Definition \(M \in \text{Stab}(kG) \) is endotrivial if there is a module \(N \) such that \(M \otimes N \cong k \) stably.

The stable isomorphism classes form a group \(T(G) \).

For any finite subgroup \(F \), \(M^{F} \) is endotrivial so

\[
M^{F} = M^{' \otimes (\text{proj})} , \quad \dim M^{'} < \infty , \quad M^{'} \text{ endotrivial}.
\]

\[
M \otimes M^{*} \xrightarrow{\text{ev}} k
\]

resmcts \(1 \circ \)

\[
M^{F} \otimes M^{F} \xrightarrow{\text{ev}} k
\]

\[
(M^{' \otimes (\text{proj})}) \otimes (M^{' \otimes (\text{proj})}) \twoheadrightarrow k
\]

\[
\cong \quad \uparrow \quad \parallel
\]

\[
M^{'} \otimes M^{'} \xrightarrow{\text{ev}} k
\]

Proposition If \(M \) is endotrivial then its inverse is \(M^{k} \).

\(M \) is endotrivial if and only if \(M^{F} \) is endotrivial for all finite \((n)\)-subgroups \(F \).

Note that \(T(G) = 0 \) if \(G \) has no \(p \)-torsion.
Example \[G = C_p^1 \ast C_p^2 \]

Free product of two groups of order \(p \).

\(G \) acts on a tree with stabilizers conjugate to \(C_p^1 \) or \(C_p^2 \) so it is of type \(\Phi \).

Canonical map \[k^+_{C_p^1} \to k \]

\[g \cdot x \mapsto gx \]

Restrict this to \(C_p^1 \): \[k @ (free) \to k \] Mackey formula

\[C_p^2 \] (free) \[\to k \] "

Now consider \[k^+_{C_p^1} \oplus k^+_{C_p^2} \to k \].

On restriction to \(C_p^1 \) or \(C_p^2 \) this is a stable iso.

Any torsion subgroup of \(G \) is conjugate to one of these two. Thus we have a stable isomorphism

\[k \cong k^+_{C_p^1} \oplus k^+_{C_p^2} \].

Note: The RHS is Gorenstein projective, since it is projective over a subgroup of finite index (ex).

Endotrivial modules need not be indecomposable.
Brown/Quillen complex

\(\Delta(G) \) is a simplicial complex where the \(p \)-simplices are chains \(p_0 < p_1 < \cdots < p_r \) of non-trivial:

- finite \(p \)-subgroups (Quillen)
- finite elementary abelian \(p \)-subgroups (Brown)
- many variants

\(G \) acts by conjugation.
The variants are all equivariantly homotopy equivalent.

Chain complex of \(kG \)-modules \(C(\Delta(G)) \rightarrow k \).

Can show that for any finite \(p \)-subgroup \(H \leq G \),
\(\Delta(G)_p \) is contractible, hence

\[
\begin{align*}
\Omega^c_0 C(\Delta(G))_p & \rightarrow k \\
\Omega^c_0 C(\Delta(G))_p & \rightarrow k \\
\Omega^c_0 C(\Delta(G))_p & \rightarrow k \\
\Omega^c_0 C(\Delta(G))_p & \rightarrow k
\end{align*}
\]

is a chain homotopy equivalence to a complex of projectives
is a stable iso
stable iso
stable iso over \(G \).

Theorem

If \(C(\Delta(G)) \) has homology in only finitely many degrees (e.g. \(p-\text{rank}(\cdot) < \infty \)) then \(\Omega^c_0 C(\Delta(G)) \cong k \).

So \(k \) decomposes as a sum, \(k \cong \oplus k e \), one for each path component of \(\Delta(G)/G \).

(i.e. equivalence relation on non-trivial finite \(p \)-subgroups generated by \(P \cap Q \) if \(P \leq G \) or \(P \conjugate Q \to Q \))
In fact $\hat{\text{End}}(k)$ is a commutative ring and the e are primitive. (cc).

We really have an end-e group $T_e(G)$, one for each idempotent.

$$T(G) = \prod_e T_e(G).$$