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q = ∇×u + h

H0H

h

Conserves E, moments of Qn

 

= ∫

 

qn

 

dA

 

(circulation, enstrophy…)
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Origins
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mechanics of simple quasi-geostrophic

 

models.

 

J. Fluid Mech., 75, 691-703.

“…equilibrium…flow is positively correlated with bottom topography 
(anticyclonic

 

flow over seamounts)”

• Inviscid

 

→ cons of energy, enstrophy
• Spectrally truncated
• Equilibrium via maximization of entropy

μ<ψ> = <q>



Example:  circulation over bumpy ridge 
•

 

Consider 100 realizations from random initial conditions 
•

 

Ensemble mean flow develops on ~ eddy turnover time
topography < ψ

 

>

H LL

•

 

Physics is advective

 

rearrangement of PV, 
constrained by conservation of E, moments of q

h

Flow in 
pseudowestward 
direction 
(shallower water 
on right in NH)



What is Entropy?

•
 

Entropy is the INFORMATION DEFICIT 
between detailed knowledge (microstate)

 and statistical knowledge (macrostate)
 of a system



Simple example

•
 

N particles in a partitioned box: N = nL

 

+ nR

•
 

N=2 →
 

22=4 possible configurations

1 2 1

0 1 0Information
deficit (bits)

# Microstates
N!

nL !nR !

Macrostate

•

•

• • •

•

nL nR nL nR nL nR
2 0 1 1 0 2
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…and we want to know the results… a detailed report would be…But if N is large this could get tedious…all we really want to know is the number of head vs tails, which can be expressed as a very simle PDF: % of flips which were heads, % of flips which were tails.  

As we all know for two flips there are 4 possible outcomes, and a detailed report would consist of one of these binary strings at the top, whereas the statistical outcome would consist of one of these PDFs.  Now the 3rd row here describes the number of possible detailed outcomes or microstates which give rise to each PDF or macrostate, and the last row is the aforementioned information deficit between these two descriptions, which is equal to the log2 of the multiplcity. So we see there are two instances, where we have all heads or all tails, in which the knowledge contained in the detailed report and the PDF are exactly equivalent, so that no information is lost.  In the case where there’s one head and one tail, however, there are two outcomes that yield the same PDF, and so the multiplicity is 2, and the information lost in going from the detailed to the pdf description is 1 bit �



Simple example

1 1.0x1029 1

0 97 0Information
deficit (bits)

# Microstates
N!

nL !nR !

Macrostate

nL nR nL nR nL nR
100 0 50 50 0 100

•
 

N particles in a partitioned
 

box: N = nL

 

+ nR

•
 

N=100 →
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possible configurations
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•
 

Now introduce time dependence:

probability X
 

(unit time)-1

 

a particle will undergo 
transition

 
between two boxes

nL nR

macrostate

entropy

Simple example



•
 

Now introduce time dependence:

probability X
 

(unit time)-1

 

a particle will undergo 
transition

 
between two boxes

nL nR

macrostate

entropy

Simple example

• dS/dt

 

≥

 

0 in ensemble mean → arrow of time
• Maximizing S subject to

 

constraints (nL

 

+ nR

 

= N here) locates equilibrium



Defining entropy for GFD 

•

 

To define microstates,  represent 
p

 

by sampling of N

 

realizations  
(N sufficiently large to resolve 
finest scales of p)

•

 

To define macrostates, divide 
phase space into M observably 
distinguishable cells, consider 
observable PDF Pi = ni

 

/ N

a b c

p

t=t0 t1 >t0 t2 >t1



Defining entropy for GFD 

•

 

Multiplicity (# microstates for given 
macrostate) is 

•

 

Corresponding

 

information deficit or 
entropy

 

is

(k = 1/log 2 if in bits)

w = N!
Πi

 

ni

 

!

S = k log w



Defining entropy for GFD 

•

 

Multiplicity (# microstates for given 
macrostate) is 

•

 

Corresponding

 

information deficit or 
entropy

 

is

(k = 1/log 2 if in bits)

w = N!
Πi

 

ni

 

!

S = k log w



Defining entropy for GFD 

•

 

Multiplicity (# microstates for given 
macrostate) is 

•

 

Corresponding

 

information deficit or 
entropy

 

is

(k = 1/log 2 if in bits)

•

 

Using    log ni

 

≈ ni

 

log ni

 

- ni

 

, Pi = ni

 

/ N

w = N!
Πi

 

ni

 

!

S = k log w

S = -
 

k Σi

 

Pi

 

log Pi

S = -
 

k ∫
 

P log P dY
or



Bretherton, F. P. and D. Haidvogel, 1976: 
Two-dimensional turbulence above 
topography.

 

J. Fluid Mech., 78, 129-154.

“…equilibrium…flow is positively correlated with 
bottom topography (anticyclonic

 

flow over 
seamounts)”

“…initially turbulent flow tends to a steady state 
with streamlines parallel to contours of constant 
depth, anticyclonic

 

around a bump”

• Inviscid

 

→ cons of energy, enstrophy
• Spectrally truncated
•

 

Equilibrium via maximization of 
entropy

•

 

Small-scale dissipation dissipates enstrophy, 
conserves energy 
• No explicit truncation
• Equilibrium via minimization of enstrophy

μ<ψ> = <q> μψ = q

Salmon, R., G. Holloway and M. C. 
Hendershott, 1976: The equilibrium statistical 
mechanics of simple quasi-geostrophic

 
models.

 

J. Fluid Mech., 75, 691-703.



Salmon, R., G. Holloway and M. C. 
Hendershott, 1976: The equilibrium 
statistical mechanics of simple quasi-

 
geostrophic

 

models.

 

J. Fluid Mech., 75, 
691-703.

Bretherton, F. P. and D. Haidvogel, 1976: 
Two-dimensional turbulence above 
topography.

 

J. Fluid Mech., 78, 129-154.

“…in the limit of infinite resolution the canonical mean state is statistically 
sharp, that is, without eddy energy on any scale, and is identical to the 
nonlinearly stable minimum enstrophy

 

state”

Carnevale, G. F. and J. S. Frederiksen, 1987: Nonlinear 
stability and statistical mechanics of flow over 
topography.

 

J. Fluid Mech., 175, 157-181.
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“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”
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SHH76 World Ocean

Equilibrium→
Disequilibrium

“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”

Treguier

 

(GAFD 1989)
Merryfield & Holloway (JFM 1997)

Holloway (JFM 1978)
Carnevale, Frisch & Salmon (J Phys

 

1981)} Moment closure 
implies dS/dt≥0

}
μ<ψ> = <q>

 
continues

to ~hold if eddy timescales < 
forcing, dissipative timescales 



•
 

Remove constant-N constraint by adding  A particles s-1

 

to the 
left compartment, and extracting particles from the right 
compartment at the same rate 

•
 

This external forcing prevents 
equilibrium from being attained. 
However, the tendency for S 
increase due to random 
“dynamics”

 
persists

entropy increase tendency acts 
as “force”

 
which balances 

applied force in statistical 
equilibrium

Simple example revisited
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(typically not conserved by numerics)
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SHH76 World Ocean

Equilibrium→
Disequilibrium

“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”

Higher-order
invariants

Abramov

 

and Majda

 

(PNAS 2003):

∫
 

qn

 

dA,  
n ≥3

(typically not conserved by numerics)

<q> = μ<ψ>          <q> = f (<ψ>)

n = 3 statistically relevant, n >3 not 

special numerics

 

to 
conserve many moments

3rd

 

moment = 0  3rd

 

moment ≠

 

0  

<q
>

<ψ ><ψ >
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Stratification
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Stratification
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SHH76: two-layer QG



SHH76 World Ocean

Equilibrium→
Disequilibrium

“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”

Higher-order
invariants

Stratification

Merryfield (JFM 1998):  arbitrary N(z) → μ(z)ψ(z) = q(z)

SHH76: two-layer QG

Weaker stratification Stronger stratification

• mean flows bottom intensified
• isopycnals

 

domed over bumps
• barotropic

 

transport independent of N(z)



Equilibrium→
Disequilibrium

Higher-order
invariants

Stratification

Finite 
topography

Merryfield, Cummins and Holloway (JPO 2001)

SHH76 World Ocean
“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”



Equilibrium→
Disequilibrium

Higher-order
invariants

Stratification

Finite 
topography

Merryfield, Cummins and Holloway (JPO 2001)

Barotropic

 

vorticity

 

equation:  

where q= ζ + f
H

,      ζ =∇⋅H-1∇ Ψ

Discretize

 

in space, letting Δx→0

μ<Ψ > + C = <q>

SHH76 World Ocean
“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”



<q
>

<Ψ >

Numerical test

Merryfield, Cummins and Holloway (JPO 2001)

Cross section of random 
topography

Barotropic

 

streamfunction

 

over topography



Equilibrium flow along a shelf

Merryfield, Cummins and Holloway (JPO 2001)

Unstratified



Equilibrium flow along a shelf

Merryfield, Cummins and Holloway (JPO 2001)

Unstratified

Maximum current upslope

 

of maximum slope



Equilibrium flow along a shelf

Merryfield, Cummins and Holloway (JPO 2001)

Unstratified

With depth dependence as in QG

Maximum current upslope

 

of maximum slope



Rectified flow over a seamount

Beckmann and Haidvogel

 

(JGR 1997)

•×
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equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
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Equilibrium→
Disequilibrium

Higher-order
invariants

Stratification

Finite 
topography

Observations
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SHH76 World Ocean
“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”

Equilibrium→
Disequilibrium

Higher-order
invariants

Stratification

Finite 
topography

Observations

Global circulation 
models

Merryfield & Scott  (Ocn

 

Mod 2007)
Holloway (JGR 2008)

∧z

∧s

∧

uN∫u⋅uN
 

|s||f|dV
|s||f|dV∫

∧

∧T = ∧

-1  ≤
 

T
 

≤
 

1  

Diagnose pseudo-westward tendency using topostrophy



Example of eddy-active ocean model: Ocean Model for Earth Simulator (OFES)

Δx=1/10°



Topostrophy
 

in OFES 1/10°
 

model

-1 0 1T<0 T>0

D
ep

th
 (m

)

Bottom depth (m)

Merryfield & Scott  (Ocn

 

Mod 2007)



-1 0 1T<0 T>0

Bottom depth (m)

Topostrophy
 

in eddying vs
 

non-eddying global 
ocean models

OFES LANL/NPS1/10° 1/10°

CCSM3 ~ 1° CGCM3 ~ 2°



Topostrophy
 

in eddying 
vs

 
non-eddying global 
ocean models

Merryfield & Scott  (Ocn

 

Mod 2007)



Observed topostrophy
 

from current 
meter archive

Holloway  (JGR 2008)



Observed topostrophy
 

vs
 

models
 sampled at current meter locations

Holloway  (JGR 2008)

Model Number of points Observed topostrophy Modeled topostrophy
CCSM3 6921 0.302 0.116
CGCM3 5663 0.292 -0.026
OFES 6526 0.261 0.139
POP 6975 0.314 0.147

Eddy active models



Observed topostrophy
 

vs
 

models
 sampled at current meter locations

Holloway  (JGR 2008)

Model Number of points Observed topostrophy Modeled topostrophy
CCSM3 6921 0.302 0.116
CGCM3 5663 0.292 -0.026
OFES 6526 0.261 0.139
POP 6975 0.314 0.147

Eddy active models

How much resolution is
 

“enough”?



SHH76 World Ocean
“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”

Equilibrium→
Disequilibrium

Higher-order
invariants

Stratification

Finite 
topography

Observations

Global circulation 
models

Merryfield & Scott  (2008)

Ultra-high res basin model

•

 

Model fictitious basin using MOM4
•

 

Resolutions 1/3°

 

to 1/48°
•

 

Simplified physics:
-

 

Stratified by temperature
-

 

Linear equation of state
-

 

Steady zonal wind stress
•

 

Laplacian

 

+ biharmonic

 

viscosity, coefficients varied  to 
-

 

Preserve resolution of Munk

 

layer
-

 

Preserve grid Reynolds number 



Model configuration

τx Longitude(Pa)τx Longitude(Pa)

La
tit

ud
e

Temperature snapshot

Inertial
jet



��

u
 

over seamount

1/3° 1/6°

1/12° 1/24° 1/48°

Note changes 
of scale .0004 ms-1 .004 ms-1

.04 ms-1  (all)



1/3° 1/6°

1/12° 1/24° 1/48°

-1 0 1T<0 T>0

Whole-domain topostrophy

Presenter�
Presentation Notes�
Topostrophy, a concept that was introduced by Greg Holloway�
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Kinetic Energy vs
 

Depth
D

ep
th

 (m
)

Kinetic energy density (m2/s2)

Solid: mean flow Dashed: eddies 



Ratio of abyssal to upper ocean KERatio of abyssal to upper ocean KE

Resolution

Eddies 

R
at

io Mean flow 

KE>1000m / KE<1000m



What about parameterization?

•
 

Back to arrow of time

•
 

Holloway (JPO 1992): replace viscous operator 
with forcing toward higher entropy state

•
 

Consequences of entropy-gradient forcing are 
not always obvious!



ν∇2ψ2 δ2

Rayleigh frictionZero-mean forcing

Two-layer flow with surface forcing and bottom friction



Merryfield and Holloway (JFM 1999)
topography

Two-layer flow with surface forcing and bottom friction

lower layer
upper layer

low bottom friction

ν∇2ψ2 δ2

Rayleigh frictionZero-mean forcing



Merryfield and Holloway (JFM 1999)

topography

Two-layer flow with surface forcing and bottom friction

lower layer

upper layer

low bottom friction



high bottom friction
Merryfield and Holloway (JFM 1999)

topography

Two-layer flow with surface forcing and bottom friction

lower layer

upper layer

low bottom friction



Merryfield and Holloway (JFM 1999)

topography

Two-layer flow with surface forcing and bottom friction

!

low bottom friction

lower layer

upper layer

high bottom friction



Intrepretation

•
 

Consider ensemble mean 
•

 
Heuristically replace nonlinear terms by tendency toward 
equilibrium q*i,k

 

: 

•
 

Substitute equilibrium q*i,k

•
 

Find ψi

 

as a function of k, ν0 /A



Merryfield and Holloway (JFM 1999)

Increasing bottom friction

Increasing bottom friction



Rectified flow over a seamount

Beckmann and Haidvogel

 

(JGR 1997)



SHH76 World Ocean
“We suggest that some of the statistical trends observed in non- 
equilibrium flows may be looked on as manifestations of the 
tendency for turbulent interactions to maximize the entropy of the 
system.”

Equilibrium→
Disequilibrium

Higher-order
invariants

Stratification

Finite 
topography

Observations

Global circulation 
models

Ultra-high res 
basin model



Summary

•
 

Equilibrium flow over topography generally in 
pseudowestward

 
direction

•
 

Non-ideal fluids experience “force”
 

toward higher entropy

•
 

Numerical and observational evidence is mounting that 
this effect has strong influence on (deep) ocean 
circulation

•
 

OGCMs
 

not converged, even at 1/10°



Statistical dynamics in the cosmos



2d turbulence and stellar systems
 obey similar statistical mechanics 
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The second aside I show just because it’s kind of neat…it’s been pointed out that the Vlasov-Poisson dynamics governing a collection of stars and the 2d turbulence eqn have similar forms and conservation principles, and in fact obey a very similar stat mech…so here just for fun is a movie of 2d turbulence (in this case there’s a weak biharmonic dissipation to keep enstrophy from piling up at the grid scale)…we see that isolated vortices form and merge as the flow slowly spins down.  This is nothing new, and has been the subject of numerous papers, but what’s worth pointing out (let’s back up a little)�
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2d turbulence and stellar systems
 obey similar statistical mechanics 

After P.H. Chavanis
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it’s been pointed out that the Vlasov-Poisson dynamics governing a collection of stars and the 2d turbulence eqn have similar forms and conservation principles, and in fact obey a very similar stat mech…so here just for fun is a movie of 2d turbulence (in this case there’s a weak biharmonic dissipation to keep enstrophy from piling up at the grid scale)…we see that isolated vortices form and merge as the flow slowly spins down.  This is nothing new, and has been the subject of numerous papers, but what’s worth pointing out (let’s back up a little)�



Picturing entropy

Σ

E1 =E2 =E3

E3 E3
E1 +E2 +E3 = E

E1 +E2 +E3 = E
k1

2E1 +k2
2E2 +k3

2E3 = Q2

3d turbulence: E conserved 2d turbulence: E and Q2 conserved

Entropy gradient

E1

E2

E1

E2
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