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The neuroscience model

Synaptic strength between population i and j:

wij =

w+ − wI i = j

w− − wI i 6= j

w+ weight excitation between neurons of a same population

w− weight excitation between neurons of different populations

wI inhibitory weight coupling with all other neurons

λi sensory input to the population i



The ODS system

The firing rates ν1 = ν1(t), ν2 = ν2(t) of two interacting neuron families

may be modeled as follows (Wilson-Cowan):ν̇1 = −ν1 + φ
(
λ1 +

∑
j=1,2w1jνj

)
+ ξ

ν̇2 = −ν2 + φ
(
λ2 +

∑
j=1,2w2jνj

)
+ ξ

where ξ = ξ(t) is a white noise of standard deviation β2 (fluctuations)

the function φ(x) (transfer response) is a sigmoidal function given by:

φ(x) =
νc

1 + exp(−α(x/νc − 1))
,

with α, νc ∈ R.

λ2 = λ1 + ∆λ , ∆λ = 0 or 0.1

Remark: φ is strictly monotone and bounded.

[DM] G.Deco, D.Marti, Biological Cybernetics (2007)



Fokker-Planck equation

Let f(t, x, y) be a distribution function for t ≥ 0 and ν = (ν1, ν2) ∈ Ω, s.t.:

∂tf +∇ · (F f)−
β2

2
∆f = 0 ,

(
Ff −

β2

2
∇f

)
· n = 0 (FP )

with the flux Ff = (−ν + Φ(Λ +W · ν)) f not deriving by a potential V :

z1 = λ+ w11ν1 + w12ν2 6= λ+ w12ν1 + w11ν2 = z2 =⇒ w12φ
′(z1) 6= w12φ

′(z2)

Moreover F verifies:

∇ · F ≤ 0 (H1)

F · n ≤ 0 (H2)∫
Ω
f dν = 1 (H3)

[AC] A. Arnold, E.Carlen, EQUADIFF 99, Proc. Intern. Conf. Diff. Eqs. (2000)



Stationnary problem

Consider now the stationanry problem associated to (P ):

Af = −
β2

2
∆f +∇ · (Ff) = 0 ,

(
Ff −

β2

2
∇f

)
· n = 0 (S)

Theorem: Assume (H2) and (H3),
then there exists a unique positive solution f∞(ν) to (S).

Proof: Based on Krein-Rutman theorem :
• T : L2(Ω)→ L2(Ω), s.t. ∀g ∈ L2(Ω), Tg = f , with f the unique solution of :

Af + ρf = g in Ω, (Ff −
β2

2
∇f) · n = 0 on ∂Ω

• T : H2 → H2 is a compact operator, and T : K → K strong. pos., with K = W 2,2
+ (Ω).

• KR th. =⇒ r(T ) > 0 and ∃ g > 0 s.t. Tg = r(T )g. So that,

Af + ρf = λf, f = r(T )g > 0, λ =
1

r(T )
and

Af = (λ− ρ)f ⇒ (λ− ρ)

∫
Ω
f dx = 0 ⇒ ρ = λ ⇒ Af = 0.



Time depending problem

We consider the parabolic problem:

∂tf +Af = 0 ,

(
Ff −

β2

2
∇f

)
· n = 0 (P )

and the initial condition: f0(·) ∈ L2(Ω)

Theorem: Assume that (H1) holds,

then (P ) has a unique solution f(t, x, y).

Consider the bilinear form associated to A:

a(t, f, g) =

∫
Ω

β2

2
∇f · ∇g dν −

∫
Ω
fF · ∇g dν , ∀ f, g ∈ H1(Ω) , (a)

• a(t, f, g) is continuous,

• a(t, f, g) + ρ < f, g > is coercive for ρ ∈ R large enough.

Remark : Maximum principle doesn’t apply.



Generalised relative entropy

Theorem: Let f1, f2 > 0 solutions of (P ), and g > 0 a solution of :∂tg = −F · ∇g − β2

2 ∆g, in Ω× [0, T ],
∂g
∂n = 0 on ∂Ω

then we have:

d

dt

∫
Ω
gf1H dν = −

β2

2

∫
Ω
gf1H

′′ |∇(f2/f1)|2 dν ≤ 0 , ∀ H convex.

Proof : ∂
∂t

[gf1H] = −∇ · [Fgf1H] + β2

2
∇ ·

[
g2∇

(
f1

g
H
)]
− β2

2
gf1H ′′

∣∣∇ (f̃)∣∣2

From this we can proove positivity of the solution f of (P ) and its L2

convergence to the stationnary solution f∞ of (S).

[MMP] P. Michel, S.Mischler, B.Perthame, J.Math. Pures Appl. (2005).



Numerical approximation - FVM

Let fk(i, j) = f(k∆t, ni, nj) with ni = (i+ 1
2
)∆N1, i = 0...N1 − 1 and nj = (j + 1

2
)∆N2, j =

0...N2 − 1. Then, the discretised Fokker-Planck equation is given by:

fk+1(i, j) = fk(i, j)
+ ∆t

(
F k(i+ 1/2, j)− F k(i− 1/2, j)

)
/∆N1

+ ∆t
(
Gk(i, j + 1/2)−Gk(i, j − 1/2)

)
/∆N2,

with: F k(i+ 1
2
, j), Gk(i, j + 1

2
) the fluxes at the interfaces:

F k(i+ 1/2, j) =
(
−ni+1/2 + Φ(λ+ w11ni+1/2 + w12nj)

)
fk(i+ 1/2, j)

−
β2

2∆N1

(
fk(i+ 1, j)− fk(i, j)

)
,

Gk(i, j + 1/2) =
(
−nj+1/2 + Φ(λ+ w21ni + w22nj+1/2)

)
fk(i, j + 1/2)

−
β2

2∆N2

(
fk(i, j + 1)− fk(i, j)

)
.

and we choose the most simple interpolation at the interfaces for f :

fk(i+ 1/2, j) =
fk(i+ 1, j) + fk(i, j)

2
, fk(i, j + 1/2) =

fk(i, j + 1) + fk(i, j)

2
.

Remark adaptative ∆t (gain factor 100) ⇒ for i, j s.t. fk(i, j) 6= 0 and Fk(i, j) 6= 0:

∆t = min
i,j

fk(i, j)

2|Fk(i, j)|



Computed quantities

Marginals of f(t, ν1, ν2) with respect to ν2, and to ν1 :

N1(t, ν1) =
∫ νM

0
f(t, ν1, ν2)dν2 , N2(t, ν2) =

∫ νM
0

f(t, ν1, ν2)dν1.

First order moments :

µi(t) =
∫ ∫

Ω
νif(ν1, ν2, t)dν1dν2, i = 1,2

Second order moments :

γij(t) =
∫ ∫

Ω
νiνjf(ν1, ν2, t)dν1dν2, i, j = 1,2.

Distributions ρi(t) with respect to the domains, Ωi, with i = 1,2,3 :

ρi(t) =
∫ ∫

Ωi

f(ν1, ν2, t)dν1dν2.

We choose N1 = N2 = 200 points of discretisation, and compute the solution
up to a precision of order 10−10, with the same values used in [1]. (β = 0.3,
α = 4, νc = 20, λ = 15. )



Time evolution for the marginals
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Evolution from one initial gaussian distribution centered in S = (3.3,3.3) -

near the unstable point S0 = (3.19,3.19) - to a double picked distribution

centerd on the two stable points S1 and S2.



Equilibrium state
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Contour levels of the density f(ν1, ν2) at equilibrium. We note that there

are two points of mass concentration around S1 = (1.32,5.97) and S2 =

(5.97,1.32) which are the stable equilibrium points of the ODS.



Densities distributions
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Probablity densities ρi(t), i = 1,2,3, computed on three different domains

Ω1 = [5,10]× [0,2], Ω2 = [2,5]× [2,5], Ω3 = [2,5]× [5,10].

Each domain contains one of the three equilibrium points.

The initial condition ⇒ ρ1(0) = ρ3(0) = 0 and ρ2(0) = 1.



Escaping time

Let f(0, ν1, ν2) be a gaussian distribution centered in S1 and β = 0.2, ...,1.
Let T be the escaping time (ie. the time needed for half of the mass to pass
from the neighborhood of S1 to the neighborhood of S2) : ρ1(T ) < 2ρ3(T ).
Then T has an exponential behaviour :

β 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T 1290.3 332.7 168.5 109.3 78.2 60.9 48.0 37.1 32.1
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Escaping time T with respect to the diffusion coefficient β in log scale



Slow-fast behaviour

One realisation of a trajectory

for the ODS starting in (5,5)

The blue lines are numerical

approximations of the solution

of the deterministic systemν̇1 = −ν1 + φ
(
λ+

∑
j=1,2w1jνj

)
ν̇2 = −ν2 + φ

(
λ+

∑
j=1,2w2jνj

)
and highlight the slow manifold

to which belongs the stable

and unstable solutions of this

system

⇒ fast to the manifold, slow on

the manifold

[BG] N.Berglund, B.Gentz, Noise-Induced Phenomena in Slow-Fast Dynamical Systems.

A Sample-Paths Approach. Springer, Probability and its Applications (2005)



Towards a one-dimensional problem

The change of variables: x = ν1 + ν2, y = ν1 − ν2 leads to the system :εẋ = h(x, y)

ẏ = g(x, y)
, ε =

∂yg

∂xh
|S0

It is possible to find a function x∗(y) and to reduce the system to a one-

dimensional equation defined on the slow manifold :

ẏ = g(x∗(y), y)

Taking into account the white noise, the original FP model, reduces to a

FP equation, for which the unknown distirbution function depends on time

t and the y variable, and the equilibrium solution is given by an exponential

function:

exp

(
−G
β2

)
, G = ∂yg(x∗(y), y)



Conclusions and Perspectives

• We present theoretical results concerning the existence, uniqueness, pos-
itivity of the solution for the model (non-potential frame), and its con-
vergence towards the solution of the stationnary associated problem.
• We propose a kinetic model for the evolution of two interacting popula-

tions (decision making), based on neurodynamical systems.
• Our numerical results agree with those find by G.Deco et al. applying

moments methods on the ODS.

• Investigate the slow-fast behavior of the ODS and derive a one-dimensional
pde for the distribution function defined along the slow-manifold.
• Study the system in the biased case (λ1 6= λ2), or including some adap-

tation in rivalry term in the sigmoidal function.

• Stochastic Models in Neuroscience,
18-22 January 2010,
CIRM, Marseille (France).
http://www.fdpoisson.org/colloques/neurostoch/


