
Parameterization of Boundary Layer Processes in AGCMs
- The atmospheric boundary layer (ABL) is the region adjacent to the surface of the earth 
within which the exchange of momentum, heat, moisture, and other constituents
between the atmosphere and the surface takes place mainly by turbulent processes.

- Within a sub-layer near the surface vertical fluxes of momentum, heat, and moisture
are almost independent of height. 

- Within the remainder of the ABL quantities that are typically conserved under adiabatic 
motion are found to be nearly uniform with height (‘well mixed’)(e.g. potential temperature 
and specific humidity for cloud-free conditions or equivalent potential temperature and total 
water mixing ratio in cloudy conditions). 

Cartoon of typical structure
for a cloud-free convectively 
Active ABL
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Cloud-free ABL :

- neglect effects of water vapour condensation

- ignore (for simplicity) virtual temperature effects (i.e.
water vapour is passive)

Basic equations for the large (resolved) scale: 

(buoyancy)

(1)

(2)

The depth of the ABL (and of turbulent regions in the free atmosphere) is 
typically small compared to a density scale-height (e.g.                      ). Therefore
vertical variations in the background density are often ignored in ABL modelling.
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Potential Temperature vs Static Energy
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If departures from hydrostatic conditions are small: 
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It can also be shown that

Also:
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Turbulent Kinetic Energy Equation:

Therefore the R.H.S. of (2) is approximtely ( ) ( ) zwTcQ p ∂′′∂− θθ

Usual current approach: combine a turbulent kinetic energy (tke) equation 
with an eddy diffusivity formulation. Get a tke equation by forming an equation for 
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Approximate tke (    ) equation: (e.g. Stull, 1988)e
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Eddy diffusion approximation for second moments:
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Diffusivities:

eeHmeHmeHm clK ,,,,,, =

Traditional approach

deHml ,,,

Dissipation:

Physical and dimensional considerations suggest

ddd lc // 2/3eeD == τ

Specifying the lengths                 and coefficients is a closure issue. 
Large literature on this topic. Several hypotheses have been explored in recent 
work (e.g. Sanchez&Cuxart, 2004, Lenderink&Holtslag, 2004, and references therein)



Matching to the surface layer: 
Monin - Obukhov similarity requires that:
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Boundary conditions and constraints

k : von Karmen constant,   
Pr : turbulent Prandtl number, 
UL , θL : wind speed, potential temperature at reference level (     ) 

roughness heights (where surface values apply).tzz ,0
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Bulk exchange formulae (resulting from fits to non-linear solutions):
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The functions                are derived from field campaign observations 
(e.g. Dyer, 1974) . Moisture and other tracers treated similarly.
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Limitation:

-Dependence of vertical fluxes on local mean gradients  does not account 
for heat transfer in the convectively active ABL where mean gradients are small
(slightly stable) but upward heat flux is positive. 

-Requires introduction of non-local effects.

For a scalar quantity,        :χ
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Approaches:
(a) Introduce prognostic equations for second moments with associated closure
Assumptions to derive the nonlocal effects 
(e.g. Deardorf, 1966, Mellor& Yamada, 1974, Cuijpers & Holtslag , 1993, 
Abdella & McFarlane, 1997, Gryanik&Hartmann, 2002, ….). 
Simplest formulations give:

cgHnl Kw γθ =′′ )(



(b) Represent non-local transfer effects as being associated with plume-like 
Eddies (e.g. Siebesma et al, 2007) 
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(From Siebesma et al)
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