Endotrivial Modules For Infinite Groups

Why study endotrivial modules for infinite groups:

- You can't say much about all modules. Look for some small subclass where you can do more.
- For finite groups, endotrivial modules or their generalisation, endopermutation modules, occur as sources of simple modules for p-solvable groups and in the description of the source algebra of a nilpotent block. Their classification for finite p-groups was a major achievement.
- Connected to a lot of work from '70s and '80s on cohomology of infinite groups.
- It forces us to look carefully at stable categories and suggests how those might be described.

Joint work with Nadia Mazza
Notation

Always: \(k \) is a field of finite characteristic \(p \) for this course. But in fact everything works for \(k \) \((p\text{-local})\), finite global dimension, noetherian.

For now: \(G \) is a finite group, \(kG \)-modules are finite-dimensional unless stated otherwise.

Definition

A \(kG \)-module \(M \) is **endotrivial** if there is another module \(N \) such that \(M \otimes k N \cong k \oplus (\text{proj}) \).

Note that \((\text{proj}) \oplus \text{(anything)} \cong (\text{proj})\), so if we write \(M \oplus M' \) when \(M \oplus (\text{proj}) = M' \oplus (\text{proj}) \) then the equivalence classes \([M]\) form an abelian group under \(\otimes_k \). Call it \(T(G) \). (\(N \) is the inverse of \(M \).)

Each equivalence class contains an indecomposable module \(M \) such that every other element is of the form \(M \oplus (\text{proj}) \).

Syzgies

Given \(M \), find a surjection from a projective module \(P \to M \) and let \(\Omega M \) be the kernel. \(\Omega M \to P \to M \).

\(\Omega M \) is well defined up to projective summand (Schanuel's theorem) so \([\Omega M]\) is well defined. We can also go in the other direction using injective modules, \(M \to I \to \Omega M \).

For finite groups \(\text{proj} \Rightarrow \text{inj} \) so we write \(\Omega^i \) instead.

Iterating gives \([\Omega^i M]\) \text{ for } i \in \mathbb{Z} ; \text{ these are the kernels in a projective/injective resolution of } M \).

Check that \(\Omega (M \otimes N) \cong (\Omega M) \otimes N \).
Now suppose that \(M \) is endotrivial, so \(M \otimes N \cong k \).
Then \(\Omega M \otimes \Omega' N \cong \Omega(M \otimes \Omega' N) \cong M \otimes \Omega' N \cong k \).
So \(\Omega M \) is endotrivial.

Clearly \(k \) is endotrivial, so \(\Omega' k \) is endotrivial, and \(\Omega k \otimes \Omega' k \cong k \); we obtain a homomorphism \(\mathbb{Z} \to \tau(G) \).
\(\tau(G) \) also contains all 1-dimensional representations of \(G \).

There are natural restrictin maps \(\tau(G) \to \tau(H) \) for \(H \leq G \).

Recall that \(\text{Hom}_k(M, N) \) is considered to be a \(kG \)-module via \((gf)(m) = gf(g'm) \) \((f \in \text{Hom}_k(M, N) \) etc.).

In particular we have the dual \(M^* = \text{Hom}_k(M, k) \).

Lemma. If \(M \otimes N = k \otimes \text{proj} \) then \([N] = [M^*]\). The natural evaluation map \(\text{ev}: M \otimes M^* \to k \) is split over \(kG \) and the kernel is projective.

Proof

\[
\begin{array}{ccc}
M \otimes N & \cong & k \otimes \text{proj} \\
\downarrow \phi & & \cong \downarrow \phi \\
M \otimes M^* & \xrightarrow{\text{ev}} & k
\end{array}
\]

where \(\phi: N \to M^* \) by \(\phi(m)(n) = \pi(m \otimes n) \) \((\phi \) will be a stable iso).

Thus \(k \mid M \otimes M^* \) splitting \(\text{ev} \) is a summand of \(N \mid N \otimes M \otimes M^* \cong M^* \otimes \text{proj} \).

But \(M = M^* \otimes \text{proj} \), \(M^* \) indecomposable.

Thus \(N = M^* \otimes \text{proj} \) \((N \not \text{proj if } p \mid \text{odd})\).

Now \([N] = [M^*]\) and \(M \otimes M^* \cong k \otimes \text{proj} \), so the kernel must be projective.
If we relax the condition that M be finite dimensional we do not get any more endotrivial modules.

Lemma. If M, N are possibly infinite dimensional kG modules such that $M \otimes N = k \oplus (\text{proj})$ then $M = M' \oplus (\text{proj})$, M' finite dimensional and endotrivial.

Proof: $M \otimes N = k \oplus (\text{proj})$; write a generator of k as $\sum m_i \otimes n_i$ and let $M' = \langle m_i \rangle_{kG} \leq M$. Then $\dim_k M' < \infty$ and $k \leq M' \otimes N \leq M \otimes N \to k$, so $k \mid M' \otimes N$. Thus $M' \otimes N \otimes M \cong M' \oplus (\text{proj})$.

Somehow we deduce that $M = (\text{End}_{kG} M') \oplus (\text{proj})$.

Note: An advanced version of Krull-Schmidt forms a sum of countably generated modules with local endomorphism rings.

See exercises.

Similarly for N; $k \oplus (\text{proj}) = M \otimes N = M \otimes N \oplus (\text{proj})$.
\(T(C_2) = \begin{cases} 0 & q = 2 \\
\mathbb{Z}/2 & q \neq 2 \end{cases} \)

\(T(Q_8) = \begin{cases} \mathbb{Z}/4 & k \text{ contains no cube root of } 1 \\
\mathbb{Z}/4 \oplus \mathbb{Z}/2 & k \text{ contains a cube root of } 1 \end{cases} \)

\(T(Q_{2^n}) = \begin{cases} \mathbb{Z}/4 \oplus \mathbb{Z}/2 & 2^n > 16 \\
\mathbb{Z} & 2^n \geq 8 \end{cases} \)

\(T(D_{2^n}) = \mathbb{Z} \oplus \mathbb{Z} \)

Theorem. If all maximal elementary abelian \(p \)-subgroups of \(G \) have rank \(\geq 3 \) then \(T(G) \cong \mathbb{Z} \), generated by \(Z_k \).

Theorem. Suppose that \(P \) has at least one maximal elementary abelian \(p \)-subgroup of rank 2 and \(P \) is not semidihedral. Then \(T(P) \) is free abelian on \(r \) generators, where \(r \) is defined by \(c = \# \text{ conjugacy classes of maximal elementary abelian } p \)-subgroups of rank 2 and \(r = c + 1 \) if \(\text{rank}(P) = 2 \), \(r = c + 1 \) if \(\text{rank}(P) > 2 \).

The other cases are dealt with separately. Extravasional and almost extravasional are particularly tricky.

Carlson - Thevenaz, Bour - Alpern Dade.

For general finite groups there is no classification:

\[\text{Pic}(T(G)) = \ker \text{Res}_P^G : T(G) \to T(P), \quad P \text{ Sylow} \]

\(\text{Pic}(T(G)) \) is finite - see Balmer, Grodal

In all cases \(T(G) \) is finitely generated (originally Puig)
Groups of type Φ

Definition

A group G is of type Φ (over k) if for any kG-module M, $M \otimes_k \mathbb{F}$ is of finite projective dimension (i.e. some projective resolution steps) for all finite subgroups \mathbb{F} implies that M is of finite projective dimension.

Note that, since we are taking k to be a field of characteristic p, we only need to check for non-elementary abelian p-subgroup and $M \otimes_k \mathbb{F}$ projective.

The finitistic dimension of G is $\text{fdim } G = \sup \{ \text{projdim } M : \text{projdim } M < \infty \}$.

For groups of type Φ, $\text{fdim } G < \infty$. Otherwise for each $i \in \mathbb{N}$ let M_i have $i < \text{projdim } M < \infty$ and consider $M = \bigoplus M_i$.

Then $M \otimes_k \mathbb{F}$ is projective for any finite $F \leq G$, so $\text{projdim } M < \infty$.

Proposition

Let G act admissibly on a contractible CW-complex of finite dimension with finite stabilizers. Then G is of type Φ.

Proof

Let X be the complex, chain complex $C_*(X)$

$$0 \to C_0(X) \to \cdots \to C_3(X) \to C_2(X) \to C_1(X) \to C_0(X)$$

Each $C_i(X)$ is a sum of permutation modules $k \mathbb{F}_i$, F-finite.

Tensor with M:

$$G \to C_n(X) \otimes_k M \to C_{n-1}(X) \otimes_k M \to C_{n-2}(X) \otimes_k M$$

$k \mathbb{F} \otimes_k M \cong M \otimes_k \mathbb{F}$, so if each $M \otimes_k \mathbb{F}$ is projective, this is a projective resolution of M.

G is of finite virtual cohomological dimension (over k) if G has a subgroup H of finite index such that $\text{projdim}_{kH}X < \infty$. Such G are of type Φ.

E.g. $SL_n(\mathbb{Z})$, lattices in connected Lie groups $(\mathbb{Z}/p)^n$, \mathbb{Z}/p^n are of type Φ (they act on a tree) but are not of finite vcd.

\mathbb{Z}^n is not of type Φ.

Define a category $\text{Mod}_{kG}(\mathcal{M})$ to have the same objects as kG-Mod, but $\text{Hom}_{\text{Mod}_{kG}(\mathcal{M})}(M, N) = \text{Hom}_{kG}(\mathcal{M}, N)/(\text{factors through a projective})$.

$\Omega : \text{Hom}_{\text{Mod}_{kG}(\mathcal{M})}(M, N) \to \text{Hom}_{\text{Mod}_{kG}(\mathcal{M})}(\Omega M, \Omega N)$

Define $\text{Hom}_{\text{Stab}(\mathcal{M})}(M, N) = \Omega^w \text{Hom}(M, N) = \lim_{\Omega} \text{Hom}_{\text{Mod}_{kG}(\mathcal{M})}(\Omega^w M, \Omega^w N)$.

This is difficult to calculate with.

From now on all groups are of type Φ and there is no restriction on the kG-modules we consider.

It follows easily from the definition any injective kG-module has projective dimension $\leq \text{findim} G$.

Proposition Any projective module has injective dimension $\leq \text{findim} G$.

Proof See exercises.