T(G) \rightarrow \hat{\Pi} \Pi T(G_v) \rightarrow \hat{\Pi} \Pi T(G_e)$$