Parameterization in large-scale
atmospheric modelling

General parameterization problem:
Evaluation of terms involving “averaged” quadratic and higher

order products of (unresolved) deviations from
“large-scale” variables

Examples:

(a) Turbulent transfer in the boundary layer

(b) Effects of unresolved wave motions (e.g. gravity-wave drag)

(c) Cumulus parameterization

Other kinds of parameterization problems: radiative transfer, cloud
microphysical processes*, chemical processes



Large-scale variables and equations

Let an overbar denote the result of an averaging or filtering operation which
suppresses fluctuations with temporal and spatial scales smaller than

pre-defined limits. e.g. for some appropriately smooth and bounded variable ¥

after averaging:
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We refer to this as the large-scale variable and assume that our model has
sufficient spatial and temporal resolution to represent the variation of this
variable once we have determined the equations governing it and an
appropriate solution methodology.



Typically, if the variable, 4 has the following governing equation:
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And the mass continuity equation is: ey +Ve (\/p)z 0;

Then applying the averaging operation gives, approximately:
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In cases to be considered (e.g. cumulus parameterization) VeV 'y’ = owx)
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and determining this term is the goal of the parameterization in this case
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Energy Conservation (e.g., Gill, 1982, ch. 4)
E=pVeV/2 (kinetic energy)

h= CpT +Lg, +® (moist static energy)
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Forair 1 ~14x10°m?/s at15C, 100hPa
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(Iu, V) Molecular dynamic and kinematic viscosity
OX

D=v +

Kolmogorov scales (for which viscosity and 3 14 /4
dissipation are independent parameters): L = (V /'(D)l Uy = (V-(D)l

These are small for the atmosphere (~ 1mm, .1 m/s) . Therefore it is permissible
to neglect viscous terms for parameterization purposes but not to ignore
effects/processes that lead to dissipation and associated heating



Quasi-anelastic approximations for GCM parameterization

Background state:

-hydrostatically balanced

- slowly varying (on the smaller, unresolved horizontal and temporal scales - e.g. that of quasi-
balanced planetary scale circulation regime).

- deviations from it are small enough to allow linearization of the equation of state (ideal gas law) to
determine relationships between key thermodynamic variables:
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Using these results leads to the following:
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Terms involving p'/p will also be neglected compared to unity. Get equations for the
background state by averaging:

o\pVy +V.(p31 )+ ﬂgx\fz_vHﬁ_dﬁ@W_'V') + other such terms
z

A oo i) (2 o5 v, p) =0 - D 7l £ ) | ) e,



Parameterization of the effects of Moist
Convection in GCMs

e Mass flux schemes
— Basic concepts and guantities

— Quasi-steady Entraining/detraining plumes (Arakawa&Schubert
and similar approaches)

— Buoyancy sorting
« Raymond-Blythe, Emanuel
« Kain-Fritsch
— Closure Conditions, Triggering
e Adjustment Schemes

— Manabe
— Betts-Miller



Traditional Assumptions for Cumulus Parameterization:

1. Quasi-steady assumption: effects of averaging over a cumulus life-
cycle can be represented in terms of steady-state convective
elements .

[Transient (cloud life-cycle) formulations: Kuo (1964, 1974);
Fraedrich(1974), Betts(1975), Cho(1977), von Salzen&McFarlane
(2002).]

2. Pressure perturbations and effects on momentum ignored

[Some of these effects have been reintroduced in more recent work,
but not necessarily in an energetically consistent manner]



Parameterization of Moist Convection

Starting equations (neglect terms in curly and other small terms brackets
and assume implicitly that the background state is slowly varying on the

parameterized scales):
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plus similar equations for vapour, condensed water, and other scalar quantities

For the traditional formulation ignore crossed-out terms



AKIO ARAKAWA AND WAYNE HOWARD SCHUBERT
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FFig. 1, A unit horizontal area at some level between cloud base and the highest
cloud top. The taller clouds are shown penetrating this level and entraining environ-
mental air. A cloud which has lost buoyancy i1s shown detraining cloud air into the
environment.




Spatial Averages

For a generic scalar variable, y .
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Convective-scale average 1
(for a singlecumulus up/downdraft) : . = r ” ydA
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Large-scale average: 7 = (
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Vertical velocity: W = oW, + (1- O—)We ‘WC‘ >> ‘W‘, ‘We‘
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Cumulus effects on the larger-scales

Start with a general conservation equation for Yy
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Plus the assumption: £ = P

(similar to using anelastic assumption for convective-scale motions)

(i) Average over the large-scale area (assuming fixed boundaries):
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AP o i)+ A g A=) Apot))

Mass flux (positive for updrafts): M, = pow,
Also: 6;4 =0(Q,). +(1-0)(Q,). + “Top hat” assumption: (W*Z*)c =0

In practice (e.g. in a GCM) the prognostic variables are also implicitly time
averages over convective cloud life-cycles



(i) Apply cumulus scale sub-average to the general conservation equation,
accounting for temporally and spatially varying boundaries (Leibnitz rule):
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Mass continuity gives:

; V., = the outward directed normal flow velocity

(relative to the cloud boundary)
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Entrainment (inflow)/detrainment (outflow):
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Top hat: Ae=Xe=X , Xp~ X



Summary for a generic scalar, y :
(steady and top hat in cloud drafts: neglect crossed-out terms)
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When both updrafts and downdrafts are present, both entraining environmental air:
M, =pow, =M, +M,;E=E,+E,;D=D,+ Dy

M. x.=M .+ M xq;Dx.=D,x, + Dyxy



Basic cumulus updraft equations (top-hat, traditional)

{Dry static energy: s=C_ T+gz; Moist static energy : h=s+Lg; M, = pow, }
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mass conservation

dry Static Energy

vapour
condensate

moist Static Energy

(virtual temperature)



Entrainment/Detrainment

Traditional organized (e.g.plume) entrainment assumption:
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Arakawa & Schubert (1974) (and descendants, e.g. RAS, Z-M).

- A Is a constant for each updraft [saturated homogeneous (top-hat) entraining
plumes]

- detrainment is confined to a narrow region near the top of the updraft, which is
located at the level of zero buoyancy (determines 1)

Kain & Fritsch (1990) (and descendants, e.g. Bretherton et al, 2004 ).

- Rc is specified (constant or varying with height) for a given cumulus

- entrainment/detrainment controlled by bouyancy sorting (i.e. the effective
value of « is constrained by buoyancy sorting)

Episodic Entrainment and non-homogeneous mixing

(Raymond&Blythe, Emanuel, Emanuel&Zivkovic-Rothman):

-Not based on organized entrainment/detrainment

- entrainment at a given level gives rise to an ensemble of mixtures of undiluted and
environmental air which ascend/descend to levels of neutral buoyancy and detrain
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Figure 1. A schematic view of a conditionally unstable atmospheric sounding showing the mean
temperature and water vapor mixing ratio profiles , typical orientations of dry (DA) and moist

(M A) adiabats, and isopleths of mixing ratio (MR). Also shown are the 0C and -20C isotherms,
locations of the lifting condensation level (L.CL) and the levels of free convection (LFC), and neu-
tral buoyancy (LNB) for an undiluted parcel that does not contain liquid water.
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Figure 2. Schematic view of a conditionally unstable atmospheric sounding in terms of the mean
dry (s) and moist (/) static energy profiles. Also shown are the moist static energy profiles for satu-
rated air with the same temperature as the mean sounding (4*), the moist static energy profiles for
undiluted (vertical long-short dashed) and diluted (bold long-short dashed) cumulus ¢loud sound-
ings, the levels of free convection (LFC) and neutral buoyancy (LNB) for an undiluted parcel
which ascends pseudo-adiabatically (1.e. does not retain condensed water).

environmental temperature and pressure. In this figure an undiluted parcel
ascending from the atmospheric boundary layer (ABL) follows the wvertical
straight (long-short dashed) line. Its temperature exceeds that of the environment
between the points where its moist static energy exceeds the saturated value for
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Determining fractional entrainment rates (e.g. when T, = T, at the top of an updraft)
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Note that since updrafts are saturated with respect to water vapour above the LCL:
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This determines the updraft temperature and w.v. mixing ratio given its mse.



Fractional entrainment rates for updraft ensembles

(a) Single ensemble member detraining at z=z,
E,=A(z)M,;D, =0 (z,<z<Z)
M, =M, exp|A(z,)(z-2,)]

Detrainment over a finite depth Az, : D(z,) =M ,(z,)/ Az,

(b) Discrete ensemble based on a range of tops
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Buoyancy Sorting

Entrainment produces mixtures of a fraction, f, of environmental air and (1-f) of
cloudy (saturated cumulus updraft) air. Some of the mixtures may be

positively buoyant with respect to the environment, some negegatively buoyant,
some saturated with respect to water, some unsaturated

v
»
»

d
<

0, saturated (cloudy)

positively
buoyant




Kain-Fritsch (1990) (see also Bretherton et al, 2003):

Suppose that entrainment into a cumulus updraft in a layer of thickness oz leads
to mixing of AM_dz of environmental air with an equal amount of cloudy air. K-F
assumed that all of the negatively buoyant mixtures (f>f.) will be rejected from the
updraft immediately while positively buoyant mixtures will be incorporated into the
updraft. Let P(f) be the pdf of mixing fractions. Then:

f 1
E =22,M, [ P(f)df D =22,M, [ (1-F)P(f)df
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This assumes that negatively buoyant air detrains back to the environment without
requiring it to descend to a level of nuetral bouyancy first).

Emanuel:

Mixtures are all combinations of environement air and undiluted cloud-base air.
Each mixture ascends(positively buoyant)/descends (negatively buoyant),
typically without further mixing to a level of nuetral buoyancy where it detrains.



Closure and Triggering

« Triggering:
— It is frequently observed that moist convection does not
occur even when there is a positive amount of CAPE.

Processes which overcome convective inhibition must
also occur.

e Closure:

— The simple cloud models used in mass flux schemes
do not fully determine the mass flux. Typically an
additional constraint is needed to close the formulation.

— The closure problem is currently still poorly constrained
by theory.

Both may involve stochastic processes



Closure Schemes In Use
(typically to determine the net mass flux at the
base of the convective layer)

Moisture convergence~ Precipitation (Kuo,
1974- for deep precipitating convection)

Quasi-equilibrium [Arakawa and Schubert, 1974
and descendants (RAS, Z-M, Zhang&Mu, 2005)]

Prognostic mass-flux closures (Pan & Randall,
1998;Scinocca&McFarlane, 2004)

Closures based on boundary-layer forcing
(Emanuel&Zivkovic-Rothman, 1998; Bretherton
et al., 2004)
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