
Worksheet 1

PRIMA Summer School on Brauer Classes

August 2, 2021

This is much more than you can do in half an hour, and not everyone will have
the background to do every problem. Maybe start with #0 and #1, and then
if you have more time, go to the problem that interests you the most.

0. Introductions.

What are your colleagues’ names? What university are they at? What is
their favorite algebraic geometry book?

1. An explicit P1 bundle with no relative O(1).

Work over C. Let X ⊂ P2 × P5 be the “universal conic,” cut out by the
equation

ax2 + bxy + cy2 + dxz + eyz + fz2 = 0

where x, y, z are coordinates on P2 and a, b, c, d, e, f are coordinates on P5.
Let

X
π1

~~

π2

  
P2 P5

be the two projections, and let

OX(m,n) := π∗1OP2(m)⊗ π∗2OP5(n).

(a) Observe that the fibers of π2 are conics. Let U ⊂ P5 be the open set
where the discriminant

ae2 + b2f + cd2 − bde− 4acf

does not vanish, and let V = π−12 (U); then π2 : V → U is a smooth
conic bundle, so it is a P1 bundle in the analytic topology, or the
étale topology if you prefer that.

(b) Observe that π1 : X → P2 is a P4 bundle, and that OX(0, 1) is a
relative O(1). Thus every line bundle on X is of the form OX(m,n).

1



(c) If we take a smooth fiber of π2 and identify it with P1, then the
restriction of OX(m,n) is OP1(2m). Convince yourselves that this
implies that there is no relative O(1) for V → U , or equivalently
that V → U has no rational section, so it is not a P1 bundle in the
Zariski topology.

(d) The P1 bundle V → U does not extend to a P1 bundle over P5,
because the Brauer group of P5 is trivial. To see this you could use
the exponential sequence as in problem 3 below, or you could use the
Kummer sequence

0→ Z/n→ O∗P5 → O∗P5 → 0

f 7→ fn

to see that H2(O∗P5) has no n-torsion for any n.

(e) Optional: You can get sections of V → U on an explicit étale cover
as follows. Let U ′ ⊂ V be cut out by the equations

z = 0 and b2 − 4ac 6= 0.

Convince yourselves that π2 : U ′ → U is étale, meaning smooth of
relative dimension 0, and that the pullback bundle V ×U U ′ → U ′

has a section. Then for any line L ⊂ P2, we can replace z = 0 with
the equation of the line, and b2 − 4ac 6= 0 with an equation that
says that the conic is not tangent to the line, to get a similar map
U ′L → U , and by letting L vary, we get an étale cover of U .

2. Quillen bundles.

In lecture we claimed that if α ∈ H2(O∗X) is the Brauer class of a Pn-
bundle π : P → X, then π∗α = 0. And clearly the pullback bundle
π∗P = P ×X P → P has a section, given by the diagonal. So there
must be a natural vector bundle F on P such that PF = P ×X P . It is
sometimes called the Quillen bundle, and its restriction to a Pn fiber will
be OPn(1)n+1, even though there need not be a line bundle on P whose
restriction to a fiber is O(1).

(a) We have seen that if E is a vector bundle and E′ = E ⊗ L for some
line bundle L, then PE ∼= PE′. (If you were uncomfortable with this
before, now is a good time to think it through.) But the tautological
bundles OPE(−1) and OPE′(−1) are different: convince yourselves
that OPE′(−1) = OPE(−1) ⊗ π∗L, by thinking about 1-dimensional
subspaces of the fibers of E′ and E.

Thus the vector bundles

π∗E ⊗OPE(1) and π∗E′ ⊗OPE′(1)

are naturally isomorphic.
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So when we have a Pn bundle π : P → X that is locally but
not globally the projectivization of a vector bundle, the bundles
π∗E ⊗ OPE(1) glue together to give a global bundle F on P , whose
restriction to a Pn fiber is OPn(1)n+1.

(b) Here is another perspective. The tangent bundle TPn has

Ext1(TPn ,OPn) = H1(Ω1
Pn) = H1,1(Pn) = C

canonically, with a basis given by the inclusion

Z ∼= H2(Pn,Z) ↪→ H1,1(Pn).

The preferred extension is given by the Euler sequence

0→ OPn

 x0...
xn


−−−−−→ OPn(1)n+1 → TPn → 0.

For the projectivization of a vector bundle E, the family version of
the Euler sequence is

0→ OPE → OPE(1)⊗ π∗E → TPE/X → 0.

But even for a Pn bundle P → X that is not the projectivization of
a vector bundle, there is still a preferred extension

0→ OP → F → TP/X → 0,

and the restriction of F to a Pn fiber is OPn(1)n+1. Discuss any
questions you have about this.

(c) Optional, if you like Azumaya algebras: Notice that the vector bun-
dles π∗E ⊗OPE(1) from part (a) satisfy

π∗(π
∗E ⊗O(1)) = E ⊗ E∗ = End(E).

Convince yourselves that in general, π∗ of the Quillen bundle will be
an algebra that is locally but not globally a matrix algebra, that is,
Azumaya algebra.

(d) Also optional: Let C ⊂ P2 be a smooth conic over a field, but allow
the possibility that the field is not algebraically closed and the conic
has no rational points, hence is not isomorphic to P1. For example,
C could be the conic x2 + y2 + z2 = 0 over R. Argue that F :=
TP2(−1)|C is a Quillen bundle.

Generalize this description of the Quillen bundle to the case of
a P1 bundle π : P → X defined over C, but allow the possibility that
the Brauer doesn’t vanish. (If you haven’t seen this analogy before, a
conic without points over a non-closed field is like a family of conics
without a rational section over a closed field. And this analogy works
for any kind of variety – doesn’t have to be conics.)
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3. Finding Br(X) with the exponential sequence.

(a) Work over C, in the analytic topology. Then we have exponential
sequence

0→ Z→ OX → O∗X → 0

f 7→ e2πif

Write out the associated long exact sequence up to H3(OX).

(b) Conclude that if X is a smooth complex variety with H0,2(X) = 0
and H3(X,Z) torsion-free, then Br(X) = 0. This includes Pn, com-
plete intersections of dimension ≥ 3, rational surfaces, and curves.

On the other hand, if H0,2(X) 6= 0 then Br(X) is infinite. This
includes K3 and Abelian surfaces.

Enriques surfaces are another interesting case, with H0,2 = 0
and π1 = Z/2, hence Br = Z/2.

(c) Optional: If we retell the whole story about

H1(X,PGLr)→ H2(O∗X)

and the exponential sequence using smooth or continuous functions
rather than holomorphic ones, then everything works the same, but
now OX has no higher cohomology, essentially because of partitions
of unity. Convince yourselves that if the Brauer class of a Pr−1 bundle
maps to 0 in H3(X,Z), then it is the projectivization of a smooth
vector bundle, though perhaps not a holomorphic one.

4. If you really like transgression in spectral sequences.

Let X be a complex projective variety, and let π : P → X be a Pr−1 bundle
in the analytic topology. Then the E2 page of the Leray spectral sequence

Ep,q2 = Hp(Rqp∗O∗P ) ⇒ Hp+q(O∗P )

looks like
...

0 · · ·

Z
d

,,

· · ·

C∗ Pic(X) H2(O∗X) · · ·

and the exact sequence of low degree terms looks like

0→ Pic(X)
π∗−→ Pic(P )→ Z d−→ H2(O∗X)

π∗−→ H2(O∗P ).
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Get your hands dirty with the map d = d0,12 and convince yourselves that
d(1), or maybe d(−1), is the Brauer class α ∈ H2(O∗X) associated to P .
Recall that we defined α using the connecting homomorphism

H1(X,PGLr(C))→ H2(O∗X)

in Čech cohomology coming from the short exact sequence of coefficient
groups

1→ C∗ → GLr(C)→ PGLn(C)→ 1,

so you’ll need some Čech description of d.

5. If you like big diagrams of exact sequences.

Let π : P → X be a Pr−1 bundle, and let α ∈ H2(O∗X) be its Brauer class.

(a) We saw in lecture that r · α = 0. The more usual way to see this is
as follows. Let SLr(C) be the special linear group, whose center is
the scalar matrices with an rth root of unity down the diagonal, and
let PSLr(C) be the quotient by this center. Then we get a diagram
of exact sequences

1 // Z/r� _

��

// SLr(C)� _

��

// PSLr(C)

��

// 1

1 // C∗ // GLr(C) // PGLr(C) // 1

(1)

Convince yourselves that the right-hand vertical map is an isomor-
phism. Thus in the long exact sequences we get

H1(X,PSLr(C)) // H2(X,Z/r)

��
H1(X,PGLr(C)) // H2(O∗X),

(2)

so the image of the bottom horizontal map is r-torsion.

(b) In lecture we interpreted α as the obstruction to the existince of a
relative O(1) on π : P → X, and we said that r ·α = 0 because ω∗P/X
provides a relative O(r). So it seems like α might be an obstruction
to taking an rth root of ωP/X on P , in some sense. . . Let’s explore
this idea.
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First, extend the diagram (1) to a diagram with exact rows and
columns as shown:

1

��

1

��

1

��
1 // Z/r

��

// SLr(C)

��

// PSLr(C)

��

// 1

1 // C∗

zr

��

// GLr(C)

det
��

// PGLr(C)

��

// 1

1 // C∗

��

C∗

��

// 1

1 1

So in the left-hand column we have the Kummer sequence, and you
should convince yourselves that everything is ok.

Next, these short exact sequences give long exact sequences that
extend the diagram (2) to the black parts of

Pic(X)

·r
��

π∗ // Pic(P )

·r
��

Pic(X)

��

π∗ // Pic(P )

��
H1(X,PSLr(C)) // H2(X,Z/r)

��

π∗ // H2(P,Z/r)

��
H1(X,PGLr(C))

��

// H2(O∗X)

·r
��

π∗ // H2(OP∗)

·r
��

0 // H2(O∗X)
π∗ // H2(OP∗).

To this we add the blue parts coming from π∗ of the Kummer se-
quence. Notice that the maps from the second row to the third give
obstructions to taking rth roots of line bundles.

Now take [P ] in the left-hand column, which maps to α ∈
H2(O∗X) and then 0 ∈ H2(O∗P ). It has a preferred lift α̃ ∈ H2(X,Z/r).
If α 6= 0 then α̃ is not the obstruction to taking an rth root of anything
in Pic(X). But π∗α̃ ∈ H2(P,Z/r) is probably the obstruction to
taking an rth root of ωP/X , or maybe ω∗P/X . And if α = 0 and

P = PE then α̃ is probably the obstruction to taking an rth root of
det(E). Think about all this and see if you can say anything precise,
or illuminating, or both.
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