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Reaction-diffusion in a random environment

ut = uxx + f(x, u), x ∈ R, t > 0.

Solutions will exhibit a moving interface. . . .

(i) How does the solution evolve at large times? Mean behavior?

Almost-sure behavior?

(ii) How does the interface fluctuate about its mean position?



Reaction-diffusion in a homogeneous environment

u(t, x) satisfies

ut = uxx + f(u), x ∈ R, t > 0

u(0, x) = u0(x) ∈ [0, 1]

f(u) is nonlinear and
∫

1

0
f(u) du > 0:

f(u)

f(u)

u = 1
u = 1θ

θ



ut = uxx + f(u)

Traveling wave solutions exist.

ũ(t, x) = ũ(0, x − c̃t), x ∈ R, t ∈ R

c̃ is the unique wave speed, and W (x) = ũ(0, x) is the wave profile.

ũ = 1

ũ = 0

Kolmogorov, Petrovsky, Piskunov (1937), Fisher (1937),

Kanel (1962), Aronson, Weinberger (1979).



ut = uxx + f(u)

Traveling wave solutions are attractors.

For the bistable and ignition-type nonlinearties, if u(t, x) solves the

initial value problem with appropriate “wave-like” initial data at t = 0,

then

sup
x
|u(t, x) − ũ(t + τ, x)| ≤ Ce−rt, ∀ t ≥ 0

for some shift τ ∈ R and constants C, r > 0.

See Kanel (1962), Fife, McLeod (1977), Rothe (1981)



What if the environment varies (randomly) with x?

Suppose f = f(x, u).

• What are the statistical properties of solutions to the Cauchy

problem?

• Is there a wave speed?

• Is there a unique wave-like solution that attracts other solutions?



The random inhomogeneous environment

ut = uxx + g(x)f0(u), x ∈ R, t > 0

u(0, x) = u0(x), x ∈ R

Initial condition u0(x) is “wave-like”:

lim
x→−∞

u0(x) = 1, u0(x) ≤ Ce−αx



ut = uxx + g0(x)f(u)

Suppose g(x, ω) : R × Ω → (0,∞) is a stationary random field.

Let {πx}x∈R be a group of measure-preserving transformations which

act ergodically on (Ω,F , P) so that g(x + h, ω) = g(x, πhω).

• g(x) > 0 is uniformly Lipschitz continuous in x.

• fmin(u) ≤ g(x)f0(u) ≤ fmax(u)

•
∫

1

0
fmin(u) du > 0

u = 1u = 1θ0
θ0

fmax(u)
fmin(u)



ut = uxx + g0(x)f(u)

What does the solution look like?

The initial data is a step function (in black).

The plot shows u(t, x) at regularly-spaced points in time,

corresponding to one realization of g(x, ω).
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ut = uxx + g0(x)f(u)

The interface width does not spread out as t → ∞.

Suppose X+(t) and X−(t) are defined by

X+(t) = sup{x ∈ R |u(t, x) ≥ ǫ}
X−(t) = inf{x ∈ R |u(t, x) ≤ 1 − ǫ}

then for some constant C,

|X+(t) − X−(t)| ≤ C

holds for all t.



ut = uxx + g0(x)f(u)

A Law of Large Numbers for the interface

Let X(t, ω) be the random interface position:

X(t, ω) = sup{x ∈ R |u(t, x, ω) = θ0}

Then X(t, ω) satisfies

lim
t→∞

X(t, ω)

t
= c̃, almost surely, and in L1(Ω).

c̃ > 0 is independent of the initial data.

N., Ryzhik (2008)

See Freidlin-Gärtner (1979) for a related result with K.P.P.-type nonlinearity.



ut = uxx + g0(x)f(u)

For each ω, the average speed X(t, ω)/t is asymptotically independent

of the initial data.

Moreover, for each ω, the entire solution profile also “forgets the initial

data” very quickly.

Here is a MOVIE illustrating this phenomenon. . . .



A Generalized Traveling Wave:

There exists a global-in-time solution ũ(t, x) of

ũt = ũxx + g0(x)f(ũ), x ∈ R, t ∈ R.

It is unique up to a time shift. Also, ũt > 0, for all x ∈ R, t ∈ R.

This solution is an attractor: if u0(x) is wave-like, then there is a

time shift τ and constants C, r > 0 such that

sup
x∈R

|u(x, t) − ũ(t + τ, x)| ≤ Ce−rt

holds for all t ≥ 0.

Mellet, Roquejoffre, Sire (2009),

N., Ryzhik (2008),

Mellet, N., Ryzhik, Roquejoffre (2009)



Statistical invariance of the generalized traveling wave:

We may normalize X̃(0, ω) = 0, so that

ũ(Tk(ω), x + k, ω) = ũ(0, x, πkω), ∀ k ∈ R

Tk = Tk(ω) is the hitting time to x = k: X̃(Tk, ω) = k.

Increments ∆Tk = Tk+1 − Tk are stationary with respect to k.

In this sense, the profile is statistically invariant with respect to

reference point x = k.



An Invariance Principle

If the environment is sufficiently mixing, then

(i) There is κ2 ≥ 0 such that

X(t, ω) − tc̃√
t

→ N(0, κ2), as t → ∞.

(ii) If κ2 > 0, the family of continuous process {Yn(t)}∞n=1 defined by

Yn(t, ω) =
X(nt, ω) − ntc̃

κ
√

n
, t ∈ [0, 1],

converges weakly (as n → ∞) to a standard Brownian motion on

[0, 1], in the sense of weak convergence of measures on C([0, 1])

with the topology of uniform convergence.

N. (2009)



The mixing condition

Define the family of σ-algebras

F−
k = σ (g(x, ω)| x ≤ k)

F+

k = σ (g(x, ω)| x ≥ k)

F−
k ⊂ F−

k+1
⊂ F , and F ⊃ F+

k ⊃ F+

k+1

We say the environment is φ-mixing if for all j ≥ k and any

ξ ∈ L2(Ω,F−
k , P) and η ∈ L2(Ω,F+

j , P),

|E [ξη] − E[ξ]E[η]| ≤
√

φ(j − k)
(

E[ξ2]E[η2]
)1/2

for φ(n) : Z
+ → [0,∞) is nonincreasing. If

∑

n≥1

√

φ(n) < ∞, then the

invariance principle holds.



How do we obtain a CLT for X(t, ω)?

X(t, ω) − tc̃√
t

→ N(0, σ2)

Some challenges:

• X(t, ω) depends on the environment in a nonlinear way, through

solution of the PDE.

• What does a mixing assumption on the environment imply about

the process X(t, ω)?



Consider the hitting times

Tk(ω) = inf{t ≥ 0|X̃(t, ω) = k}.

Then

Tn − τ̃n√
n

=
1√
n

n−1
∑

k=0

(∆Tk − E[∆Tk]) ,

where ∆Tk = Tk+1 − Tk, and E[∆Tk] = τ̃ = c̃−1.

For the traveling wave, these increments are {∆Tk}k stationary!

To derive a CLT for Tn, we need to estimate the dependence among

terms ∆Tk in the sum.



Stability of the wave under perturbations of the environment enables

us to show that

∆Tk = Tk+1 − Tk

does not depend strongly on the distant past:

x = ℓ k k + 1

or distant future:

x = r
k k + 1

∆Tk depends primarily on the local environment near x = k.



Define the modified environment

ĝ(x, ω) =







g(x, ω), x ≥ 0

g(0, ω), x ≤ 0

Theorem: Let z(t, x, ω) solve the modified initial value problem

zt = zxx + ĝ(x, ω)f0(z), x ∈ R, t ≥ 0

with deterministic initial condition z(0, x, ω) = z0(x) that is wave-like.

There are constants C, Cτ , r > 0 and a random variable τ(ω) such that

for almost surely with respect to P, both |τ(ω)| ≤ Cτ and

sup
x∈R

|z(t, x, ω) − ũ(t + τ(ω), x, ω)| ≤ Ce−rt

hold for all t > 0.



For N > 0 define the modified environment

ĝN(x, ω) =







g(x, ω), x ≤ N

g(N, ω), x ≥ N

Let zN(t, x, ω) solve the modified problem

zt = zxx + ĝN(x, ω)f0(z), x ∈ R, t ≥ 0

with deterministic initial condition z(0, x, ω) = z0(x). There are

non-random constants C, Cτ , r > 0, p0 ∈ (0, 1), and a random variable

τN(ω) such that, almost surely, both |τN (ω)| ≤ Cτ and

sup
x∈R

|zN(t, x, ω) − u(t + τN(ω), x, ω)| ≤ Ce−rt

holds for all t ∈ [0, p0N ], for all N > 0.



Corollary: The increments

∆Tk and ∆Tj

depend primarily on local environements near x = k and x = j. The

mixing condition on the environment then implies that they are

approximately independent if |k − j| is large.

Using a martingale approximation argument, one can then derive the

CLT for
Tn − τ̃n√

n



Summary:

• Homogenization in a stationary, random environment: X(t)/t → c̃.

• Solutions to the Cauchy problem converge exponentially fast to

the generalized traveling wave.

• Traveling wave respects statistical invariance of the medium (akin

to the t.w. property in homogeneous environment)

• Stability of the wave implies approximate local dependence of the

wave on the environment.

• Interface behaves like a Brownian motion with positive drift.



Some CLTs for other stochastic, nonlinear PDEs:

• Burgers’ equation with random flux/I.C. – Wehr, Xin, (1997, 2000)

ut +
1

2

(

a(x, ω)u2
)

x
= 0

• Stochastic Hamilton-Jacobi equations – Rezakhanlou (2000)

uǫ
t + H(Duǫ,

x

ǫ
, ω) = 0

• Semilinear heat equation with random source –

Varadhan, Zygouras (2008)

ut = uxx − u2 + λ(t, ω)δ0(x)



This is the end!

Thank you for your attention.


