
Parameterization in large-scale 
atmospheric modelling

General parameterization problem: 
Evaluation of terms involving “averaged” quadratic and higher  
order products of (unresolved) deviations from 
“large-scale” variables

Examples: 

(a) Turbulent transfer in the boundary layer

(b) Effects of unresolved wave motions (e.g. gravity-wave drag)

(c) Cumulus parameterization 

Other kinds of parameterization problems: radiative transfer, cloud 
microphysical processes*, chemical processes



Large-scale variables and equations
Let an overbar denote the result of an averaging or filtering operation which

suppresses fluctuations with temporal and spatial scales smaller than 

pre-defined limits. e.g. for some appropriately smooth and bounded variable 

after averaging: 
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We refer to this as the large-scale variable and assume that our model has
sufficient spatial and temporal resolution to represent the variation of this 
variable once we have determined the equations governing it and an 
appropriate solution methodology.  



Typically, if the variable,         has the following governing equation:
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Φ++= vp LqTch (moist static energy)
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νD ( )νμ, Molecular dynamic and kinematic viscosity

Energy Conservation (e.g., Gill, 1982, ch. 4)
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For air sm /104.1 25−×≈ν at 15C , 100hPa

Kolmogorov scales (for which  viscosity and 
dissipation are independent parameters): ( ) ( ) 4/14/13 ; DD νν == KK UL

These are small for the atmosphere (~  1mm, .1 m/s) . Therefore it is permissible
to neglect viscous terms for parameterization purposes but not to ignore 
effects/processes that lead to dissipation and associated heating



Quasi-anelastic approximations for GCM parameterization

Background state:

-hydrostatically balanced 
- slowly  varying (on the smaller,  unresolved  horizontal and temporal scales - e.g. that of  quasi- 
balanced planetary scale circulation regime).  
- deviations from it are small enough to allow linearization of the equation of state (ideal gas law) to 
determine relationships between key thermodynamic variables:
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Terms involving            will also be neglected compared to unity. Get equations for the 
background state by  averaging: 
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Using these results leads to the following:

negligible for the parameterized  scales  
but not for the resolved scales

+ other such terms



Parameterization of the effects of Moist 
Convection in GCMs

• Mass flux schemes
– Basic concepts and quantities
– Quasi-steady Entraining/detraining plumes (Arakawa&Schubert 

and similar approaches)

– Buoyancy sorting
• Raymond-Blythe, Emanuel
• Kain-Fritsch

– Closure Conditions, Triggering

• Adjustment Schemes
– Manabe
– Betts-Miller



1. Quasi-steady assumption: effects of averaging over a cumulus life- 
cycle can be represented in terms of steady-state convective 
elements .

[Transient (cloud life-cycle) formulations: Kuo (1964, 1974); 
Fraedrich(1974), Betts(1975), Cho(1977), von Salzen&McFarlane 
(2002).]

2. Pressure perturbations and effects on momentum ignored

[Some of these effects have been reintroduced in more recent work, 
but not necessarily in an energetically consistent manner]

Traditional Assumptions for Cumulus Parameterization:



Starting equations  (neglect terms in curly and other small terms brackets 
and assume implicitly that the background state is slowly varying on the 
parameterized scales): 
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Parameterization of Moist Convection
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plus similar equations for vapour, condensed water, and other scalar quantities

For the traditional formulation ignore crossed-out terms
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Spatial Averages

For a generic scalar variable,  :χ
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Cumulus effects on the larger-scales
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Plus the assumption: 

(i) Average over the large-scale area (assuming fixed boundaries):
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(similar to using anelastic assumption for convective-scale motions)

;

In practice (e.g. in a GCM) the prognostic variables are also implicitly time 
averages over convective cloud life-cycles



(ii) Apply cumulus scale sub-average to the general conservation equation, 
accounting for temporally and spatially varying boundaries (Leibnitz rule):

c
ccc

bn
c

c Q
z

wwdlv
At

)(]))([()( **

χ
σ

σχχσρχσρσχρ
=

∂
+∂

++
∂

∂
∫

Mass continuity gives:

0)(
=

∂
∂

++
∂

∂
∫ z

awdlv
At

c
n

c

ρσρσρ

σ
;           the outward directed normal flow velocity

(relative to the cloud boundary)
=nv

Entrainment (inflow)/detrainment (outflow):

dlvHv
A

E nn
c

)](1[ −−= ∫
σ

σρ dlvHv
A

D nn
c

)(∫=
σ

σρ { 0;1
0;0

)(
≥
<

=
f
f

fH

Define: dlvHv
EA nb

c
n

c
E )](1[ −= ∫ χσρχ dlvHv

DA nb
c

n
c

D )(χσρχ ∫=

Top hat: χχχ ≅= eE cD χχ =; ;



Summary for a generic scalar, χ :
(steady and top hat in cloud drafts: neglect crossed-out terms)
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Basic cumulus updraft equations (top-hat, traditional)

( )

( )

( )

( ) 0

0

=
∂

∂
+−

−=
∂

∂
+

−=
∂

∂
+−

=
∂

∂
+−

=
∂

∂
+−

z
hMhEhD

Pc
z

lMlD

c
z

qMqEqD

Lc
z

sMsEsD

z
MED

uu
uu

uu
uu

uu

u
uu

uuu

u
uu

uuu

u
uu

{Dry static energy: s=Cp T+gz;   Moist static energy : h=s+Lq;                    }

mass conservation

dry Static Energy

moist Static Energy

condensate

vapour

uu wM σρ=

κθ )( ppT ovv = ; )608.1( lqTTv −+≅ (virtual temperature)pcR /=κ ;



Traditional organized (e.g.plume) entrainment assumption:  
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Entrainment/Detrainment

Arakawa & Schubert (1974) (and descendants, e.g. RAS, Z-M): 
- λ

 

is a constant for each updraft [saturated homogeneous (top-hat) entraining 
plumes]
- detrainment is confined to a narrow region near the top of the updraft, which is 
located at the level of zero buoyancy (determines λ

 

)
Kain & Fritsch (1990) (and descendants, e.g. Bretherton et al, 2004 ):
- Rc is specified (constant or varying with height) for a given cumulus  
- entrainment/detrainment  controlled by bouyancy sorting (i.e. the effective 

value of        is constrained by buoyancy sorting)α

Episodic Entrainment and non-homogeneous mixing
(Raymond&Blythe, Emanuel, Emanuel&Zivkovic-Rothman):
-Not based on organized entrainment/detrainment 
- entrainment at a given level gives rise to an ensemble of mixtures of undiluted and 
environmental air which ascend/descend to levels of neutral buoyancy and detrain
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Determining fractional entrainment rates (e.g. when             at the top of an updraft)
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Note that since updrafts are saturated with respect to water vapour above the LCL:

This determines the updraft temperature and w.v. mixing ratio given its mse.
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Fractional entrainment rates for updraft ensembles
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Buoyancy Sorting

Entrainment produces mixtures of a fraction, f, of environmental air and (1-f) of
cloudy (saturated cumulus updraft) air. Some of the mixtures may be 
positively buoyant with respect to the environment, some negegatively buoyant, 
some saturated with respect to water, some unsaturated
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( )evθ cf *f

saturated (cloudy)
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Kain-Fritsch (1990) (see also Bretherton et al, 2003):

Suppose that entrainment into a cumulus updraft in a layer of thickness δz leads 
to mixing of λMc dz of environmental air with an equal amount of cloudy air. K-F 
assumed that all of the negatively buoyant mixtures (f>fc ) will be rejected from the
updraft immediately while positively buoyant mixtures will be incorporated into the 
updraft. Let P(f) be the pdf of mixing fractions. Then: 
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This assumes that negatively buoyant air detrains back to the environment without 
requiring it to descend to a level of nuetral bouyancy first).

Emanuel: 

Mixtures are all combinations of environement air and undiluted cloud-base air. 
Each mixture ascends(positively buoyant)/descends (negatively buoyant), 
typically without further mixing to a level of nuetral buoyancy where it detrains. 



Closure and Triggering

• Triggering:
– It is frequently observed that moist convection does not 

occur even when there is a positive amount of CAPE. 
Processes which overcome convective inhibition must 
also occur. 

• Closure:
– The simple cloud models used in mass flux schemes 

do not fully determine the mass flux. Typically an 
additional constraint is needed to close the formulation. 

– The closure problem is currently still poorly constrained 
by theory.

Both may involve stochastic processes



Closure Schemes In Use 
(typically to determine the net mass flux at the 

base of the convective layer)
• Moisture convergence~ Precipitation (Kuo, 

1974- for deep precipitating convection)
• Quasi-equilibrium [Arakawa and Schubert, 1974 

and descendants (RAS, Z-M, Zhang&Mu, 2005)]
• Prognostic mass-flux closures (Pan & Randall, 

1998;Scinocca&McFarlane, 2004)
• Closures based on boundary-layer forcing 

(Emanuel&Zivkovic-Rothman, 1998; Bretherton 
et al., 2004)
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