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I. INTRODUCTION

Mathematical models of different types and different levels of
sophistication have been widely used in the chemical industry. These
models have ranged from large plant models, used to determine the
optimum operating conditions which maximize or minimize some
economic criterion, to process models which predict the steady state
oOperation of processes or the dynamic response of the process to
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disturbances. A plant model usually consists of several process modelg,

In order to obtain these process models it is necessary to have Some

understanding of the underlying physical and chemical mechanismg

involved. This gives rise to mechanistic or phenomenological modelling,

These mechanistic models should be capable of describing the basig

physical and chemical steps so that a process may be both designed anq

operated properly.

Apart from these conventional engineering applications, mechanistic

models provide valuable insight into the behaviour of any system in
which chemical reactions are taking place. For example, it is vitally
important to know the environmental impact that a chemical may have
when added to an ecosystem. Many of these systems are very complex,
so that selection of a suitable model is by no means transparent before
or after data have been collected. In fact, one can frequently postulate
several models which, superficially at least, represent experimental
kinetic data. The problem then is to determine the constants and if
possible choose between these candidate models.

This report presents a procedure for building a mechanistic model
which represents an experimental reaction system. Starting with one
or more plausible models, the principle of maximum likelihood is
applied to the data collected in order to estimate the constants in the
model and choose the best model among those originally postulated.
Then, conventional statistical techniques are used to determine the
suitability of this “best’’ model. If the model is inadequate, a technique
is presented for identifying the specific limitations. Then the model
builder must postulate additional physical meaningful models to
accommodate this limitation and the procedure is repeated.

There are two parts to this report. In the first part, the model
building procedure is developed from elementary statistical principles.
The important concept of maximum likelihood is introduced and
illustrated with an example. The need for proper experimental design
and an iterative experimentation-analysis program is presented with
examples. The second part of the paper illustrates the model building
procedure by finding a model which describes the fate and distribution

of DURSBAN® insecticide added to a laboratory system which simulates
a pond of water.

I1. MopEL BUIiLDING TECHNIQUES

A. TYPES OF MATHEMATICAL MODELS

In theory, it is possible to represent all the phenomena occurring in
any physical system by a precise mathematical model. To do this

i
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degree of sophistication of these models will range from complex
multiparametered models to simple one-parameter models. Mode]
discrimination is the statistical procedure which chooses or distinguishegs
among the various postulated models to find the model or models which
best describe the system studied. Note that this discrimination only
takes place among the set of postulated models. That is, the mode]
selected by model discrimination may be the best of the originally
postulated models but totally inadequate in describing the actual
physical system. Using statistical residual analysis on the data collected,
it is frequently possible to identify specific inadequacies in this “best”
model. The model builder should then be able to suggest other plausible
models which include one or more additional terms to accommodate the
inadequacies in the original model system. Then discrimination is carried
out on the new models and the process is repeated.

It is apparent from the foregoing discussion that model building is,
in general, an iterative procedure. The steps may be summarized as
follows:

1. Postulate one or more models to describe the physical system studied.

2. Use model discrimination techniques to identify the best model
among those postulated in step 1 from experimental data collected
on the system.

3. Determine whether the model identified in step 2 adequately describes
the experimental data generated. If it does the procedure is
terminated.

4. Use residual analysis to identify the specific inadequacies of the
model selected in step 2 and suggest a new model or models to
accommodate these inadequacies. Return to step 2.

This model building procedure is continued until a suitable model is
found and the procedure is terminated at step 3.

As an example, consider the problem of building a model to describe
the appearance and disappearance of a chemical B with time where B
is formed from A. Suppose concentration-time data is available for
component B only. In the absence of any prior knowledge of the
chemistry of the process, the simplest model to postulate corresponds
to an irreversible reaction

&y
A>B M,

where £, is a reaction rate constant. By adding an additional parameter,
ky, describing the reversible reaction between 4 and B, one obtains

ky
A=2B M,

ks
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Choosing between these two models is equivalent t.o determining
whether or not the reverse reaction rate constant k, is greajter than
gero, i.e. ky>0. M, is said to be more complex thar.l Ml since it has an
additional parameter. The effect on the model discrlmmat.lon meth(?d of
adding k, to M, to form M, is analogous to th(? physical chemlst?y
phenomenon of changing the degrees of freedom in a system. That is,
there is twice as much flexibility in making M, explain t.he (.iata as M,.
This increased flexibility is reflected in the statistical crlter{on used to
discriminate the models. For example, if M, and M, “explam. the data
to the same extent”’, the additional parameter k, is indeterminate and
M, is said to adequately represent the data. ' N

Suppose the concentration—time data for this example exhibited a
maximum. Then both M; and M, would be inadequate. It would be
necessary to postulate different models to expla?n the data anc.l recycle
through the model building procedure. Some typical models which could
account for such a maximum are

B ks
A-B-C M,
k; ks
Aa2B-C M,
ks
B ks
A-BaC M,
ks
kz k3
AeBa(C M,
Bk

Generally, some of these models can immediately be elimipafted by
physicochemical reasoning. The most suitable of those remaining can
be identified by the discrimination methods discussed below. If the
model selected is still inadequate, additional ones can be postulated
and the procedure continued until an adequate model or models is
found. . '
Usually little difficulty is experienced in generating a variety f’f
models of varying degrees of sophistication. A good. rule 'to fol!ox.v in
choosing models is to keep them as simple as possible (i.e. minimal
number of parameters and degrees of freedom). In fact, the best approach
is to progress from the simplest model to progressively more comple?z
models until no further increase in complexity is warranted by experi-
mental uncertainties in this data. This principle of going from the
simple to the complex is called Ockham’s razor (Solberg, 1?7 2) or .the
principle of parsimony (Kittrell, 1970). A good example of th1§ principle
is the stepwise add procedure of multilinear regression analysis (Draper
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and Smith, 1966). Blau et al. (1970, 1972a, b) have demonstrated the
utility of this technique in a wide variety of model building applicationg,

C. THE DESIGN PROBLEM AND THE ANALYSIS PROBLEM

In the procedure described above, it is assumed that the available
data collected on the system is sufficient to choose between different
models. In many cases this is not true. Consider the problem of choosing
between the following two chemical reaction models

k, k,

A-B-C M,
ke ke

A-BoaC M,

ks
where A, B and C represent three chemical species and k,, k, and %,
represent reaction rate constants. Concentration—time data is available
for component B as shown in Fig. 1. Chemically speaking, to choose

Concentration of B

time, t

F1ge. 1. Inadequate concentration time data.

between these models it is mnecessary to decide whether the dis-
I
appearance of B occurs irreversibly, B—>C (Model 1), or whether B is
k2
in equilibrium with C, B=C (Model 2). The key to distinguishing the
k

models is the rate constant k4. That is, Model 1 is best if kg is zero while
Model 2 is best if & is nonzero. This can be expressed in statistical terms
by saying, discrimination between the models is equivalent to testing
the null hypothesis k3 = 0. The data of Fig. 1 does not allow us to make
this distinction between models. Even doubling the number of points
between ¢ = 0 and ¢ = #, would shed no new light on the value of k.
What is needed, of course, is some data at times greater than t,.
Figure 2 shows two situations which might arise. If Model 1 is correct
the concentration of B would drop off to zero for ¢>¢,. Conversely, an
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| equilibrium concentration greater than zero, B,> 0, would be observed
 if Model 2 were correct. Note that only one or two additional data
¥ points may be necessary to distinguish these models provided they are

Jocated or “designed’ properly, i.e. >, L
The foregoing illustrates that there are two aspects to the application

| of the model discrimination phase (step 2 of the model building

procedure). The first is the design problem, i.e. choosing the experi-
mental conditions in such a way that discrimination is possible. The
second is the analysis problem, i.e. analysing the data to assess how much
discrimination has been achieved. The design problem is the more

xxx =Mz
000= M,
o XOx
0% Oy
o O o,
s o #x
o X [e)
5] o X
= X I g X
2B, o *
5 o | °
e X o
] W© | o
o )
x | o
T

time, t ———— =

Fia. 2. Adequate concentration time data.

fundamental one. If for some reason the analysis of the data is faulty
it may be repeated. However, the damage of poor design is.irreparable
and invalidates subsequent data analysis regardl(?ss f)f its level.of
sophistication. Considerable research effort by the scientific commum.ty
has recently been expended on this design problem (Box and Hill,
1967; Reilly, 1970; Hsiang and Reilly, 1971). The me-thods developed
rely heavily upon efficient optimization algorithm_s 1mplement<?d on
high-speed computers. It is beyond the scope of this paper to discuss
these methods in detail, and the interested reader is referred to the
literature. In the remainder of this paper it will be assumed tl.xat
adequate designs have been employed so that the problem in choosing
among models is only one of analysis.

D. THE LIKELIHOOD APPROACH TO MODEL DISCRIMINATION

Suppose that a set of models has been postulated and experimental
data has been collected. In this section the statistical methodology for
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using the experimental data to discriminate among the models will be
presented. The methods to be discussed here are intended to be applied
to models which are nonlinear in the parameters, and are not
recommended for models linear in the parameters. The two most
commonly used approaches are the likelihood approach and the
Bayesian approach. The latter is based upon a subjective interpre.-
tation of probability (Bayes, 1763), a measure of the degree of belief that
an event will happen rather than the objective interpretation in which
the probability of an event is a long-term relative frequency. The
Bayesian approach is readily embraced by scientists and engineers who
advocate using knowledge other than that contained in the data. On
the other hand, likelihood methods are claimed to have an advantage
in objectivity in that they “let the data speak for themselves”. Since
the purpose of this paper is not to compare discrimination methods, the
simpler likelihood method will be discussed. This is not an in indictment
against the Bayesian approach. The interested reader may wish to
compare the two methods in the excellent paper by Reilly (1970).
Suppose p(z, ) is a probability function which when given values of
one or more parameters 6, allows the probability of any outcome to be
calculated. For example, the bionomial probability function

n!

P, 6) = z!(n—2x)!

07(1 — 9)n—= (1)

becomes the following function of  alone

5!

plw 1/2) = z!(6—2x)!

(BF(4)5=

which is the probability of obtaining « heads in five tosses of a true coin.

In this case n is the number of tosses or trials,  the number of heads

and 6 the probability of a head in one toss. ’
Suppose now that the coin is being tested for trueness and therefore

6 is unknown. If it is tossed five times and a head turns up once, this

:vaill):zb!e information may be substituted into the probability fun’ction

o obtain

5!

L) = m

0(1—0)* (2)
The terminology L(6) is used to emphasize that this is a function of
6 only and is called the likelihood function. If a value of 0, say 6,, is
substituted into L(6), it gives the probability that the event which
actually happened (one head in five tosses) would have if the value of 6
were 6. Comparing the values of the likelihood function for two different
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values for 0 gives the relative plausibilities of those two values in the
light of the data. The comparison is carried out by examining their
ratio, L(0,)/L(0,), sometimes called the odds ratio. In the above example,
L(1/5)/L(1/2) = 2-51. This indicates that the data obtained are 2-51
times as probable if § = 1/5 as they are if § = 1/2, and the value 2-51
can be taken as the weight of the evidence against the coin being true.
(1/5 is the value of § which maximizes L(f), while § = 1/2 if the coin
is true.) This would not ordinarily be taken as strong evidence that the
coin is not true. A likelihood ratio of 10 is ordinarily taken as showing
a real difference in plausibility, while 100 denotes strong preferences
for the value of one parameter over the other (Reilly, 1970; Barnard et
al., 1962).

This concept of a likelihood ratio for measuring the plausibilities
of different parameter values can be extended to measuring the
plausibilities of different mathematical models. First, consider the
problem of discriminating two Models M, and M, where M,, a function
of two parameters, is denoted f;(6;, 0,, z), and M,, a function of three
parameters, is denoted fy(0;, 0,, 05, ), where « is a single independent
or controlled variable. Suppose some dependent variable y is determined
for n different experiments corresponding to » values of the in-
dependent variable generating the data set {(y:, ;)¢ = 1, ..., n}. If the
Models M, and M, are to be used to predict the observed values of ¥,
then

Yi = f1(0y, 0y, @)+ & M,
Yi = fo0y, 05, 05, i) +ec M, (3)

where ¢g; is the experimental error corresponding to the ith observation.
For any set of parameter values, a set of differences between observed
and calculated values is determined. These differences, called residuals,
are given by

ei(0;) = yi—fi(05, @) j = 1, 2 (4)

where 0, = (0, 6,) for Model M, and 0, = (6,, 8,, 85) for Model M,.
Let p(e, 05, x; ) represent the joint probability density function of
all experimental errors in the observed values where

€= (& €95 vnvs €4), X = (Tq, Xgy ..y L)

and ¥ = (¢, ¥y, ..., Ym). Here ¥ represents the parameters of the
probability distribution, e.g. the mean and variance for the normal
distribution. Under the hypothesis that the jth model is frue, i.e. that
there is no modelling error, the residuals are estimates of experimental
error and may be substituted for the errors in the joint probability
density function. This now gives a function depending only on the
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parameters in the model and the form of the probability distribution
which is the likelihood function L(0;, ¥) = p(e(6;), ).

If the experimental errors ¢; are uncorrelated from point to point,
(Draper and Smith, 1966), the joint probability density function is the
product of the individual probabilities p;(e;(6;), ).

That is

Ly(0y, ) = pi(el(ef)’ V)-pa(ex(0y), ¥)...p.(e(0y), ¥)
= -H1 piei(0;), ¥) (5)
i=
Now, if the experimental errors are independent (Draper and Smith,

1966) and normally distributed with zero means and a known variance
o?, the individual probability density functions are

1 (6))2
(- 47)

Substituting these values into Eqn (5) gives the likelihood function

pilei(0y), ¥) = p(ed(6y), 0?) =

[\
ﬁ
Q

1 n ie 2
Ly(6;, P) = Ly(0;) = (‘\7—277:0);6’(13<— I1 ‘il j))

i=1 20‘2

(7)
which is valid for the jth model. For any particular parameter values,

e.g.0; = éj, this function gives the probability that the data set which
actually was generated ({(ys, ;)7 = 1, ..., n}) would have been generated

by the jth model with parameters 6; = éj. Since M, has two parameters,
while M, has three parameters, it is not possible to form a likelihood
ratio for the same parameter values. Consequently, some way must be
found to eliminate this “‘nuisance’” dependence on the parameters. One
way of eliminating parameters is by ‘“‘maximizing them out”. Thus, form
the likelihood ratio
mx L(0,, 0)

0.0, La(01, 05, 05)

This is a comparison of the likelihoods of the two models at their
individual best. It is simply a comparison of how well the two models
can be made to fit the data, expressed in likelihood terms. To compare
more than two models the maximum likelihood for each model is
calculated and two-way comparisons made by examining the ratios.
This is expressed by the relationship

o, Li(6;)

Ry =% k=1,...,mk#j 9

R12 =

(8)

where m is the number of different models being compared.

P
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When the models have different numbers of parameters there are
inherent difficulties with any discrimination method. Using the likeli-
hood method described here, good discrimination requires that the
likelihood ratio be much higher than usual if the favored model is the
one with the larger number of parameters.

Now the likelihood functions L;(0;) given by Eqn (7) are maximized
by choosing 6; values which minimize

n n
S0 = X el0)® = ¥ {yi=fi(0 w)}® (10)
1= 1=
This is the familiar least-squares criterion for estimating 6;. In passing
it should be noted that the justification for using the least-squares
criterion to obtain parameter estimates is that it maximizes likelihood
function when the error distribution is normal.
The maximum likelihood for the jth model can be written

where
RSS; = “;m S;(05) (12)

is the conventional residual sum of squares obtained with the optimal
least-squares parameter estimates. Since only ratios are relevant
between likelihoods, the constants which multiply all the likelihoods
in a comparison set are irrelevant and have been dropped from Eqn (11).

The maximum likelihood approach is in principle easy to use. For
each of the models postulated, determine the least-squares parameter
estimates and the associated residual sum of squares. Then select the
model with the smallest residual sum of squares and calculate the
likelihood ratios relative to this model. Recall that a likelihood ratio of
10 is ordinarily taken as showing a real difference in plausibility while
100 denotes a strong preference for one model over the other. These
numbers assume that the number of parameters in the models are the
same. Therefore, it is necessary that the likelihood ratios be somewhat
higher than usual if the favored model has a large number of parameters.

E. EXAMPLE OF MODEL DISCRIMINATION BY LIKELIHOODS

Consider the problem of choosing between the following three
models (Reilly, 1970)

M;: yi = O+ &
My: yi = 051+ Oasi+ &
Mj: yi = O3y exp (039%4) + &
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where z is a single dependent variable and y is the dependent variable

Data was collect i ivi i
pate s collected at four different values of z giving the points shown

X; Yi

0 —1-290
1 5-318
2 7-049
3 19-886

It is also knqwn that the errors &; are normally distributed with means
zero and variances o2 = 1. The residual sum of squares RRS; for each
of the models and the maximum likelihood values are shown below

Model (j)  RSS;  KL* L}/L*
1 28-465 0-050 4000
2 22-473 1 202-2
3 11-853 202-2 1

The maximum likelihoods have been multiplied by a constant K in
order to give them manageable values. Model 3 is obviously preferred

to the other models. In fact, the data were ener ifici i
. X ted
Model 3 with 6,, = 6, = 1 and ¢ = 1. penermted sty vsing

F. PARAMETER ESTIMATION PROCEDURES

An 1¥npo'rtant part of the likelihood discrimination method is the
determma.tlor.l of those parameter values which minimize the least
squares criterion of Eqn (10). That is, it is necessary to have a procedure
which will find those parameter values 6* which

minimize §(6) = ¥ (0)* = 3. [yi~/(0, )} (13)
= i=1
where x; = (2,4, Zgis ..., Tp;) Tepresent the ith value of p independent

variables. For models that are linear in the parameters, i.e. models of
the form o

£(6, x) = kzl Ou (14)

the parameters are readil i i

: y estimated by linear least squares (Draper
and Smith, 1966). fl‘o obtain the estimates 0%, it is only necessary to solve
a p x p system of linear equations, for which a unique solution is usually
guaranteed.

Unfortunately, most meaningful mechanistic models are nonlinear in
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the parameters. Here it is necessary to apply iterative parameter
estimation procedures. That is, a sequence of parameter estimates
g, 02, ..., 05, ... are generated which eventually converge to the
optimum. This presents numerous complications such as initial guesses
of 0! to institute the sequence, efficiency and effectiveness of con-
vergence algorithms, multiple minima in the least-squares surface, and

oor surface conditioning (Rosenbrock and Storey, 1966). A discussion
of these topics is beyond the scope of this paper and are mentioned only
to inform the reader that these problems exist. Nonlinear least-squares
parameter estimation is a nontrivial task. The paper by Bard and
Lapidus (1968) discussed the merits of several of the different algorithms
as they relate to maximum likelihood estimation.

G. TESTS OF MODEL ADEQUACY

After likelihood discrimination has chosen the best model from the
set of candidate models, it is still necessary to test the suitability of this
model to describe the data. Then a method is needed to identify any
specific limitations in the model so that the model builder may modify
the existing model to overcome these limitations. Although several new
methods exist (Blau et al., 1972a, b), they do not supplant the more
conventional tests of model adequacy of classical statistical theory,
i.e. the goodness of fit test and tests of residuals.

1. Goodness of fit

A goodness of fit test compares the amount of variability between
the differences of predicted and experimental values, i.e. the residual
sum of squares, with the amount of variability in the data itself. This
comparison allows the model builder to determine whether the overall
model is adequate. If the model being considered is correct, the residual
for the ith data point using the least-squares estimates 6%,

ei(0%) = yi—f(0%, xa),

will be a measure of experimental error. A measure of the total amount
of variation unaccounted for by the model is the residual sum of squares

gl[yz—f(o*, xi)J2 (15)

It is a direct result of the orthogonality property of linear least squares
(Draper and Smith, 1966), that

3 = Y f26% x)+RSS (16)

=1 1=1

Equation (16) states that the total amount of variability in the data

RSS = i e%(0%) =

i=1 b
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n
called the crude sum of squares, > y? is equal to the total amount of
i=1
variability which can be accounted for by the model, called the sy,
of squares due to regression, Y. f2(0*, x;), plus the residual sum of
i=1

i=
squares. Associated with each source of variation is a certain number of
degrees of freedom, which is used to attribute more information to, say
100 data points than to five data points. In particular, if » data points’
are used, the crude sum of squares possesses 7 degrees of freedom. The
predicted values estimated by the model with p parameters have p
degrees of freedom while the remaining n—p degrees of freedom are
possessed by the residual sum of squares.

If several data points have been taken at the same settings of the
independent variables, then a measure of the inherent error in the data
is given by the pure-error sum of squares

k nj
Y X u—9)?
j=lu=1
where

Y11> Y120 --+» Y1, BT€ Ny Tepeatb observations of x;
Ya1> Yazs -+-» Yan, TE My Tepeat observations of x,

Yk1s Ykss ---» Yk, T Ng Tepeat observations at xi

and §; = (Yj,+Yja+ ... +Yjn;)/ns is the average of all the repeated or
replicated points of ;. Since the residual sum of squares measures the
amount of variability as seen by the model, and the pure error sum of
squares is a true measure of error in the data, it follows that the inability
of the model to fit the data is given by the difference of these two
quantities which is appropriately called the lack-of-fit sum of squares

k ny

2 yi=f0,x)P= Y Y (u—9)* (17)
=1 j=lu=1
For simplicity assume there are r replications at ¢ different settings of
the independent variables, then the pure error sum of squares possesses
q(r — 1) degrees of freedom (one degree of freedom being used to estimate
#;); while the lack-of-fit sum of squares possess n —p—k(r — 1) degrees
of freedom, which is the difference between the degrees of freedom of the
residual sum of squares and the pure-error sum of squares.
The quotients obtained when the sum of squares discussed above are
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© divided by their degrees of freedom are called mean squares. The pure

error Mmean square

k n,
PEMS = ¥ Y (u—9)%q(r—1)
j=lu=1
is & measure of experimental error independent of the validity of the
model employed. Therefore, a test of whether a model is adequate can
pe made by determining the ratio of the lack-of-fit mean square,

n k nj
LOFMS = ) Az —f(0%, x,)1* - _Zl 2 W= YA n—p—k(r—1)]
1= j=1u=
to the pure error mean square. If the ratio is large, it suggests the model
inadequately fits the data. Using the F statistic to quantify the mag-
nitude of this ratio, the test of inadequacy is usually written

LOFMS
PEMS

where (1— o) 100 is the confidence level in percent for rejecting the
hypothesis that the model is adequate. The F statistic is tabulated in
almost every statistics reference text.

If an independent estimate of pure error is available, say s? with u
degrees of freedom, then the test for adequacy of the model simply
becomes the ratio of the residual mean square to this measure of pure
error. That is, the model is said to be inadequate if

RSS/n—p -
g2

>F [n—p—q(r—1), gr—1)] (18)

Fl—a[n_p’ u] (19)
at the (1 — «) 100 percent confidence level.

2. Residual analysis

The goodness of fit test provides information about the overall ability
of the model to fit the data. It can also be used to test the importance
or contribution of certain terms in the model towards providing the
overall fit of the data. However, these methods do not identify the
specific limitations of the model. In particular, even though the overall
goodness of fit is quite acceptable, more subtle model inadequacies may
exist. These inadequacies can often be detected through an analysis of
the residuals of the model.

As defined by Eqn (4), a residual is the difference between the
observed and predicted values of the dependent variable. If the model
is correct, the residual for any point is solely attributable to experi-
mental error. Therefore, plots of this residual versus any independent
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variable should exhibit all the characteristics of this error, such as being
random with zero mean. However, if the model is inadequate, the
residual will not be random and possibly biased above or below zerg
when plotted against some independent variable. Several methods have
been suggested for preparing the most revealing residual plots (Kittrell,
1970; Draper and Smith, 1966). Consider the following three typical

methods:

(a). Predicted value residual plots. A plot of the residual e;(0%*) versus the
predicted value f (6%, x;) can indicate whether the model truly represents
the data. For example, residuals that are generally negative at low
predicted values and positive at high predicted values indicate a model
inadequacy even though it may have passed the goodness of fit test.
These plots can also provide information about the assumption of
constant error variance made in the maximum likelihood approach. If
the residuals continually increase or decrease in such plots, a non-
constant error variance is indicated and either a weighted least squares
analysis should be conducted (Kittrell, 1970) or a transformation must
be found to stabilize the variance (Box and Cox, 1964).

(b). Independent variable residual plots. By plotting the residuals versus
the independent variable values, it is possible to identify which of the
variables in the model is causing the residual trends that occur in the
predicted value residual plots. The nonconstant error variance described

. above also is exhibited in these plots and can provide useful information
for developing a weighting function.

(c). Overall residual plots. If one plots the frequency of occurrence of the
rounded values of the residual against the magnitude of the residual,
it is possible to assess the normality of the error if the model is correct.
Also these plots test the assumption made earlier that the mean of the
error distribution is zero. Basically this plot allows an approximate
check on the assumptions made in the development of the least squares
analysis from the theory of maximum likelihood.

H. CONCLUSION

The preceding sections have presented a methodology for building a
mathematical model of some physical system from experimental data
collected on the system. Again, it is important to re-emphasize that the
best approach to model building is by carrying out the experimentation
and analysis programs iteratively. Nothing is more frustrating than
trying to obtain information about a system after the experimentation
program has been terminated and the existing data are inadequate.
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Another important point is the importance of properly designed experi-
ments'. Certain statistical assumptions relative to the distribution of the
experimental errors are inherent in applying the statistical techniques
to ana.mlyse the data collected. Proper experimental design will provide
gome indication of the validity of these assumptions. If the assumptions
gre invalid the data can be transformed and this transformed data can
be analysed. The importance of knowing this distribution of the experi-
mental error or error structure cannot be overemphasized. Although it
may require more experimental measurements, the probability of
building a meaningless or overly sophisticated mathematical model will
be minimized.

III. Tur ENVIRONMENTAL FATE AND DISTRIBUTION
OF DURSBAN® ADDED TO AN ECOSYSTEM

A. INTRODUCTION

{&n important environmental problem is the determination of the
ultimate fate and distribution of a chemical introduced into an
e'cosystem. Numerous phenomena take place simultaneously in such a
situation. Hence, a true mathematical model describing each step of
the process would be extremely complex. It is important, however, to
try and find a suitable model to identify the most important chemi::al
physical and biological phenomena taking place and to predict thé
long-term environmental consequences.

The e.xample chosen for study in this paper concerns the addition of
a chemical agent to a laboratory system which simulates a pond of
W.a,te.r. Some of the phenomena that need to be included are the
distribution and partitioning of the agent between the water and soil
tl_lat may be present. In addition to these, consideration must also be
given to the absorption, metabolism and excretion of the agent by the
various aquatic species.

B. DESCRIPTION OF THE ECOSYSTEM

Smith et al. (1966) published some studies on the distribution and fate
of & new agent for the control of insects, DURSBAN® insecticide. The
active ingredient of DURSBAN®, 0,0-Diethyl 0-(3,5,6-trichloro-2-pyridyl)
pho.sphorothioate, was labelled with radioactive carbon 14C in the
pyl.'ldyl ring and added at a level of 1 mg/6 gal in a 10-gallon glass jar.
This aquarium contained 2 in. of soil (13-39, organic matter), plants
(salvinia, anacharis, milfoil and water cucumber) and 45 goldfish.

F
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Sampes of the various components were analyzed for radioactivity at
differeyt time periods after addition of the DURSBAN®. A summary of
this dita taken from the paper of Smith ef al. (1966) is presented in

Table] and plotted in Fig. 3.
Theexperimental setup described above was disassembled before this

model huilding program was initiated so that additional experimenta-
tion vag impossible. Therefore, knowledge of the underlying error
structyre must be based on existing replicate analysis and subjective
interpretation of the experimentalist. From independent measurements

TaBLE 1

Distribution of 1¥C DURSBAN® in the ecosystem

Percent radioactivity in the
three components of the ecosystem

Time after
DURSBAY® addition Soil and

(h) Fish plants Water

0 0 0 100

1-5 15-2 35-2 49-7

3-0 19-0 46-0 28-3

4-0 19-3 56-0 24-5

6-0 20-7 61-0 18-3

8:0 23-0 60-5 17-0

10-0 24-2 59-3 18-2

24-0 21-2 51-5 26-5

18-0 23:0 38-3 34-5

72-0 22-7 38:3 395

96-0 20-5 36-3 43-0

120-0 17-3 38-3 44-5

made jn the system but not reported in Table I, it may be concluded
that:

1. Meggurements of 14C in the three components are independent of the

different components.

2. Meggurements of 14C for any one component are independent of other
meggurements of that component.

3. Tle measurement errors are approximately the same for each

component.
Tf ons ggsumes that the errors are normally distributed with zero means
and sonstant variance for each of the components, then the single

responge likelihood analysis of Section II E is readily extended to this
multiresponse case (Kittrell, 1970). Here, for example, the residual sum
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of squares defined by Eqn (15) is the sum of the residual sum of squares
for the three components. This total residual sum of squares can be
used to determine the lack of fit sum of squares. It will also be
informative to analyze the residuals of the individual components. Such
an analysis provides valuable insights into particular limitations of the
model.

The data in Table I have been transformed into percentages from the
crude radioactivity measurements. Although the error structure defined
in the preceding paragraphs is also transformed, the variability in the

100~

. _o—-—OWater

N o~ 3~ __,.Soil and
== o-- plants

% of radioactivity in various fractions
nH
o
1

0 20 40 60 80 100 120 140
Hours after 14C dursban addition
Fic. 3. Distribution of 14C Dursban in the ecosystem.

original data is so small that the effects of this transformation are
minimal. It will be assumed, therefore, that error properties 1-3 are still
valid and that for each component, the error is normally distributed with
zero means and a constant standard deviation of 1%,.

C. BUILDING THE MODEL

The simplest model which can be postulated to explain the data of
Table I is to assume (i) that an equilibrium exists between the chemical
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in the water and the soil and plant constituents, and (ii) a direct uptake
of the chemical by the fish. This model can be represented symbolically
as follows:

ky
AzB
k| ks Model 1 (20)
C
where A = 14C in the water

B = 14C in the soil and plants
C = C in the fish

and k,, ky, k, are reaction rate constants in 2. It is further assumed
that all the steps or reactions are first order. Mathematically, therefore,
the model is represented by the following differential equation system

dx(;(t) — _kle(t)-{—ksz(t)—k:ixc(t)

50) _ ke )~ kemalt) B
d

xdct(t) — kazs(t)

with initial conditions z4(0) = 100, z5(0) = 0 and z¢(0) = 0. Here,
x4(t), zp(t) and xc(t) are the percentages at time ¢ of 4, B and C
respectively with the restriction that

x a(t) +x5(t) +x c(t) = 100 (22)

Using a nonlinear parameter estimation program, it is possible to find
the parameter values k¥ = 0-510, k¥ = 0-800 and k3 = 0-00930 which
best describe the data of Table I. Corresponding to these parameters,
the overall residual sum of squares is RSS = 5374. Residuals for each
of the three components measured can be calculated. Since an
independent estimate of error is available, i.e. s* = 1 for all three
measurements, the lack of fit relation 19 can be applied directly with
the numerator degrees of freedom n—p = 36—3 = 33 to give

RSS|(n—p) _ 5373/33
3.s2 . 3

Since this ratio is considerably greater than the tabulated F value, the
model is totally inadequate. By a residual analysis it might be possible
to identify the specific inadequacies in the model. Figure 4 is a plot of
the residuals for each of the measured components versus the
independent variable time. This residual plot reveals the following

= 54'3>F005(33,2O) = 1'44:
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discrepancies: (i) initially the model predicts a higher proportion of
14C in the water and a lower proportion in the fish, (ii) after 72 h the
model predicts the opposite of (i), and (iii) the model predicts low
proportions of 14C in the soil and plants throughout the experiment.

|
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F1a. 4. Independent variable residual plot for Model 1.

The next step in the modelling process is to use this residual analysis
to postulate a better model. The large negative residuals observed in
predicting the 1%C proportion in the fish after 80 h, confirm a major
limitation of Model 1. That is, Model 1 predicts an ever increasing
proportion of 14C in the fish. To compensate for this trend, Model 2 is
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postulated where the chemical in the fish is excreted from the fish either g
(a) unchanged Sy
ADB g2 2 g8 o s 2
o £ & & & & & & &
k) 1% Model 2a (23) ¢
c &
or (b) metabolized and excreted as a new entity A’ 2ls = ¢ — 2 2
= S | 10 > N B © )
2B A
&y
ksl Model 2b (24)
ks
’ [
oA fig W s s
The results of fitting the differential equations corresponding to these . ; f% § z 2 s 3 2 &
models to the experimental data is presented in Table II. First, note K E iq |~ ©a
that both forms of Model 2 indicate a lack of fit so that additional , E g
modifications will be necessary. Secondly, the two forms of Model 2 S
can be compared with themselves and Model 1 by calculating likelihood % _
ratios. The likelihoods for the different models are shown in Table III. < _§ B¢ o < © "?.Z = 3 :,
Obviously, Model 2b is superior to both Models 1 and 2a, indicating that oS 7 g gg 5 & & 8 ] © =
the existence of the entity A’ is highly probable. Residual plots for both - "§ gea~
forms of Model 2 are shown in Figs 5 and 6 respectively. Relative to the é 2
other components, the residuals for the 14C in the fish are reasonable, HOS - - -
although considerably larger than expected from experimental varia- § R o 4223 237 g e 8%
tions alone. However, the residuals for the best-to-date Model 2b $ » g B2 -8 838 888 88% S8z
indicate that the Model predicts higher proportions of 14C in the soil 3 2 T T ‘i ? ? CII’ TI’ ? T ? T[’ ? Tl ? T; ?
and plants than indicated by the data during the first 60 h, and lower g 5 8 - Pl o SE SO S o8
proportions during the last 40 h. Analogously, the predicted water S ggg =oEE e = =
proportions during the first 60 h are lower than indicated by the data ~ BE e mo of row vow 0208 ol
and higher during the last 40 h. .g“’ %% 2% R RS LS 53,‘2‘5 FB
In order to bring the proportions between soil and plants and water & S SO oo S90S S8 o000 00
into agreement, the next step is to give the entity A’ access to the soil 'L "N 'L ”N 'L ”N "_ "N 'L 'L "N 'L ’L ”N 'L " 'L "N 'L
and plants. Thus two forms of a new Model 3 were examined. The RS R R e mR R e
first is a simple uptake of 4’ by the soil and plants
by
Ae B & %
o
ks 2. B~
Lo 5 “ g & | » + <+ i © ~ ©
C Model 3a (25) Zz  Z
& -
ks
A'-»B' = 8
) % 'g 3 @ o g ) ¢ )
while the second postulates an equilibrium relationship =i o @ - N
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ky
A 2B
b

I3
c

Ik
ks
A'2B
ke
In these models, a new entity B’ distinct from B is assumed. The results
of fitting these models to the data and the calculated likelihoods are
shown in Tables II and III respectively. These models exhibit a lack of
fit of the data. However, the likelihood ratios Lgq/Lgp and Lgp/Lyy,
show a marked improvement by Model 3 over Model 2 in fitting the
data. Since the likelihood ratio Lgq/Lgp is approximately unity, it is
impossible to discriminate between the two forms of Model 3. In other
words, the reverse reaction B’— A’ does not improve the ability of the

Model 3b (26)

TasLE IIT
Likelihood analysis

Residual Maximum
Model sum of likelihood Likelihood

number squares for model j ratio
(J) (RSS)) (L¥) (Lt L3)
1 5374 1-44 x 1038 3-98 x 10388
2a 1964 6:95 x 10193 8:24 x 10137
2b 848 4:16 x 1062 1:37 x 1057
3a 208-3 8:37 x 1016 6-84 x 1010
3b 207-9 8:95 x 1016 6-40 x 1010
4a 586 573 x 105 1
4b 79-4 1:79 x 106 32:0

model to explain the data so that kg = 0. The residuals for Model 3a
are plotted in Fig. 7. A comparison of Figs 5 and 7 shows the striking
improvement in predictability of Model 3 over Model 2. These residuals
show that the consequences of bringing the proportions of chemical in
the water and soil and plants into better agreement have decreased the
ability to predict the proportions in the fish. Further, it appears that
a low prediction of chemical in the fish is accompanied by a high pre-
diction of chemical in the water.

It may be possible to improve the distribution of chemical between
the fish and water by postulating that (a) the chemical in the fish
partitions into a second compartment (e.g. the flesh), or (b) the entity 4’
in Model 3a is in equilibrium with the fish. Modifying Model 3a to
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Fic. 5. Independent variable residual plot for Model 2a.

include a second compartment in the fish gives

k
A 2B
k.
8
ks
C 2C Model 4a (27)
. lk"
ks
AI__’BI
ks
where (" is the proportion of 14C in the second compartment. Model 4b
is obtained simply by making the step C— A’ reversible
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ky
A 2B
ks
Ik
C Model 4b (28)
AR
AI_’BI

k?

These models were fitted to the data and the results are presented in
Tables IT and ITI. Both of these models adequately describe the data
according to the lack of fit criterion. The residual plots shown in Figs
8 and 9 do not reveal any major discrepancies in the chemical distri-
butions among the major components, although the residuals are some-
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Fic. 6. Independent variable residual plot for Model 2b.
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what larger for Model 4b than for Model 4a. Non-parametric statistical
tests indicate that the residuals are indeed plausible estimates of
normally distributed experimental error (Draper and Smith, 1966).
Based on residual analysis alone, either form of Model 4 is valid and
further refinement of the model to better explain the data is not
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Fic. 7. Independent variable residual plot for Model 3a.

warranted. The likelihood ratio L,s/Lyp = 32:0 implies a preference for
Model 4a over 4b. This is equivalent to saying that there is strong
evidence that a second compartment is set up in the fish. Since the value
is less than 100, however, it is difficult totally to reject Model 4b without
additional experimental work.
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D. DISCUSSION OF RESULTS
The final model that emerges from this analysis is the following:

1. There is a rapid equilibration between the applied DURSBAN® and
the soil and plant system. This step was also seen in the work reported
by Smith et al. (1966).

2. This is followed by a slower uptake of the insecticide by the fish.

3. Once in the fish the material is metabolized and excreted. The
metabolite is probably the pyridinol which was identified in the water
at the termination of the 120 h exposure (Smith ef al., 1966).

4. The liberated pyridinol in the water is again taken up by the soil
and plants.
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5. The best fit was obtained with Model 4a which includes a partition-
ing of the material between two compartments in the fish. Again the
data obtained by Smith would tend to substantiate this step in that
these authors demonstrated a partitioning between the viscera and the
meat.

6. Finally, Models 4a, 4b and 3a all indicate that the final sink for the
added Dursban is the soil and plants. This last item is very important
since Smith (1966) has shown that the 3,5,6-trichloro-2-pyridinol is
metabolized readily by plants and will ultimately be degraded to CO,,
NH, and H,0. Such a situation would imply that there is no persistance
of Dursban in this particular ecosystem.
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The fast initial absorption of the insecticide by the soil and plants has
an added advantage in that this particular sink acts as a reservoir for
the slow release of Dursban. This feature gives added long-term pro-
tection for the control of mosquito larvae in polluted waters. Schaeffer
and Dupras (1970) demonstrated that a similar series of events occurred
in a field trial.

E. coNncLUSION

The model building exercise in this paper has generated a picture of
the distribution pattern of DURSBAN® when added to a pond of water.
Furthermore, the picture that emerges is compatible with what is known
about the insecticide.
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