
Worksheet 2

PRIMA Summer School on Brauer Classes

August 3, 2021

Again this is much more than you can do in half an hour. Start with #0 and
#1, then maybe look at another problem that interests you, or look at them
later on your own.

0. Introductions.

What are your colleagues’ names? What university are they at? Have
they done any travelling this summer?

1. The Brauer class in a down-to-earth example.

Let X be a smooth projective curve of genus 2 over C.

(a) For any positive integer d there is a natural map from the symmetric
power Symd

X to the Picard scheme PicdX , sending a d-tuple of (un-
ordered, not necessarily distinct) points p1, · · · , pd to the line bundle
OX(p1 + . . .+ pd). Convince yourselves that the fiber over L ∈ PicdX
is PH0(L).

(b) Suppose that d ≥ 3. Use the Riemann–Roch formula and Serre
duality to see that for any line bundle L ∈ PicdX we have h0(L) = d−1
and h1(L) = 0. Thus the map Symd

X → PicdX is a Pd−2 bundle.

(c) In fact the Brauer class of this Pd−2 bundle vanishes, as follows.
Choose a point x ∈ X. Consider map Symd−1

X → Symd
X given by

p1, . . . , pd−1 �→ p1, . . . , pd−1, x,

and convince yourselves that the image is a divisor that gives a
relative O(1). Or consider the map Sym2

C → Symd
C given by

p1, p2 �→ p1, p2,

d−2 times� �� �
x, . . . , x ,

and convince yourselves that its image gives a rational section of
Symd

C → PicdC . Or observe that

χ(L) = d− 1 χ(L⊗OX(x)) = d,

and gcd(d−1, d) = 1, so we get a relative O(1) by an argument from
the end of today’s lecture.
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(d) But tomorrow we will want to work over a field k that is not alge-
braically closed – especially k = R or Q or Qp – and then the Brauer
class need not vanish. But if X has a k-rational point then the same
argument shows that the Brauer class vanishes. In fact it is enough
to have a point over an extension field of degree relatively prime to
d− 1, or indeed a 0-cycle of degree relatively prime to d− 1. Notice
that the canonical bundle gives a 0-cycle of degree 2.

(e) Optional: Generalize to curves of genus g. It may be helpful to know
that the degree of the canonical bundle is 2g − 2.

2. Issues with compactified Picard schemes of reducible schemes.

In lecture we saw that rank-1 torsion-free sheaves on an integral scheme are
stable with respect to any embedding in PN , so we can get a well-behaved
compactification of the Picard scheme by taking its closure in the moduli
space of stable sheaves. But here we will see that on a scheme with more
than one irreducible component, some line bundles may be semi-stable or
unstable.

Let X be the “banana curve,” the union of two P1s meeting at two points,
still over C. Write X = A ∪B.

(a) Since A and B are isomorphic to P1, we can talk about the line
bundles OA(n) and OB(n) for any n ∈ Z. Convince yourselves that
there are exact sequences

0 → OB(−2) → OX → OA → 0 (1)

0 → OA(−2) → OX → OB → 0. (2)

(The point is that the ideal sheaf of A in A ∪ B = X is the same as
the ideal sheaf of A ∩B in B.)

Also convince yourselves that there is a “Mayer–Vietoris sequence”

0 → OX → OA ⊕OB → OA∩B → 0. (3)

(b) Suppose we embed X into PN in such a way that OX(1) has degree
2 on each component: so, perhaps confusingly, we have OX(1)|A =
OA(2) and OX(1)|B = OB(2). Let L be a line bundle on X whose
restriction to A has degree a, and whose restriction to B has degree
b. Using (3), check that the the Hilbert polynomial of X is

χ(L(t)) = 4t+ a+ b.

Hint: Recall that χ(OP1(n)) = n+ 1.
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(c) Use the exact sequence (1) to see that L is unstable if b > a + 2.
Similarly, use (2) to see that L is unstable if b < a − 2. Convince
yourselves that L is semi-stable if b = a + 2 or a − 2, and stable if
b = a+ 1, a, or a− 1.

So if we fix the Hilbert polynomial of L then there are either
two values of a and b that give line stable bundles, or one value that
gives stable bundles and two that give semi-stables. (It might help
to graph these inequalities in the ab-plane.)

(d) Suppose we embed X into a different PN so that OX(1) has degree
1 on A and degree 2 on B. For example, X might be the union of a
line A and a conic B in P2.

Now the Hilbert polynomial of L is

χ(L(t)) = 3t+ a+ b,

L is unstable if b > 2a− 1 or b < 2a− 3, semi-stable if b = 2a− 1 or
b = 2a− 3, and stable if b = 2a+ 2.

So for a fixed Hilbert polynomial there exactly one value of a
and b that give stable line bundles, and zero or one values that give
semi-stables.

(e) Optional: Convince yourselves that for a fixed a, b ∈ Z, there is a C∗

worth of line bundles L with degree a on A and degree b on B. Or
to put it another way, there is a C∗ worth of ways to glue OA(a) and
OB(b) together to get a line bundle on X.

Then let’s sketch how these C∗s get compactified by allowing line
bundles to degenerate to torsion-free sheaves. If x ∈ A\B, then ideal
sheaf of x in X is a line bundle on X with degree −1 on A and degree
0 on B. If x wanders into A ∩B, then the ideal sheaf is torsion-free
but no longer a line bundle. If x continues wandering into B\A, then
the ideal sheaf becomes a line bundle with degree 0 on A and degree
−1 on B. Think about this and discuss any questions that arise.
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3. Details of O(1)⊕O(1) degenerating to O(2)⊕O on P1.

(a) Recall, or convince yourselves, that Ext1P1(O(2),O) is 1-dimensional,
and that the non-split extension is given by the exact sequence

0 → O (−y
x )−−−−→ O(1)2

( x y )−−−−→ O(2) → 0, (4)

sometimes called the Euler sequence. Here x and y are homogeneous
coordinates on P1.

We seek a vector bundle on P1 × A1 where for every t ∈ A1, the re-
striction to P1 × {t} is the extension of O(2) by O corresponding to
t ∈ Ext1(O(2),O): thus for t = 0 we want O(2) ⊕ O, and for all other t
we want O(1)2. You might not be surprised to hear that such a “universal
extension” exists for general reasons, but let’s construct it explicitly in
this case.

Let f be the projection P1×A1 → P1, and consider the map of vector
bundles

f∗O(−1)2




−y 0
x −y
0 x
0 ty




−−−−−−−→ f∗O4. (5)

The cokernel will be the bundle that we want.

(b) If we restrict to t = 0, then the cokernel of (5) is O(2)⊕O.

Hint: Convince yourselves that the image of the top 3 × 2 block is
the kernel of the surjection

O3 ( x2 xy y2 )−−−−−−−→ O(2).

(c) If we restrict to some t �= 0, then the cokernel of (5) is O(1)⊕O(1).

Hint: Do some row operations to the 4× 2 matrix so it is block
diagonal with two 2 × 1 blocks; this won’t change the image, so it
won’t change the cokernel. Then recognize the cokernel of each block
using the exact sequence (4) twisted by −1.

(d) Optional: Think about how this relates to Hirzebruch surfaces.

By projectivizing O ⊕ O(2), we get the Hirzebruch surface F2,
which can also be described as the blow-up of the cone x2 + y2 = z2

in P3 at its singular point. By projectivizing O(1) ⊕ O(1) we get
F0 = P1 × P1. From our work above we see that F2 is deformation-
equivalent and thus diffeomorphic to P1 × P1, although it is not
isomorphic as a complex manifold or algebraic variety. This was
Hirzebruch’s original point in introducing his surfaces: the even ones
F0,F2,F4, . . . are all diffeomorphic, as are the odd ones F1,F3,F5, . . . ,
and all of them are birational to one another, but none is isomorphic
to any other, as can be seen by looking at the cone of curves.

(One place to read about Hirzebruch surfaces is Barth, Hulek,
Peters, and van de Ven, Compact complex surfaces, Chapter V �4.)
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4. Checking stability in practice.

It sounds hard to check that for every subsheaf G ⊂ F , the reduced Hilbert
polynomial pG(t) is smaller than pF (t). But in many cases of interest, we
can get away with checking much less.

Let X be smooth and connected, and let F be a vector bundle of rank
2. Work through the following sketch to prove that if every line bundle
L ⊂ F satisfies pL(t) < pF (t), then F is stable.

(a) Suppose that G ⊂ F . Because F is torsion-free, we cannot have
rank(G) = 0.

(b) If rank(G) = 2 then F/G is torsion, so either G = F or pG(t) < pF (t).

(This is similar to what we saw in lecture with line bundles.)

(c) If G ⊂ F has rank 1, take double duals to get a commutative square

G ��

��

F

��
G∗∗ �� F ∗∗.

Because F is a vector bundle, the right-hand vertical map is an
isomorphism. Because the top horizontal map is injective, and the
left-hand vertical map is generically an isomorphism, the bottom
horizontal map is generically injective. Hence it is actually injec-
tive: otherwise the kernel would be a torsion sheaf. Next, because
rank(G) = 1 and X is smooth, G∗∗ is a line bundle; this is the heart
of the proof, and you might have to Google it. Lastly, the quotient
G∗∗/G is torsion, so pG∗∗(t) ≥ pG(t), so if G was destabilizing for F
then G∗∗ would be at least as bad.

(If you want to study the intersection of two quadrics in P5 mentioned in
lecture, this is a good way to prove stability.)
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