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T he quantum world



Quantum plane.
Let g C*, ¢V £ 1. A:=Clz,y | zy = qyz).

A is a noetherian domain.

There is an action of the torus H ;= (C*)2 on A

(h,g).x = hx and (h,g).y = gy

Here is the picture of the prime spectrum of A.

(z,y = 6) (z,y) (@—-a,y)
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Quantum affine n-space.

T :=C(t1,...,tn | tit; = Aijtjtia i< 7j).

There is an action of the torus H := (C*)™ on T by automor-
phisms

(h1,...,hn).t; = h;t;

For each w C {1,...,n}, we set Jy = (t;)icw-

Then H-Spec(T) = {Ju}.



Quantum 2 x 2 matrices

The coordinate ring of quantum 2 x 2 matrices

OyMa(e) = | ¢ |

iIs generated by four indeterminates a, b, ¢, d subject to the follow-
ing rules:

ab = qba, cd = qdc
ac = qca, bd = qdb
bc = cb, ad — da = (q—q_l)cb.

The quantum determinant ad — gbc is a central element



The algebra of m x p quantum matrices.

Y11 ... Y

Y

R = 0Oq (Mmp(C)) :=C

i Ym’l .« o Ym)p
where each 2 x 2 sub-matrix is a copy of Oy (M>(C)).

Oq (Mmp(C)) is an iterated Ore extension with the indetermi-
nates Y; o, adjoined in the lexicographic order and so is a noethe-
rian integral domain.

In the square case (m =p =n)

D = Z (—Q)Z(U)Yl,o(l) e Yn,a(n)
oc€Sn

iIs the quantum determinant, a central element.



Quantum minors of R = Oy(M p(C)).

They are the quantum determinants of square sub-matrices of
Og(Mmp(C)).

More precisely, if I C [1,m] and A C [1,p] with | I |=| A |, the
quantum minor associated with the rows I and columns A is

LI [ A] := Dg(Og(M A(C))).

For example, [12|23] = Y7 2Y2 3 —qY7 3Y2 2 is the quantum minor
of R associated with the rows 1,2, and the columns 2, 3.



e The prime spectrum of O;(My, »(C))

We now assume that ¢ € C* is not a root of unity, and we set
R = Oq(Mm,p(C))

e Goodearl-Letzter Prime ideals of R are completely prime.

The torus H = ((C*)m‘|‘p acts by automorphisms on R via :

(a’la ey amy by, bp)-Y;j,a — aibaY;,a-

This action of H on R induces an action of H on Spec(R). We
denote by H-Spec(R) the set of those prime ideals in R which
are H-invariant.

e Goodearl-Letzter R has at most 2P H-primes.
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Stratification Theorem (Goodearl-Letzter) :

If J € H-Spec(R), then we set

Specj(R) :={P € Spec(R) | () h.P=J}.
he'H

1. Spec(R) = | | Spec;(R)
JeH-Spec(R)

2. For all J € H-Spec(R), Spec;(R) is homeomorphic to the
prime spectrum of a (commutative) Laurent polynomial ring
in n(J) indeterminates over C.

3. The primitive ideals of R are precisely the primes maximal in
their 'H-strata.
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AN observation

Recall that in Og(M2(C))

ad — da = (q — ¢~ 1)be.

AsS a result, if P is a prime ideal and d € P then this forces bc € P
SO either be P or ce P.

Thus there is no prime ideal P of Oy(M>(C)) for which d is the
only quantum minor in P.
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Cauchon diagrams

A Cauchon diagram on an m X p array is an m xp array of squares
filled either black or white such that if a square is coloured black
then either each square to the left is coloured black, or each
square above is coloured black. Here are an example and a non-
example
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Parametrisation of H-Spec(Oy(Mm »(C)))

e Cauchon (2003) There is a bijection between Cauchon dia-
grams on an m x p array and H — Spec(Oqy(Mm p(C))).

e L. The height of a H-prime is given by the number of black
boxes in the corresponding Cauchon diagram.

n| Cp:=| H-SDeC(Oq(Mn(C))) |

2 14

3 230

4 6902
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Generators of H-primes

Conjecture (Goodearl-Lenagan): H-primes are generated by
quantum minors.

The conjecture is true for Og (M2(C)) and Og (M3(C)) (Goodearl-
Lenagan).
e L. (2004) Assume that ¢ is transcendental. Then H-primes

of R are generated by quantum minors.

e Yakimov (2017) Also, assuming g transcendental, Yakimov
gives explicit generating sets of quantum minors.
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2 X 2 quantum matrices

The following 14 H-invariant ideals are all prime and these are
the only H-prime ideals in Og(M»>(C)).
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Restricted permutations

S={we€ Sty | —p<w@)—i<mforalli=12,...,m+p}

In the 2 x 2 case, this subposet of the Bruhat poset of S, is

S={weSy | —2<w@)—i<2foralli=1,2,3,4}.
and is shown below.

(13)(24)

T

(13) (1243) (1342) (24)

> T <

(123) (132) (12)(34) (243) (234)

ST

(12) (23) (34)

\(1)/
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The poset H-Spec(Oy(Mm p(C)))

Set
S ={c €Sty —p<o(@) —i<m, Vi€ [1,m+pl}

and

wg = 1 2 ... p ptlp+2 ... p+m|

m—+1 m+2 ... m—4p 1 2 m

Then

S={w € Sy4p | w<wo}
and

L. (2007) We have a poset isomorphism
H-Spec(Og(Mmp(C))) ~ S.
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Pipe dreams

Previous results imply the existence of a bijection between the
set of m x p Cauchon diagrams and the set S of restricted per-
mutations.

This is no coincidence, and the connection between the two
posets can be illuminated by using Pipe Dreams.

The procedure to produce a restricted permutation from a Cau-
chon diagram goes as follows. Given a Cauchon diagram, replace
each black box by a cross, and each white box by an elbow joint,

B
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Pipe dreams: an example

4 5 6
— 2 5
ll\ 4

1 2 3

So the restricted permutation associated to this Cauchon dia-
gram is (3 4).

Observe that the all black diagram produces the restricted per-
mutation wy.
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Direct graph associated to a diagram

To a Cauchon diagram C, one can associate a direct graph G(C)
and and skew-symmetric matrix Ao as follows.

The vertices of G(C) are the white boxes of C labeled 1 to N.
We draw an arrow between two vertices in the same column
(going from North to South) or on the same row (going from
West to East).

Ac is the N x N skew-symmetric matrix whose coefficient a;;
(7 < j) is the number of arrows going from the vertex labeled 1
to the vertex labeled j.
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An example

—1
—1

—1
O

—1

—1

~1
-1 -1 -1 0

—1
0

0

—1
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Dimension of strata

Bell-L. (2010). The H-stratum of Oy(Mm »(C)) associated to
C is a Laurent polynomial ring over C in dimker Ao indetermi-
nates.

Problem: this matrix is huge. It can be mp X mp whereas we
have proved that the dimension of a stratum is always less than
or equal to min(m,p).

Bell-Casteels-L. (2017). Let C be an m x p Cauchon diagram
and w be the corresponding restricted permutation.

dim ker Ag = dim ker(Pw + Puy,),

where P, denotes the permutation-matrix associated to o.
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Explicit bijections

We define two bijections

¢ : ker Ag — ker(Pw + Puwyg)
and

Y Ker( Py + Puwg) — ker Ac.

To avoid technicalities, we explain their construction on an ex-
ample. Consider the following Cauchon diagram
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—1
-1 -1 -1

—1
O

—1
-1 -1 -1 o)

—1
O

0

—1

\ O

Recall that Ag

SO we have
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Recall that in this case we have w = (34) and wg = (1 4)(25)(3 6).

(1 0010 0)
010010
000101
S0 PutFPuo=14 01 0 0 0
010010
\0 0100 1)
So we have
(1) (0 )
0 1
~1 0
ker(Py + Puwy) = Vect(a = 1 0= 0 )
0 —~1

V1) N0
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Bijection 1: Image of u

1. Put the coordinates of v in C

5 6
2 O 0 1
1] -1 o) 0

2. The image of u is the vector (yq1,...,yg) With
y1 = —(=140+4+0) =1, yo = —(0+0+1) = -1, y3 = —(14+0) = -1

yas=0+(-1)=-1, y5s=14+040, yg=0+4+1+0.
One can check that ¢(u) = a — § € ker(Pyw + Puy)-
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Bijection 2: image of «

The image of a is the vector (z1,...,z3).
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Bijection 2: image of «

N

The image of « is the vector (z1,...,xs).

x5 =—-—1-0=-1

One can easily check that

Y(a) =(—1,0,1,0,—-1,1,1,0) = —(u+v) € ker Ac.

Moreover ¢ o1 = —2id and ¢ o ¢ = —2id.
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Dimension of strata: toric permutation

4 5 6

— 2 2
11\ 1
4 5 6

So the toric permutation associated to this Cauchon diagram is
(1364)(25).

Bell-Casteels-L. (2017) The dimension of the stratum asso-
ciated to C is equal to the number of odd cycles in the decom-
position of the corresponding toric permutation.
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T he nonnegative world

32



e A matrix is totally positive if each of its minors is positive.

e A matrix is totally nonnegative if each of its minors is non-
negative.
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Examples

1 1 1 1 1 1 0 O 56 30
1 2 4 8 1 210 4 7 4 0
1 3 9 27 1 3 31 1 4 4 2
1 4 16 64 1 4 6 4 O 12 3

;. How much work is involved in checking if a matrix is totally
positive?

Eg. n=4:

_ oo mn2 2n 4™
#mlnors=k§::1 (k) = (n>_1%\/ﬁ

by using Stirling’'s approximation
nn
n! ~ vV2rn—
en
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2 X 2 case

T he matrix

has five minors: a,b,c,d, A = ad — bc.

If b,c,d, A = ad — bc > 0 then

A +bc
d
soO it is sufficient to check four minors.

>0

a

Gasca and Pena: optimal test for total positivity and algorithm
for total nonnegativity.
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Let /\/l,,E[j,” be the set of totally nonnegative m x p real matrices.
Let Z be a subset of minors. The cell S% is the set of matrices
in M},Q)” for which the minors in Z are zero (and those not in Z
are nonzero).

Some cells may be empty. The space M},Qr;) IS partitioned by the

non-empty cells.

A trivial example In ME”{‘ every cell is non-empty. There are 4
cells:
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tnn o :
Example In M5" the cell S{[272]} IS empty.

For, suppose that ( Z Z) IS thn and d = 0.

Then a,b,c > 0 and also ad — bc > 0.

Thus, —bc > 0 and hence bc =0 so that 6 =0 or ¢ = 0.

(This is exactly the same reasoning as in the the proof that a
prime in Oy(M>(C)) that contains d must contain either b or ¢!)

EXxercise There are 14 non-empty cells in /\/lg””.

37



Postnikov (arXivimath/0609764) defines Le-diagrams: an m xp
array with entries either O or 1 is said to be a Le-diagram if it
satisfies the following rule: if there is a O in a given square then
either each square to the left is also filled with O or each square
above is also filled with O.

An example and a non-example of a Le-diagram on a 5 x 5 array

= O RO
=IO O~
RO~ OO
RO O~
= O RO
R R RO
R PR OO
=== O

== ===
elleollelelle
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e Postnikov (arXiv:math/0609764) There is a bijection be-

tween Le-diagrams on an m x p array and non-empty cells S§7 in
tnn
Mip-

For 2 x 2 matrices, this says that there is a bijection between
Le-diagrams on 2 x 2 arrays and non-empty cells in /\/15“”.

39



=

)

(Y
o

2 X 2

Le-diagrams

=

=

)

()

1 1 O
1 1 1
O O 1
1 O 1
O 1 1
O O 0O
1 1 O
O O 0O

[ —

[ —

()

o
[

)
()

)
()

40



The Link
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Totally nonnegative cells

Totally nonnegative cells are defined by the vanishing of families
of minors. Some of the TNN cells are empty.

We denote by S% the T NN cell associated to the family of minors
Z.

A family of minors is admissible if the corresponding TNN cell is
non-empty.

Question: what are the admissible families of minors?
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Generators of H-primes in quantum matrices.

Assume that ¢ is transcendental.

Then H-primes of Oy(M(m,p)) are generated by quantum mi-
nors.

Question: which families of quantum minors?
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Conjecture

Let Z; be a family of quantum minors, and Z be the correspond-
ing family of minors.

(Zg) is a H-prime ideal iff the cell S is non-empty.
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An algorithm to rule them all

Deleting derivations algorithm:

45



An algorithm to rule them all

If M = (z;4) € Mmp(K), then we set

fi8(M) = (75,4) € Mmp(K),

1 : : :
] Tia + i BT, 3Tj,q ifz;370,i<jand a<p
T; o otherwise.

We set MU := f; 500 f1 50 f11(M).
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An example

1
Set M= 0 . Then

'_l
= N R
==

1722 — 172D — 17(13) — 1712 — (11 — g

11 1 2 1 1
MG =@ =1021]|, MGBI=|221
11 1 11 1
and
3 2 1
MG33) =13 3 1
11 1

Exercise. Is this matrix TNN?

Y
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TNN Matrices and restoration algorithim
Goodearl-L.-Lenagan (2017)

e If the entries of M are nonnegative and its zeros form a Cau-
chon diagram, then M(mp) is TNN.

e Let M be a matrix with real entries. We can apply the deleting
derivation algorithm to M. Let N denote the resulting matrix.

Then M is TNN iff the matrix N is nonnegative and its zeros
form a Cauchon diagram.
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Main Result

Goodearl-L.-Lenagan (2017) Let F be a family of minors in
the coordinate ring of My, »(C), and let F; be the corresponding
family of quantum minors in Og(Mmp(C)). Then the following

are equivalent:

1. The totally nonnegative cell associated to F is non-empty.

2. Fqis the set of quantum minors that belong to torus-invariant
prime in Og(Mpm p(C)).
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