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Abstract

In this lecture notes, I give an introduction on the Maslov-type index theory for symplectic

matrix paths and its iteration theory with applications to existence, multiplicity, and stability of

periodic solution orbit problems for nonlinear Hamiltonian systems and closed geodesic problems

on manifolds, including a survey on recent progresses in these areas.

Since the pioneering work of P. Rabinowitz in 1978, topological and variational methods have

been widely and deeply applied to the study of nonlinear Hamiltonian systems. On the other hand,

as well known Morse theory is a very powerful tool in mathematics. For example, based upon the

work [Bot1] of R. Bott in 1956 on iteration theory of Morse index, there have been many deep

results obtained in the study of closed geodesics on Riemannian manifolds.

Therefore in the study of periodic solutions of nonlinear Hamiltonian systems, it is natural

to consider applications of the Morse theory. But unfortunately, the functionals on loop spaces

corresponding to Hamiltonian systems are indefinite, whose positive and negative Morse indices

are always infinite and the usual Morse theory is not directly applicable. For this reason, further

understanding and development of possible homotopy invariants for linear Hamiltonian systems

as well as for paths in the symplectic matrix group starting from the identity become necessary

again. Interests on such invariants started from the earlier works on the stability problems for
∗Partially supported by the 973 Program of MOST, Yangzi River Professorship, NNSF, MCME, RFDP, LPMC

of MOE of China, and Nankai University.
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linear Hamiltonian systems of M. Krein, I. Gelfand, V. Lidskii, J. Moser and others in 1950’s (cf.

[GeL1], [Mos1], [YaS1]). On the other hand, even in the study on the closed geodesic problem

itself, a better understanding on the Morse indices of iterates of closed geodesics will give us more

information. Here we note that closed geodesics can be viewed as special examples of solution

orbits of Hamiltonian systems on manifolds. Therefore an index theory and its iteration theory for

periodic solution orbits of Hamiltonian systems are required.

Since early 1980’s, efforts on index theories for Hamiltonian systems have appeared in two

different directions. One is the index theory established by I. Ekeland for convex Hamiltonian

systems, including its iteration theory with successful applications to various problems on convex

Hamiltonian systems (cf. [Eke3] and the reference therein). The other development is the so called

Maslov-type index theory for general Hamiltonian systems without any convexity type assumptions,

which was defined by C. Conley, E. Zehnder, Y. Long, and C. Viterbo in a sequence of papers [CoZ1],

[LoZ1], [Lon1], [Lon3], and [Vit2].

Motivated by the studying of the existence, multiplicity, and stability problems of periodic

solution orbits of nonlinear Hamiltonian systems, in 1990s we have systematically developed the

iteration theory of the Maslov-type index for symplectic paths. This iteration theory unifies the

above mentioned iteration theory of Bott and Ekeland, and give more precise information. It has

turned out to be a powerful tool in the study of various problems on periodic solution orbits of

Hamiltonian systems including closed geodesic problems.

In this lecture notes, I give an introduction to this Maslov-type index theory, its iteration theory,

and applications to periodic solution orbit problems of nonlinear Hamiltonian systems and closed

geodesic problems on manifolds, including a survey on recent progress in these areas.

This note includes the following parts.

Chapter 1. An index theory for symplectic paths.

1. Definitions and basic properties.

2. An intuitive explanation of the index theory for symplectic paths in Sp(2).

3. Relation with the Morse indices.

Chapter 2. Iteration theory of the index theory.

4. The ω-index theory and splitting numbers.

5. Bott-type iteration formulae and the mean index.

6. Precise iteration formulae.

7. Iteration inequalities.

8. The common index jump theorem.

Chapter 3. Closed Characteristics on Convex Hypersurfaces in R2n.
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9. Existence, multiplicity and stability problems of closed characteristics.

10. The multiplicity theorem of Long and Zhu.

11. The multiplicity theorem of Wang, Hu and Long.

Chapter 4. Closed geodesics on Spheres.

12. A partial history of closed geodesics.

13. Main new multiplicity and stability results.

14. Main ideas in the proof of Theorem 13.1.

15. Open problems.
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Chapter 1. An Index Theory for Symplectic Paths

Let N, Z, R, and C be the sets of natural, integral, real, and complex numbers respectively.

Let U be the unit circle in C. As usual for any n ∈ N, we define the symplectic groups on R2n by

Sp(2n) = {M ∈ L(R2n) |MT JM = J},

where J =
( 0 −In

In 0

)
, In denotes the identity matrix on Rn, the subscript n will be omitted when

there is no confusion. L(R2n) is the set of all 2n × 2n real matrices, MT denotes the transpose of

M . The topology of Sp(2n) is induced from that of Rn2
. For τ > 0 and H ∈ C2(Sτ ×R2n,R) with

Sτ = R/(τZ), we consider the τ -periodic boundary value problem of the following Hamiltonian

systems:

ẋ(t) = JH ′(t, x(t)), (0.1)

where H ′(t, x) denotes the gradient of H with respect to the x variables. Suppose x = x(t) is a

τ -periodic solution of (1.1) for some τ > 0. Denote by γx the fundamental solution of the linearized

Hamiltonian system

ẏ = JB(t)y, (0.2)

where B ∈ C(Sτ ,Ls(R2n)) is defined by B(t) = H ′′(t, x(t)), and Ls(R2n) is the subset of symmetric

matrices in L(R2n). Then γx is a path in Sp(2n) starting from the idetity matrix I. Based upon

the work [AmZ1] of H. Amann and E. Zehnder in 1980 on the index theory for linear Hamiltonian

systems with constant coefficients, C. Conley and E. Zehnder in their celebrated paper [CoZ1] of

1984 defined their index theory for non-degenerate paths in the symplectic matrix group Sp(2n)

started from the identity when n ≥ 2. This index theory was extended to non-degenerate paths in

Sp(2) by the author and E. Zehnder in [LoZ1] of 1990. Then C. Viterbo in [Vit2] and the author in

[Lon1] of 1990 extended this index theory to degenerate symplectic paths which are fundamental

solutions of linear Hamiltonian systems with continuous symmetric periodic coefficients. In the

work [Lon3], the author further extended this index theory to all continuous degenerate paths in

Sp(2n) for all n ≥ 1 and gave an axiom characterization of this index theory. We call this index

theory the Maslov-type index theory in this paper. The Maslov-type index theory assigns a pair

of numerical invariants to the periodic solution x through the associated path γx in Sp(2n) and

reflects important properties of the periodic solution x.
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1 Definitions and basic properties

We start from some notations introduced in [CoZ1], [LoZ1], [Lon1], and [Lon3] (cf. [Lon8]). Define

D1(M) = (−1)n−1 det(M − I), ∀M ∈ Sp(2n).

Let

Sp(2n)± = {M ∈ Sp(2n) | ± D1(M) < 0},

Sp(2n)∗ = Sp(2n)+ ∪ Sp(2n)−, Sp(2n)0 = Sp(2n) \ Sp(2n)∗.

For any two matrices of square block form:

M1 =
(

A1 B1

C1 D1

)
2i×2i

, M2 =
(

A2 B2

C2 D2

)
2j×2j

,

the ¦-product of M1 and M2 is defined by the 2(i + j) × 2(i + j) matrix M1¦M2:

M1¦M2 =


A1 0 B1 0

0 A2 0 B2

C1 0 D1 0

0 C2 0 D2

 .

Denote by M¦k the k-fold ¦-product M¦ · · · ¦M . Note that the ¦-multiplication is associative, and

the ¦-product of any two symplectic matrices is symplectic.

We define D(a) = diag(a, a−1) for a ∈ R \ {0}. For θ, λ, and b ∈ R we define

R(θ) =
( cos θ − sin θ

sin θ cos θ

)
, N1(λ, b) =

(
λ b

0 λ

)
.

Define two 2n × 2n diagonal matrices

M+
n = D(2)¦n, M−

n = D(−2)¦D(2)¦(n−1).

Lemma 1.1. (cf. [CoZ1], [LoZ1], and [SaZ1]) 1o Sp(2n)∗ contains two path connected compo-

nents Sp(2n)+ and Sp(2n)−, and there hold M±
n ∈ Sp(2n)±.

2o Both of Sp(2n)+ and Sp(2n)− are simply connected in Sp(2n).

Idea of the proof. Since D1(M+
n )D1(M−

n ) < 0, Sp(2n)∗ contains at least two path-connected

components.

For any given M ∈ Sp(2n)∗, by a small perturbation we can connect M to a matrix M1 with

only simple eigenvalues within Sp(2n)∗. Then there holds

PMP−1 = M1¦ · · · ¦Mp¦N1¦ · · · ¦Nq = N,
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where P ∈ Sp(2n), Mi ∈ Sp(2) for 1 ≤ i ≤ p and Nj ∈ Sp(4) for 1 ≤ j ≤ q, each MI ahs the form

R(θ) with θ ∈ (0, π)∪ (π, 2π) or D(a) with a ∈ R \ {0}, each Nj has four simple eigenvalues λj , λj ,

λ−1
j , and λ

−1 out side R ∪ U.

By connecting P to I in Sp(2n), we get that M can be connected to N within Sp(2n)2n. Then

it can be proved that these Mi’s and Nj ’s can be connected to D(2), D(−2), or their ¦-products

within Sp(2)∗ or Sp(4)∗. Note that D(−2)¦D(−2) can be connected to D(2)¦D(2). This proves

that N can be connected to one of M+
n and M−

n within Sp(2n)∗. Then Sp(2n)∗ contains at most

two path connected components, and 1o is proved.

We refer the readers to [SaZ1] for the proof of 2o.

Fix τ > 0. Let

Pτ (2n) = {γ ∈ C([0, τ ],Sp(2n)) | γ(0) = I},

P∗
τ (2n) = {γ ∈ Pτ (2n) | γ(τ) ∈ Sp(2n)∗},

P0
τ (2n) = Pτ (2n) \ P∗

τ (2n).

The topology of Pτ (2n) is defined by the C0([0, τ ],Sp(2n))-topology induced from the topology of

Sp(2n). Note that the following subset of Pτ (2n) consists of all foundamental solutions of linear

Hamiltonian systems (1.2) with symmetric continuous and τ -periodic coefficients:

P̂τ (2n) = {γ ∈ C1([0, τ ],Sp(2n)) | γ(0) = I, γ̇(1) = γ̇(0)γ(1)}.

The topology of P̂τ (2n) is defined to be the C1([0, τ ],Sp(2n))-topology induced from the topology

of Sp(2n).

Definition 1.2. (cf. [Lon1], [Lon8]) For every γ ∈ Pτ (2n), we define

ν1(γ) = dimR kerR(γ(τ) − I).

Definition 1.3. (cf. [Lon1], [Lon8]) Given two paths γ0 and γ1 ∈ Pτ (2n), if there is a map

δ ∈ C([0, 1] × [0, τ ],Sp(2n)) such that δ(0, ·) = γ0(·), δ(1, ·) = γ1(·), δ(s, 0) = I, and ντ (δ(s, ·)) is

constant for 0 ≤ s ≤ 1, then γ0 and γ1 are homotopic on [0, τ ] along δ(·, τ) and we write γ0 ∼ γ1

on [0, τ ] along δ(·, τ). This homotopy possesses fixed end points if δ(s, τ) = γ0(τ) for all s ∈ [0, 1].

As well known, every M ∈ Sp(2n) has its unique polar decomposition M = AU , where A =

(MMT )1/2 is symmetric positive definite and symplectic, U is orthogonal and symplectic. Therefore

U has the form

U =
(

u1 −u2

u2 u1

)
,

where u = u1 +
√
−1u2 ∈ L(Cn) is a unitary matrix. So for every path γ ∈ Pτ (2n) we can associate

a path u(t) in the unitary group on Cn to it. If ∆(t) is any continuous real function satisfying
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det u(t) = exp(
√
−1∆(t)), the difference ∆(τ) − ∆(0) depends only on γ but not on the choice of

the function ∆(t). Therefore we may define the mean rotation number of γ on [0, τ ] by

∆τ (γ) = ∆(τ) − ∆(0).

Lemma 1.4. (cf. [LoZ1], [Lon8]) If γ0 and γ1 ∈ Pτ (2n) possess common end point γ0(τ) =

γ1(τ), then ∆τ (γ0) = ∆τ (γ1) if and only if γ0 ∼ γ1 on [0, τ ] with fixed end points.

By Lemma 1.1, for every path γ ∈ P∗
τ (2n) there exists a path β : [0, τ ] → Sp(2n)∗ such that

β(0) = γ(τ) and β(τ) = M+
n or M−

n . Define the product path β ∗ γ by

β ∗ γ(t) =
{

γ(2t), 0 ≤ t ≤ τ
2 ,

β(2t − τ), τ
2 < t ≤ τ.

Then k ≡ ∆τ (β ∗ γ)/π ∈ Z and is independent of the choice of the path β by 2o of Lemma 1.1. In

this case we write γ ∈ P∗
τ,k(2n).

Lemma 1.5. (cf. [LoZ1], [Lon8]) These P∗
τ,k(2n)’s give a homotopy classification of P∗

τ (2n).

Definition 1.6. (cf. [CoZ1], [LoZ1], [Lon8]) If γ ∈ P∗
τ,k(2n), we define i1(γ) = k.

We define the standard non-degenerate symplectic paths by

α̂1,0,τ (t) = D(1 +
t

τ
), for 0 ≤ t ≤ τ,

α̂1,k,τ = (D(2)φkπ,τ ) ∗ α̂1,0,τ , ∀k ∈ Z \ {0},

where φθ,τ (t) = R((θt/τ). When n ≥ 2, we define

α̂n,0,τ = (α̂1,0,τ )¦n,

α̂n,k,τ = ((D(2)φkπ,τ ) ∗ α̂1,0,τ )¦(α̂1,0,τ )¦(n−1), ∀k ∈ Z \ {0},

Then there hold

α̂n,k,τ ∈ P∗
τ,k(2n), ∀k ∈ Z.

The following lemma is crucial in the study of degenerate symplectic paths.

Lemma 1.7. (cf. [Lon1], [Lon5], [Lon8]) For any γ ∈ P0
τ (2n), there exists a one parameter

family of symplectic paths γs with s ∈ [−1, 1] and a t0 ∈ (0, τ) sufficiently close to τ such that

γ0 = γ, γs(t) = γ(t) for 0 ≤ t ≤ t0, (1.1)

γs ∈ P∗
τ (2n) ∀s ∈ [−1, 1] \ {0}, (1.2)

i1(γs) = i1(γs′), if ss′ > 0, (1.3)

i1(γ1) − i1(γ−1) = ν1(γ),

γs → γ0 = γ in Pτ (2n) as s → 0. (1.4)
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When γ ∈ P̂τ (2n), we also have

γs ∈ P̂τ (2n) ∀s ∈ [−1, 1], (1.5)

γs → γ in P̂τ (2n) as s → 0. (1.6)

Idea of the proof. Among these properties of {γs}, the most important one is (1.3). The

construction of {γs} uses the results on normal forms of symplectic matrices proved in [LoD1] and

[HaL1]. Here we briefly indicate how this family of paths {γs} is constructed.

For every integer m, 1 ≤ m ≤ n, and θ ∈ R, a 2n×2n rotation matrix Rm(θ) = (ri,j) is defined

in [Lon1] and [Lon2] (cf. [Lon8]) by
rm,m = rn+m,n+m = cos θ,

rn+m,m = −rm,n+m = sin θ,

ri,i = 1, if i 6= m and n + m,

ri,j = 0, otherwise.

Fix γ ∈ P0
τ (2n). Then there exist an integer q, 1 ≤ q ≤ n, a strictly increasing subsequence

{m1, . . . ,mq} of {1, . . . , n}, θ0 ∈ (0, π
8n) small enough depending on γ(τ), and P ∈ Sp(2n) such

that for i = 1, . . . , q the mi is the least positive integer which satisfies for 0 < |θ| ≤ θ0:

dimR kerR(γ(τ)PRm1(θ) · · ·Rmi−1(θ)P
−1 − I)

−dimR kerR(γ(τ)PRm1(θ) · · ·Rmi−1(θ)Rmi(θ)P
−1 − I) ≥ 1,

dimR kerR(γ(τ)PRm1(θ) · · ·Rmq(θ)P
−1 − I) = 0.

Here we set Rm0(θ) ≡ I. Note that the integers q, m1, . . ., mq, and P are determined by the normal

form of the matrix γ(τ).

For t0 ∈ (0, τ), let ρ ∈ C2([0, τ ], [0, 1]) such that ρ(t) = 0 for 0 ≤ t ≤ t0, ρ̇(t) ≥ 0 for 0 ≤ t ≤ τ ,

ρ(τ) = 1, and ρ̇(τ) = 0. For any (s, t) ∈ [−1, 1] × [0, τ ], the path γs is defined by

γs(t) = γ(t)PRm1(sρ(t)θ0) · · ·Rmq(sρ(t)θ0)P−1. (1.7)

When t0 ∈ (0, τ) is sufficiently close to τ , the properties (1.1) to (1.6) hold.

With lemma 1.7, we can give

Definition 1.8. (cf. [Lon1], [Lon8]) Define i1(γ) = i1(γs) for s ∈ [−1, 0).

Definition 1.9. For every path γ ∈ Pτ (2n), the definitions 1.2, 1.6 and 1.8 assign a pair of

integers

(i1(γ), ν1(γ)) ∈ Z × {0, . . . , 2n}
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to it. This pair of integers is called the Maslov-type index of γ. When γ = γx for a solution x

of (1.1), we also write

(i1(x), ν1(x)) = (i1(γx), ν1(γx)).

The following theorem shows that the Definition 1.8 of iτ (γ) for γ ∈ P0
τ (2n) is independent

from the way which is defined.

Theorem 1.10. (cf. [Lon1], [Lon3], [Lon8]) For any γ ∈ P0
τ (2n), and every β ∈ P∗

τ (2n) which

is sufficiently close to γ, there holds

i1(γ) = i1(γ−1) ≤ i1(β) ≤ i1(γ1) = i1(γ) + ν1(γ). (1.8)

Specially we obtain

i1(γ) = inf{i1(β) |β ∈ P∗
τ (2n) and β is sufficiently close to γ in Pτ (2n)}. (1.9)

Idea of the proof of (1.8). Firstly we reduce the general case to the case of that all the paths

in consideration are in P̂τ (2n). Then the later case can be proved by using Theorem 2.1 below and

a perturbation argument on the Morse index for finite dimensional symmetric matrices.

The following theorem characterizes the Maslov-type index on any continuous symplectic paths

in Pτ (2n).

Theorem 1.11.(cf. [Lon3], [Lon8]) The Maslov-type index i1 : ∪n∈NPτ (2n) → Z, is uniquely

determined by the following five axioms:

1◦ (Homotopy invariant) For γ0 and γ1 ∈ Pτ (2n), if γ0 ∼ γ1 on [0, τ ], then

i1(γ0) = i1(γ1). (1.10)

2◦ (Symplectic additivity) For any γi ∈ Pτ (2ni) with i = 0 and 1, there holds

i1(γ0¦γ1) = i1(γ0) + i1(γ1). (1.11)

3◦ (Clockwise continuity) For any γ ∈ P0
τ (2) with γ(τ) = N1(1, b) for b = ±1 or 0, there

exists a θ0 > 0 such that

i1([γ(τ)φ−θ,τ ] ∗ γ) = i1(γ), ∀ 0 < θ ≤ θ0. (1.12)

4◦ (Counterclockwise jumping) For any γ ∈ P0
τ (2) with γ(τ) = N1(1, b) for b = ±1, there

exists a θ0 > 0 such that

i1([γ(τ)φθ,τ ] ∗ γ) = i1(γ) + 1, ∀ 0 < θ ≤ θ0. (1.13)

9



5◦ (Normality) For the standard path α̂1,0,τ , there holds

i1(α̂1,0,τ ) = 0. (1.14)

Idea of the proof. Using normal forms and perturbation techniques together with the prop-

erties 1o and 2o to reduce the uniqueness to the case of paths in Pτ (2). Then it follows from the

R3-cylindrical coordinate representation introduced in the section 3 below immediately. The proof

for the sufficiency can be found in [Lon4].

The following theorem is very useful in the study of the iteration theory for the Maslov-type

index.

Theorem 1.12. (Inverse homotopy invariant) (cf. [Lon3], [Lon8]) For any two paths γ0

and γ1 ∈ Pτ (2n) with i1(γ0) = i1(γ1), suppose that there exists a continuous path h : [0, 1] → Sp(2n)

such that h(0) = γ0(τ), h(1) = γ1(τ), and dimker(h(s)−I) = ντ (γ0) for all s ∈ [0, 1]. Then γ0 ∼ γ1

on [0, τ ] along h.

Idea of the proof. Note that γ0 ∼ (h ∗ γ0). Since (h ∗ γ0) ∼ γ1 and γ1 have the same end

points and index, they must be homotopic. This proves the theorem.

2 An intuitive explanation of the index theory for symplectic

paths in Sp(2)

At the last part of this section, we give an intuitive interpretation of the index theory defined above

in terms of the cylinderical coordinate representation in R3 of Sp(2) firstly introduced in [Lon2] of

1991 by the author as follows. As well known, M ∈ Sp(2) if and only if detM = 1. Via the polar

decomposition of each element M in Sp(2),

M =
(

r z

z (1 + z2)/r

)( cos θ − sin θ

sin θ cos θ

)
, (2.1)

we can define a map Φ from the element M in Sp(2) to (r, θ, z) ∈ R+ × S2π × R, where R+ =

{r ∈ R | r > 0}. This map Φ is a C∞-diffeomorphism. In the following, for simplicity, we identify

elements in Sp(2) and their images in R \ {z−axis} under Φ.

Remark 2.1. Note that a different representation of Sp(2) was given by I. Gelfand and V.

Lidsikii in [GeL1] of 1955 which was based on the hyperbolic functions and which maps Sp(2) into

a solid torus.

By this R3-cylindrical coordinate representation of Sp(2), it is easy to see that Sp(2) is homeo-

morphic to S1×R2. This can be generalized to general Sp(2n) which is homeomorphic to a product

of S1 and a simply connected space. Therefore any path γ ∈ Pτ (2) rotates around the deleted z-axis
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Figure 2.1: Sp(2)0 in cylindrical coordinates of R3 \ {z − axis}

in R3 in someway. There are infinitely many topologically meaningful ways to count the rotation

number of γ. But the key point here is to find a natural way to count this rotation so that the

rotation number reflects intrinsically analytical properties of the corresponding Hamiltonian system

when γ ∈ P̂τ (2).

Under this R3-cylindrical coordinate representation we have

Sp(2)+ = {(r, θ, z) ∈ R+ × S1 × R | (r2 + z2 + 1) cos θ > 2r},

Sp(2)0 = {(r, θ, z) ∈ R+ × S1 × R | (r2 + z2 + 1) cos θ = 2r},

Sp(2)− = {(r, θ, z) ∈ R+ × S1 × R | (r2 + z2 + 1) cos θ < 2r},

Sp(2)0± = {(r, θ, z) ∈ Sp(2)0 | ± sin θ > 0} =
{
PN1(1,∓1)P−1 |P ∈ Sp(2)

}
,

Sp(2)∗ = Sp(2)+ ∪ Sp(2)−, Sp(2)0 = M1
2 ∪ {I}, M1

2 = Sp(2)0+ ∪ Sp(2)0−.

Note that Sp(2)0 is a codimension 1 hypersurface in Sp(2), M1
2 is its regular part. Note that M1

2

contains two path connected components Sp(2)0+ and Sp(2)0−, which are two smooth surfaces both

diffeomorphic to R2\{0} as shown in the Figure 2.1. The following Figure 2.2 shows the picture of

Sp(2)0 ∩ {z = 0}.
Note that for the case of Sp(2), Lemma 1.1 follows from these two pictures immediately.
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Figure 2.2: The intersection of Sp(2)0 and the plane {z = 0}

Now based upon the standard non-degenerate symplectic paths defined in the section 1, from

Figures 2.1 and 2.2, it is obvious that for any given γ ∈ P∗
τ (2), there exists one and only one k ∈ Z

such that

γ ∼ α̂1,k,τ .

This proves Lemma 1.5 for the case of n = 1, and then makes the Definition 1.6 become meaningful.

Now for γ ∈ P0
τ (2), from Figures 2.1 and 2.2, we immediately obtain the following results:

If γ(τ) ∈ Sp(2)0 \ {I}, all paths β ∈ P∗
τ (2) which are C0-close to γ belong to two homotopy

classes, one contains γ−1 and the other contains γ1 defined by (1.10), and there holds

i1(γ−1) + 1 = i1(γ1).

If γ(τ) = I, all paths β ∈ P∗
τ (2) which are C0-close to γ belong to three homotopy classes,

one contains γ−1, and another one contains γ1 defined by (1.7). We pick up a path β in the third

homotopy class. Then there holds

i1(γ−1) + 2 = i1(β) + 1 = i1(γ1).

These results shows that the following definition (1.7) makes sense:

i1(γ) = inf{i1(β) |β ∈ P∗
τ (2) and β is sufficiently close to γ in Pτ (2)}.
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3 Relation with the Morse indices

Fix τ > 0. Suppose H ∈ C2(Sτ ×R2n,R) and ‖H‖C2 is finite. Recall Sτ = R/(τZ). The classical

direct functional corresponding to the system (1.1) is

f(x) =
∫ τ

0
(−1

2
Jẋ · x − H(t, x))dt, (3.1)

for x ∈ dom(A) ⊂ Lτ ≡ L2(Sτ ,R2n) with A = −J d
dt . It is well-known that critical points of f on

Lτ and τ -periodic solutions of (0.1) are one-to-one correspondent. The Morse indices of f at its

critical point x is defined by those of the following quadratic form on Lτ :

φ(y) =
∫ τ

0
(−Jẏ · y − B(t)y · y)dt, (3.2)

where B(t) = H ′′(t, x(t)). Note that the positive and negative Morse indices of f at its critical

point x, i.e. the total multiplicities of positive and negative eigenvalues of the quadratic form (3.2),

are always infinite. Using the saddle point reduction method on the space Lτ (cf. [AmZ1] and

[Cha1]), we obtain a finite dimensional subspace Z ⊂ Lτ consisting of finite Fourier polynomials

with 2d = dim Z being sufficiently large, an injective map u : Z → Lτ and a functional a : Z → R,

such that there holds

a(z) = f(u(z)), ∀z ∈ Z, (3.3)

and that the critical points of a and f are one to one correspondent. Note that the following

important result holds.

Theorem 3.1. (cf. [CoZ1], [LoZ1], [Lon1], [Lon8]) Under the above conditions, let z be a

critical point of a and x = u(z) be the corresponding solution of the system (0.1). Denote the

Morse indices of the functional a at z by m∗(z) for ∗ = +, 0,−. Then the Maslov-type index

(i1(x), ν1(x)) satisfy

m−(z) = d + i1(x), m0(z) = ν1(x), m+(z) = d − i1(x) − ν1(x). (3.4)

Idea of the proof. 1o For the non-degenerate case with n ≥ 2 or n = 1 and i1(x) ∈ (2Z+1)∪{0}
as in [CoZ1], it suffices to use the homotopy invariance of the Maslov-type index to reduce the

computation of the indices to the case of liner Hamiltonian systems with constant coefficients.

2o For the non-degenerate case with n = 1, we first couple the given linearized Hamiltonian

system H0 with a linear Hamiltonian system H1 on R2 with constant coefficients and Maslov-type

index 1 to get a new linear Hamiltonian system H2 on R4. Then the index formula (3.4) for H0

follows from that for H1 subtract from that of H2.
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3o For the degenerate case, use the paths γs and perturbation techniques to reduce the problem

to the comparison of non-degenerate cases of γ1 and γ−1.

Note that from (3.4), the Maslov-type indices can be viewed as a finite representation of the

infinite Morse indices of the direct variational formulations. Note also that for general Hamiltonian

H whose second derivative may not be bounded, results similar to Theorem 3.1 was proved via

Galerkin approximations in [FeQ1] by G. Fei and Q. J. Qiu.

Next we consider the periodic problem of the calculus of variation, i.e. finding extremal loops

of the following functional

F (x) =
∫ τ

0
L(t, x, ẋ)dt, ∀x ∈ Wτ = W 1,2(Sτ ,Rn). (3.5)

Here we suppose τ > 0 and L ∈ C2(Sτ×Rn×Rn,R) such that Lp,p(t, x, p) is symmetric and positive

definite, and Lx,x(t, x, p) is symmetric. An extremal loop x of F corresponds to a 1-periodic solution

of the Lagrangian system
d

dt
Lp(t, x, ẋ) − Lx(t, x, ẋ) = 0. (3.6)

Fix such an extremal loop x, define

P (t) = Lp,p(t, x(t), ẋ(t)), Q(t) = Lx,p(t, x(t), ẋ(t)), R(t) = Lx,x(t, x(t), ẋ(t)). (3.7)

The Hessian of F at x corresponds to a linear periodic Sturm system,

−(P ẏ + Qy)· + QT ẏ + Ry = 0. (3.8)

It corresponds to the linear Hamiltonian system (0.2) with

B(t) ≡ Bx(t) =
(

P−1(t) −P−1(t)Q(t)

−Q(t)T P−1(t) Q(t)T P−1(t)Q(t) − R(t)

)
. (3.9)

Denote by γx the fundamental solution of this linearized Hamiltonian system (0.2). The Morse

index and nullity of the functional F at an extremal loop x in Wτ are always finite. We denote

them by m−(x) and m0(x) respectively.

Theorem 3.2. (cf. [Vit2], [LoA1], [AnL1]) Under the above conditions, there hold

m−(x) = i1(γx), m0(x) = ν1(γx). (3.10)

Idea of the proof. We apply the index theory of [Dui1]. Using the homotopy invariance

properties of this index theory and the Maslov-type index theory to simple standard cases, then

(3.10) is proved by concrete computations on these simple cases.
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Remark 3.3. (i) Note that in the sense of Theorems 3.1 and 3.2, our Definition 1.9 of the

Maslov-type index is natural.

(ii) Similar to Theorem 3.2, one can prove that for every closed geodesic c with the linearized

Poincaré map Pc (∈ Sp(2n − 2)) on a Finsler (as well as Riemannian) manifold (M,F ) with

n = dim M , there exists a symplectic path γ ∈ P1(2n − 2) such that there hold γ(1) = Pc and

i1(γ) = i(c), ν1(γ) = ν(c). (3.11)

(iii) For the Ekeland index (iE(x), νE(x)) defined for every periodic solution x of a convex

Hamiltonian system (0.1) on R2n, similar to Theorem 3.2, one can prove

i1(x) = iE(x) + n, ν1(x) = νE(x). (3.12)
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Chapter 2. The Index Iteration Theory for Symplectic Paths

For τ > 0 and any γ ∈ Pτ (2n), the iteration path γ̃ ∈ C([0,+∞),Sp(2n)) of γ is defined by

γ̃(t) = γ(t − jτ)γ(τ)j , for jτ ≤ t ≤ (j + 1)τ and j ∈ {0} ∪ N,

and γm = γ̃|[0,mτ ] for all m ∈ N. Then we can associate to γ through γm a sequence of Maslov-type

indices

{(i1(γm), ν1(γm))}m∈N.

When γ : [0,+∞) → Sp(2n) is the fundamental solution of (0.2) with B ∈ C(Sτ ,Ls(R2n)), where

Ls(R2n) is the set of symmetric 2n × 2n real matrices, there holds (γ|[0,τ ])∼ = γ. When x is a

τ -periodic solution of (1.1), we define the iterations of x by

xm(t) = x(t − j), ∀j ≤ t ≤ j + 1, j = 0, 1, . . . ,m − 1.

Denotes by

(i1(xm), ν1(xm)) = (i1(γm
x ), ν1(γm

x )).

Thus the corresponding index sequence with γ = γx reflects important properties of the τ -periodic

solution x of the Hamiltonian system (1.1).

In the celebrated work [Bot1] of R. Bott in 1956 as well as [BTZ1], the iteration theory of Morse

index for closed geodesics is established. In the works of I. Ekeland (cf. [Eke1]-[Eke3]) the iteration

theory of his index for convex Hamiltonian systems is established. In [Vit1] of C. Viterbo, the

iteration theory for an index theory of nondegenerate star-shaped Hamiltonian systems is partially

established. But for our purpose in the study of existence, multiplicity, and stability problems

of periodic orbits of nonlinear Hamiltonian systems with no any convexity assumptions, all these

results are not applicable. The only paper we know which studied certain iteration properties of

certain Maslov index in such a generality is [CuD1] of R. Cushman and J. Duistermaat in 1977.

But their result is not good enough for our purposes and contains some flaws in certain cases.

The basic question in an index iteration theory is for any given positive integer m to determine

precisely the index pair (i1(xm), ν1(xm)) of the m-th iteration xm of a τ -periodic solution x of

a given Hamiltonian system in terms of its initial index (i1(x), ν1(x)) and information from the

linearized Poincaré map γx(τ). In a sequence of papers in 1990s up to 2002, we have established

such an index iteration theory for any symplectic paths including the Bott-type iteration formulae,

precise iteration formulae, various iteration inequalities, and the common index jump theorem. In

this chapter, I shall give an introduction to this index iteration theory.
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4 The ω-index theory, splitting numbers and basic normal form

decompositions

As we have mentioned in the Section 1, the Maslov-type index theory is defined via the singular

hypersurface Sp(2n)0 in Sp(2n). This hypersurface is formed by all matrices in Sp(2n) which

possesses 1 as its eigenvalues. In the study of the iteration properties of the Malsov-type index

theory, as in [Lon4] for any ω ∈ U it is natural to consider the generalization D ∈ C∞(U ×
Sp(2n),R) of the determinant function defined by

Dω(M) = (−1)n−1ω−n det(M − ωI), ∀ω ∈ U,M ∈ Sp(2n), (4.1)

and the hypersurface

Sp(2n)0ω = {M ∈ Sp(2n) |Dω(M) = 0}, (4.2)

which contains all symplectic matrices having ω as an eigenvalue. Similarly for any ω ∈ U we

define

Sp(2n)±ω = {M ∈ Sp(2n) | ± Dω(M) < 0},

Sp(2n)∗ω = Sp(2n)+ω ∪ Sp(2n)−ω = Sp(2n) \ Sp(2n)0ω,

P∗
τ,ω(2n) = {γ ∈ Pτ (2n) | γ(τ) ∈ Sp(2n)∗ω},

P0
τ,ω(2n) = Pτ (2n) \ P∗

τ,ω(2n).

In [Lon5], for ω ∈ U, the ω-nullity of any symplectic path is defined by

νω(γ) = dimC kerC(M − ωI), ∀γ ∈ Pτ (2n). (4.3)

In [Lon4], the author proved the following result similar to Lemma 1.1.

Lemma 4.1. (cf. [Lon4]) For any ω ∈ U, Sp(2n)∗ω contains two path connected components

Sp(2n)+ω and Sp(2n)−ω , and M±
n ∈ Sp(2n)±ω . Both of these two sets are simply connected in Sp(2n).

Based upon this result, the index iω(γ) is defined in [Lon5] for any γ ∈ P∗
τ,ω(2n) in a similar

way to that used in the Definition 1.6.

Then based upon the results obtained in [Lon4] on the properties of and near Sp(2n)0ω in Sp(2n),

for any ω ∈ U and γ ∈ P0
τ,ω(2n) it is defined in [Lo11] that

iω(γ) = inf{iω(β) |β ∈ P∗
τ,ω(2n) and β is sufficiently close to γ in Pτ (2n)}.

In such a way, the ω-index theory assigns a pair of integers to each γ ∈ Pτ (2n) and ω ∈ U:

(iω(γ), νω(γ)) ∈ Z × {0, . . . , 2n}. (4.4)
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Figure 4.1: Oriented Sp(2)0ω for ω = ±1 and ω ∈ U \ R

When ω = 1, the ω-index theory coincides with the Maslov-type index theory. Similarly to Theorem

1.11, an axiom characterization of the ω-index theory can be given as in [Lon5].

Now let us fix a path γ ∈ Pτ (2n), and move ω on U from 1 to −1, and study the properties of

the ω-index of γ as functions of ω. In [Lon5], the following result is proved.

Lemma 4.2. (cf. [Lon5], [Lon8]) For fixed γ ∈ Pτ (2n), iω(γ) as a function of ω is constant

on each connected component of U \ σ(γ(τ)). There holds

νω(γ) = 0, ∀ω ∈ U \ σ(γ(τ)). (4.5)

Idea of the proof. It follows from that the index functions are locally constant.

By this lemma, in order to understand the properties of the ω-index as a function of ω ∈ U, it is

important to study the possible jumps of iω(γ) at ω ∈ U \ σ(γ(τ)). These jumps are usually called

splitting numbers, which play a crucial role in iteration theory of the Maslov-type index theory

for symplectic paths. The precise definition of the splitting number is contained in the following

result.

Theorem 4.3. (cf. [Lon5], [Lon8]) For any M ∈ Sp(2n) and ω ∈ U, choose τ > 0 and
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γ ∈ Pτ (2n) with γ(τ) = M , and define

S±
M (ω) = lim

ε→0+
iexp(±ε

√
−1)ω(γ) − iω(γ). (4.6)

Then these two integers are independent of the choice of the path γ. They are called the splitting

numbers of M at ω.

In order to further understand the splitting number, new concepts of the homotopy component

of M ∈ Sp(2n) and the ultimate type of ω ∈ U for M ∈ Sp(2n) is introduced by the author in

[Lon5] as follows.

Definition 4.4. (cf. [Lon5], [Lon8]) For any M ∈ Sp(2n), define the homotopy set of M in

Sp(2n) by

Ω(M) = {N ∈ Sp(2n) | σ(N) ∩ U = σ(M) ∩ U, and

dimC kerC(N − λI) = dimC kerC(M − λI), ∀λ ∈ σ(M) ∩ U}.

We denote by Ω0(M) the path connected component of Ω(M) which contains M , and call it the

homotopy component of M in Sp(2n).

For any M ∈ Sp(2n), define its conjugate set by

[M ] = {N ∈ Sp(2n) |N = P−1MP for some P ∈ Sp(2n)}.

Then [M ] ⊂ Ω0(M) for all ω ∈ U.

Definition 4.5.(cf. [Lon5], [Lon8]) The following matrices in Sp(2n) are called basic normal

forms for eigenvalues on U:

N1(λ, b) with λ = ±1, b = ±1, or 0,

R(θ) with ω = eθ
√
−1 ∈ U \ R,

N2(ω, b) =
(

R(θ) b

0 R(θ)

)
, with b =

(
b1 b2

b3 b4

)
∈ L(R2),

b2 − b3 6= 0, and ω = eθ
√
−1 ∈ U \ R.

A basic normal form matrix M is trivial, if for sufficiently small a > 0, MR((t− 1)a)¦n possesses

no eigenvalue on U for t ∈ [0, 1), and is nontrivial otherwise.

Note that by direct computations, N1(1,−1), N1(−1, 1), N2(ω, b), and N2(ω, b) with

dimC kerC(M − ωI) = 1, ω = exp(θ
√
−1) ∈ U \ R and (b2 − b3) sin θ > 0 are trivial, and any

other basic normal form matrix is nontrivial.

Theorem 4.6.(cf. [Lon5], [Lon8]) For any M ∈ Sp(2n), there is a path f ∈ C∞([0, 1],Ω0(M))

such that f(0) = M and

f(1) = M1¦ · · · ¦Mk¦M0, (4.7)
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where the integer p ∈ [0, n], each Mi is a basic normal form of eigenvalues on U for 1 ≤ i ≤ k, and

the symplectic matrix M0 satisfies σ(M0) ∩ U = ∅.
Idea of the proof. Firstly we connect M within Ω0(M) to a product of normal forms via the

results of [LoD1] and [HaL1]. Then by carefully chosen perturbations and connecting paths, we

connect all these normal forms to basic normal forms within Ω0(M).

Recall that (cf. Section I.2 of [Eke3] or [YaS1]) for M ∈ Sp(2n) and ω ∈ U ∩ σ(M) being

an m-fold eigenvalue, the Hermitian form 〈
√
−1J ·, ·〉, which is called the Krein form, is always

nondegenerate on the invariant root vector space Eω(M) = kerC(M − ωI)m, where 〈·, ·〉 denotes

the inner product in C2n. Then ω is of Krein type (p, q) with p + q = m if the restriction of

the Krein form on Eω(M) has signature (p, q). ω is Krein positive if it has Krein type (p, 0), is

Krein negative if it has Krein type (0, q). If ω ∈ U \ σ(M), we define the Krein type of ω by

(0, 0).

Definition 4.7.(cf. [Lon5], [Lon8]) For any basic normal form M ∈ Sp(2n) and ω ∈ U∩σ(M),

we define the ultimate type (p, q) of ω for M to be its usual Krein type if M is nontrivial, and to

be (0, 0) if M is trivial. For any M ∈ Sp(2n), we define the ultimate type of ω for M to be (0, 0)

if ω ∈ U \ σ(M). For any M ∈ Sp(2n), by Theorem 4.6 there exists a ¦-product expansion (4.7)

in the homotopy component Ω0(M) of M where each Mi is a basic normal form for 1 ≤ i ≤ k and

σ(M0) ∩ U = ∅. Denote the ultimate type of ω for Mi by (pi, qi) for 0 ≤ i ≤ k. Let p =
∑k

i=0 pi

and q =
∑k

i=0 qi. We define the ultimate type of ω for M by (p, q).

It is proved in [Lon5] that the ultimate type of ω ∈ U for M is uniquely determined by ω and

M , therefore is well defined. It is constant on Ω0(M) for fixed ω ∈ U.

Lemma 4.8. (cf. [Lon5], [Lon8]) For ω ∈ U and M ∈ Sp(2n), denote the Krein type and the

ultimate type of ω for M by (P,Q) and (p, q). Then there holds

P − p = Q − q ≥ 0. (4.8)

The following theorem completely characterizes the splitting numbers.

Theorem 4.9. (cf. [Lon5], [Lon8]) For any ω ∈ U and M ∈ Sp(2n), there hold

S+
M (ω) = p and S−

M (ω) = q, (4.9)

where (p, q) is the ultimate type of ω for M .

Idea of the proof. Use Theorem 4.6 to reduce the proof to the case of basic normal forms.

Then carry out the direct computation for each basic normal form. The difficulty part is the

computation for N2(ω, b)’s. We refer to [Lon5] (cf. [Lon8]) for details.
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Corollary 4.10. If ω ∈ U ∩ σ(γ(τ)) is of Krein type (p, q), there holds

lim
ε→0+

(
ieε

√
−1ω(γ) − ie−ε

√
−1ω(γ)

)
= p − q. (4.10)

Corollary 4.11. For any ω ∈ U and M ∈ Sp(2n), there holds

0 ≤ S±
M (ω) ≤ dimC kerC(M − ωI). (4.11)

Remark 4.12. Theorem 4.9 and Corollary 4.10 generalize Theorem IV on p.180 of [Bot1] and

Proposition 9 on p.44 of [Eke3]. Note that there is a sign difference between our J and that in

[Eke3]. Note also that the conclusion of our Theorem 4.9 coincides with the Example II on p.181

of [Bot1].

5 Bott-type iteration formulae and the mean index

Based upon our preparations in the above subsection, next we establish the Bott-type formulae for

the Maslov-type index theory.

Fix τ > 0 and B ∈ C(Sτ ,Ls(R2n)). Let γ ∈ P̂τ (2n), i.e. γ is the fundamental solution of (0.2)

for some B ∈ C(Sτ ,Ls(R2n)). Fix k ∈ N. The bilinear form corresponding to the system (0.2) is

given by

φkτ (x, y) =
1
2
〈(A − B)x, y〉Lτ , ∀x, y ∈ Ekτ = W 1,2(Skτ ,R2n)) ⊂ Lkτ . (5.1)

For ω ∈ U define

Ekτ (τ, ω) = {y ∈ Ekτ | y(t + τ) = ωy(t), ∀t}.

For simplicity we identify Ekτ (τ, ω) with Eτ (τ, ω). Define ωp = exp(2pπ/k
√
−1) for 0 ≤ p ≤ k.

Then ωk
p = 1. By direct computation we obtain that Ekτ (τ, ωp) and Ekτ (τ, ωq) is φkτ -orthogonal

for 0 ≤ p 6= q ≤ k, and there holds

Ekτ = ⊕ωk=1Ekτ (τ, ω). (5.2)

Thus we obtain

φkτ |Ekτ
=

k−1∑
i=0

φkτ |Ekτ (τ,ωi) = k

k−1∑
i=0

φτ |Eτ (τ,ωi). (5.3)

Now we carry out the saddle point reduction for φkτ on Ekτ , and obtain the functional akτ =

φkτ ◦ukτ defined on Zkτ . Simultaneously this induces saddle point reductions for φτ on Eτ (τ, ωi) for

0 ≤ i ≤ k−1, and yields the functional aτ,ωi = φτ ◦uτ,ωi defined on Zτ,ω. By the orthogonality claim

(5.3), the Morse index of φkτ on the left hand side of (5.3) splits into the sum of the Morse indices

21



of the functional on the right hand side of (5.3). Note that the dimensions of spaces appeared in

(5.3) satisfy

dkτ =
∑
ωk=1

dτ,ω. (5.4)

Thus by Theorem 2.1, we obtain the following Bott-type formula for γ ∈ P̂τ (2n).

Theorem 5.1. (cf. [Lon5], [Lon8]) For any τ > 0, γ ∈ Pτ (2n), and m ∈ N, there hold

i1(γm) =
∑

ωm=1

iω(γ), (5.5)

ν1(γm) =
∑

ωm=1

νω(γ). (5.6)

Idea of the proof. For the general case of γ ∈ Pτ (2n). Choose β ∈ P̂τ (2n) such that

β(τ) = γ(τ) and β ∼ γ. We obtain iω(β) = iω(γ) for all ω ∈ U. From β ∼ γ with fixed end points,

this homotopy can be extended to [0, 1]× [0, kτ ]. By the inverse homotopy Theorem 1.12, we then

obtain βk ∼ γk. Thus i1(βk) = i1(γk) holds. Then the Bott-type formulae (5.5) and (5.6) for β

imply those for γ. This completes the proof of Theorem 5.1.

As a direct consequence of Theorem 5.1, we obtain

i1(γk)
k

=
1
2π

∑
ωk=1

iω(γ)
2π

k
,

ν1(γk)
k

=
1
2π

∑
ωk=1

νω(γ)
2π

k
.

By Lemma 4.2, as functions of ω, the function iω(γ) is locally constant and ντ (ω) is locally zero on

U except at finitely many points. Therefore the right hand sides of above equalities are Riemannian

sums, and converge to the corresponding integrals as k → ∞. This proves the following result.

Theorem 5.2. (cf. [Lon5], [Lon8]) For any τ > 0 and γ ∈ Pτ (2n) there hold

î(γ) ≡ lim
k→+∞

i1(γk)
k

=
1
2π

∫
U

iω(γ)dω, (5.7)

ν̂(γ) ≡ lim
k→+∞

ν(γ
k)

k
=

1
2π

∫
U

νω(γ)dω = 0. (5.8)

Specially, î(γ) is always a finite real number, and is called the mean Maslov-type index per τ

for γ.

As a direct consequence of Theorem 5.2, for any γ ∈ Pτ (2n) we obtain

î(γk) = kî(γ), ∀k ∈ N. (5.9)
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Then through the fundamental solution γx of (0.2) with B(t) = H ′′(t, x(t)), the mean index per

period τ of a τ -periodic solution x of the nonlinear system (0.1) can be defined by

î(x) = î(γx). (5.10)

This yields a new invariant to each periodic solution of the system (0.1).

Remark 5.3. As proved in [Lon5] (cf. [Lon8]), for a fixed Sturm system (3.8) and the

corresponding path γ ∈ Pτ (2n) as the fundamental solution of the system (0.2) with coefficient B

defined by (3.9), our ω-index pair (iω(γ), νω(γ)) and the index functions Λ(ω) and N(ω) of R. Bott

defined in [Bot1] satisfy

iω(γ) = Λ(ω), νω(γ) = N(ω), ∀ω ∈ U. (5.11)

Note that in [Eke3] the standard symplectic matrix is given by −J . For the fundamental solution

γ of a fixed linear Hamiltonian system (0.2) with negative definite coefficient B ∈ C(Sτ ,Ls(R2n)),

our ω-index and the index functions jτ (ω) and nτ (ω) of I. Ekeland defined in the section I.5 of

[Eke3] satisfy

νω(γ) = nτ (ω), ∀ ω ∈ U, (5.12)

i1(γ) + ν1(γ) = −jτ (1) − n, (5.13)

iω(γ) + νω(γ) = −jτ (ω), ∀ ω ∈ U \ {1}. (5.14)

By (5.11) and (5.12)-(5.14), our above theorems generalize the well known Bott formulae (Theorem

A of [Bo] with periodic boundary condition) for Morse indices of closed geodesics, and the Bott-

type formulae of Ekeland indices (Corollary I.4 of [Eke3]) for convex Hamiltonian systems, and

corresponding result of C. Viterbo in [Vit1] for non-degenerate star-shaped Hamiltonian systems.

6 Precise iteration formulae

The basic question of the index iteration theory is compute the index of the m-th iteration γm for

any given m ∈ N and γ ∈ Pτ (2n) in terms of the initial information i1(γ), ν1(γ) and γ(τ). The

Bott-type formula Theorem 5.1 is a powerful tool for this purpose. Such a formula is established

based on the usual symplectic coordinate changes. Thus in many cases, each normal form in the

decomposition of the end point matrix γx(τ) ∈ Sp(2n) of the fundamental solution γx of a periodic

solution x of a Hamiltonian system may still possesses very high order which makes the computation

and estimates of the indices become very difficulty. On the other hand, in the Bott-type formula,
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the index of the m-th iteration is computed in terms of the ω-indices for all m-th roots of unit ω,

which is also not easy to compute neither.

To answer for this basic question was given by [Lon6] of the author in 2000, where a different

method of computing and estimating the Maslov-type indices for such iterated paths was developed.

The main idea is to reduce the computation of the index of a given path in Sp(2n) to those of

paths in Sp(2) and some special paths in Sp(4) ending at the basic normal forms by a sequence of

homotopies in the sense of Definition 1.3. But in terms of the cylinderical coordinate representation

of Sp(2) in R3, the computation of the Maslov-type index of any path in Sp(2) starting from I is

almost obvious. By certain careful studies, the cases in Sp(4) can also be reduced to the case of

Sp(2). This method yields rather precise information on the Maslov-type indices for iterations with

very simple paths. Using this method, a different proof of the Bott-type formulae (5.5) and (5.6)

can be given by computing both sides of them on paths in Pτ (2) ∪ Pτ (4) ending at basic normal

forms in Definition 4.5.

For any a ∈ R, we define

[a] = max{k ∈ Z | k ≤ a}, E(a) = min{k ∈ Z | k ≥ a},

ϕ(a) = E(a) − [a], {a} = a − [a].

The following is the main result in [Lon6].

Theorem 6.1. ([Lon6], [Lon8]) Let γ ∈ Pτ (2n). There is a path f ∈ C([0, 1],Ω0(γ(τ)) by Theorem

1.8.10 such that f(0) = γ(1) and

f(1) = N1(1, 1)¦p− ¦ I2p0 ¦N1(1,−1)¦p+

¦N1(−1, 1)¦q− ¦ (−I2q0) ¦N1(−1,−1)¦q+

¦R(θ1) ¦ · · · ¦R(θr)

¦N2(ω1, u1) ¦ · · · ¦N2(ωr∗ , ur∗)

¦N2(λ1, v1) ¦ · · · ¦N2(λr0 , vr0)

¦M0, (6.1)

where N2(ωj , uj)’s are nontrivial and N2(λj , vj)’s are trivial basic normal forms; σ(M0) ∩ U = ∅;
p−, p0, p+, q−, q0, q+, r, r∗, and r0 are nonnegative integers; ωj = e

√
−1αj , λj = e

√
−1βj ; θj, αj,

βj ∈ (0, π) ∪ (π, 2π); these integers and real numbers are uniquely determined by γ(τ). Then there

hold

i(γ,m) = m(i(γ, 1) + p− + p0 − r) + 2
r∑

j=1

E(
mθj

2π
) − r
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−p− − p0 −
1 + (−1)m

2
(q0 + q+)

+2(
r∗∑

j=1

ϕ(
mαj

2π
) − r∗), (6.2)

ν(γ,m) = ν(γ, 1) +
1 + (−1)m

2
(q− + 2q0 + q+) + 2ς(m, γ(τ)), (6.3)

where we denote by

ς(m, γ(τ)) = r −
r∑

j=1

ϕ(
mθj

2π
) + r∗ −

r∗∑
j=1

ϕ(
mαj

2π
) + r0 −

r0∑
j=1

ϕ(
mβj

2π
). (6.4)

Remark 6.2. Note that using Theorem 6.1, results in the Section 5 can also be proved.

Based upon teh basic normal form decomposition (6.1), the proofs of (6.2) and (6.3) in Theorem

6.2 are reduced to paths in Pτ (2) and Pτ (4) with end matrices listed in (6.1). To illustrate the

computations of Maslov-type indices for iterated paths, next we give a pictorial proof of the iteration

formulae for the case of γ(τ) ∈ Sp(2)0−, and explain several most important cases which we shall

need in the later sections of our applications. For more details about this computation, we refer to

[Lon6] as well as [Lon8].

Let Sp(2)0± = Ω0(N1(1,∓1)).

Case 1. γ ∈ P0
τ (2) and γ(τ) ∈ Sp(2)0−.

In this case we must have k ≡ i1(γ) being odd and ν1(γ) = 1. From the fact (Sp(2)0−)m ⊂
Sp(2)0−, we obtain ν1(γm) = 1 for all m ∈ N. From the Figure 6.1 we obtain i1(γ) = (k + 1) − 1,

and i1(γm) = m(k + 1) − 1 for all m ∈ N. Thus in this case we obtain

i1(γm) = m(i1(γ) + 1) − 1, ν1(γm) = 1, ∀m ∈ N. (6.5)

Note that this formula can also be obtained from the Bott-type formula (5.7).

Case 2. γ ∈ Pτ (2n) and γ(τ) = I.

Similar to the case 1, we must have i1(γ) being odd and ν1(γ) = 2. In this case we obtain

i1(γm) = m(i1(γ) + 1) − 1, ν1(γm) = 2, ∀m ∈ N. (6.6)

Case 3. γ ∈ Pτ (2n) and γ(τ) ∈ Sp(2)0+.

In this case, we must have i1(γ) being even and ν1(γ) = 2. Similar to the case 1 we obtain

i1(γm) = miτ (γ), ν1(γm) = 1, ∀m ∈ N. (6.7)

Case 4. γ ∈ Pτ (2n) and σ(γ(τ)) = {a, a−1} with a ∈ R \ {0,±1}.
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Figure 6.1: Computation of indices for iterations of the path γ in the Case 1

In this case we have that i1(γ) is odd if a < 0 and i1(γ) is even if a > 0. Similar to the case 1

we obtain

i1(γm) = mi1(γ), ν1(γm) = 0, ∀m ∈ N. (6.8)

Case 5. γ ∈ Pτ (2n) and σ(γ(τ)) ⊂ U \ R, i.e., R(θ) ∈ Ω0(γ(τ)) for some θ ∈ [0, 2π].

In this case, we must have i1(γ) being odd and ν1(γ) = 0. Similarly to the case 1 we obtain

i1(γm) = m(i1(γ) − 1) + 2E(
mθ

2π
) − 1, ν1(γm) = 2 − 2ϕ(

mθ

2π
), ∀m ∈ N. (6.9)

7 Iteration inequalities

In many of our applications, we need sharp increasing estimates on the iterated Maslov-type index

i1(γm) for γ ∈ Pτ (2n). These results are proved in [LiL1] based on results in [DoL1] and in [LiL2]

based on results in [Lon5].

Theorem 7.1.(cf. [LiL1], [LiL2], [Lon8]) For any γ ∈ Pτ (2n) and m ∈ N, there holds

mî(γ) − n ≤ i1(γm) ≤ mî(γ) + n − ν1(γm). (7.1)
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Theorem 7.2.(cf. [LiL1], [LiL2], [Lon8]) For any γ ∈ Pτ (2n) and m ∈ N, there holds

m(i1(γ) + ν1(γ) − n) + n − ν1(γ) ≤ i1(γm) (7.2)

≤ m(i1(γ) + n) − n − (ν1(γm) − ν1(γ)). (7.3)

Remark 7.3. Necessary and sufficient conditions so that equality holds on each side of (7.1)

or (7.3) are found in [LiL2], cf. [Lon8] for details.

Our proof of these theorems is based on the following result proved in [LL3]. In particular,

this proof uses the properties of the ω-index theory, splitting numbers on homotopy components of

symplectic matrices, and mean indices are very crucial in the proofs.

Proposition 7.4. (cf. [LiL2], [Lon8]) For any γ ∈ Pτ (2n) and ω ∈ U \ {1}, there always

holds

i1(γ) + ν1(γ) − n ≤ iω(γ) ≤ i1(γ) + n − νω(γ). (7.4)

Idea of the proof. The proof of (6.6) is based on the estimate of the difference between

i1(γ) = i1(γ) and i1ω(γ), which is expressed by a sum of splitting numbers when the parameter

runs from 1 to ω on U:

iω(γ) = i1(γ) + S+
γ(τ)(1) −

k∑
j=1

[S−
γ(τ)(ωj) − S+

γ(τ)(ωj)] − S−
γ(τ)(ω).

Then apply properties of the splitting numbers to get (7.4). For proofs of other parts of the theorem,

we refer to [LiL2], [Lon8] for details.

Now based on the Proposition 7.4, we can give the proofs of Theorems 7.1 and 7.2 below.

Proof of Theorem 7.1. By Theorem 5.2, integrating (7.4) on U we obtain

i1(γ) + ν1(γ) − n ≤ î(γ) ≤ i1(γ) + n. (7.5)

Replacing τ by mτ in (7.5), by (5.9) we obtain (7.1).

Proof of Theorem 7.2. By Theorem 5.1, summing (7.4) up over all m-th roots of unit, we

obtain

(m − 1)(i1(γ) + ν1(γ) − n) + i1(γ) ≤ i1(γm)

≤ (m − 1)(i1(γ) + n) + i1(γ) − (ν1(γm) − ν1(γ)).

This yields (7.3).
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Figure 8.1: Common index jump of 3 paths

8 The common index jump theorem

An abstract precise index iteration theorem was obtained in [LZh1] of Y. Long and C. Zhu in 2002:

Theorem 8.1. ([LZh1]) For γ ∈ Pτ (2n) and any m ≥ 1, there holds:

i1(γm) = m(i1(γ) + S+
M (1) − C(M))

+ 2
∑

θ∈(0,2π)

E(
mθ

2π
)S−

M (e
√
−1θ) − (S+

M (1) + C(M)),

where M = γ(τ), and C(M) =
∑

0<θ<2π S−
M (e

√
−1θ).

Besides other results in the index iteration theory described in [Lon5], the following common

index jump theorem for finitely many symplectic paths was proved in [LZh1] by C. Zhu and the

author. For any γ ∈ Pτ (2n), its m-th index jump Gm(γ) is defined to be the open interval

Gm(γ) = (i1(γm) + ν1(γm) − 1, i1(γm+2)).

Note that under the assumption (8.1) below, the interval Gm(γ) is meaningful and non-empty.

Theorem 8.2. (cf. [LZh1], [Lon8]) Let γj ∈ Pτj (2n) with 1 ≤ j ≤ q satisfy

î(γj) > 0, i1(γj) ≥ n, 1 ≤ j ≤ q. (8.1)
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Then there exist infinitely many positive integer tuples (N,m1, . . . ,mq) ∈ Nq+1 such that

∅ 6= [2N − κ1, 2N + κ2] ⊂
q∩

j=1

G2mj−1(γj), (8.2)

where κ1 = min1≤j≤q(i1(γj) + 2S+
γj(τj)

(1) − ν1(γj)) and κ2 = min1≤j≤q i1(γj) − 1.

Idea of the proof. In order to prove this theorem, we need to use Theorem 8.1 and to make

each index jump to be as big as possible, and to make their largest jumps happen simultaneously

to guarantee the existence of a non-empty largest common intersection interval among them. This

problem is reduced to a dynamical system problem on a torus, and is solved by properties of closed

additive subgroups of tori. Intuitively speaking, we tried to find a certain common multiple of the

iteration times so that the indices of each path reaches a similar value.

The index iteration theory reviewed in this chapter has been applied to many problems including

the prescribed minimal period problem for periodic solutions of the systems (0.1), periodic points

of Poincaré maps of Lagrangian systems on tori, closed characteristics on convex hypersurfaces in

R2n, closed geodesic problems, etc. We refer readers to the book [Lon8] as well as references therein

for such applications. In the following chapters we give some examples on such applications.
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Chapter 3. Closed Characteristics on Convex Hypersurfaces in R2n

9 Existence, multiplicity and stability problems of closed charac-

teristics

Let H(2n) denote the set of all compact strictly convex C2-hypersurfaces in R2n. For Σ ∈ H(2n)

and x ∈ Σ, let NΣ(x) be the unit outward normal vector at x of Σ. We consider the problem of

finding τ > 0 and a curve x ∈ C1([0, τ ],R2n) such that{
ẋ(t) = JNΣ(x(t)), x(t) ∈ Σ, ∀t ∈ R,

x(τ) = x(0).
(9.1)

A solution (τ, x) of the problem (9.1) is called a closed characteristic on Σ. Two closed character-

istics (τ, x) and (σ, y) are geometrically distinct, if x(R) 6= y(R). We denote by T (Σ) the set of

all closed characteristics (τ, x) on Σ with τ being the minimal period of x, and by T̃ (Σ) the set of

all geometrically distinct closed characteristics (τ, x) on Σ with τ being the minimal period of x

respectively.

Note that the problem (9.1) can be described in a Hamiltonian system version and solved by

variational methods as mentioned in Section 1. A closed characteristic (τ, x) is non-degenerate, if

1 is a Floquet multiplier of x, i.e., an eigenvalue of γx(τ), of precisely algebraic multiplicity 2, and

is elliptic, if all the Floquet multipliers of x are on U.

The problem on closed characteristics has been studied for more than 100 years. Two long

standing conjectures on the multiplicity and the stability of closed characteristics are the following:

Multiplicity conjecture. #T̃ (Σ) ≥ n holds for every Σ ∈ H(2n).

Stability conjecture. There exists at least one elliptic closed characteristic on every Σ ∈
H(2n).

9.1 On the multiplicity conjecture

The most famous known results on the local multiplicity conjecture can be traced back to A.

Liapunov’s [Lia1] in 1892, which was improved by [Wei1] of A. Weinstein in 1973 to the following

result

#T̃ (H−1(ε)) ≥ n, if H is C2 near 0, H ′′(0) > 0 and ε > 0 is sufficiently small.

Then this local theorem was further generalized by J. Moser in [Mos1] of 1976 and T. Bartsch in

[Bar1] of 1997.
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Figure 9.1: x on Σ and JN(x)

The first break through on the multiplicity conjecture in the global sense was made by P.

Rabinowitz (for star-shaped hypersufaces) and A. Weinstein in 1978. They proved

Theorem 9.1. ([Rab1], [Wei1], 1978) #T̃ (Σ) ≥ 1, ∀Σ ∈ H(2n).

Besides many results under pinching conditions (cf. for example, [ELy1], [AmM1], [Hof1],

[BLRM], [DyL1]), in 1987-1988, I. Ekeland-L. Lassoued, I. Ekeland-H. Hofer, and A, Szulkin proved

Theorem 9.2. ([ELa1], [EkH1], [Szu1], 1987) #T̃ (Σ) ≥ 2, ∀Σ ∈ H(2n) with n ≥ 2.

In 1998, H. Hofer, K. Wysocki, and E. Zehnder proved the following remarkable result:

Theorem 9.3. ([HWZ1], 1998) #T̃ (Σ) = 2 or +∞, ∀Σ ∈ H(4).

The proof of Theorem 9.3 depending on their construction of an open book structure to

parametrize the hypersurface S3 and a theorem of J. Franks in [Fra1] and [Fra2] on periodic

points of area preserving homeomorphisms on annulus. Because the theorem of J. Franks is for

2-dimensional case, so far it is not clear whether the method of [HWZ1] can be generalized to higher

dimensional cases.

On the other hand, using the index iteration theory for symplectic paths, the author and C.

Zhu gave the following answer to the multiplicity conjecture in 2002:

Theorem 9.4. ([LZh1], 2002) There holds

#T̃ (Σ) ≥ [
n

2
] + 1 ∀Σ ∈ H(2n).

Moreover, if all the closed characteristics on Σ are non-degenerate, then #T (Σ) ≥ n.

Then C. Liu, C. Zhu and the author proved the following result in 2002:

Theorem 9.5. ([LLZ1], 2002) For any Σ ∈ H(2n), if Σ is symmetric with respect to the origin,

i.e., x ∈ Σ implies −x ∈ Σ, then #T̃ (Σ) ≥ n.
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Recently, W. Wang, X. Hu and the author further proved the following result:

Theorem 9.6. ([WHL1], 2007) There holds

#T̃ (Σ) ≥ 3 ∀Σ ∈ H(6).

9.2 On the stability conjecture

Concerning the stability conjecture, because the existence of closed characteristics on Σ ∈ H(2n)

is usually proved by variational methods, very little is known on their stability. Up to the author’s

knowledge, the existence of one elliptic closed characteristic on Σ ∈ H(2n) was proved by I. Ekeland

in 1990 when Σ is
√

2-pinched by two spheres. The following beautiful stability theorem was proved

by G.-F. Dell’Antonio, B. D’Onofrio, and I. Ekeland in 1992.

Theorem 9.7. ([DDE1]) For any Σ ∈ H(2n), if Σ is symmetric with respect to the origin, then

there exists at least one elliptic closed characteristic on Σ.

Idea of the Proof. Try to find a global minimal point x of the dual action functional on the

1/2-antisymmetric function space. Then this solution must satisfy i−1(x) = 0. On the other hand,

we always have i1(x) ≥ n because Σ is convex. Therefore the total multiplicity of ω on the semi

unit circle from ω = 1 to ω = −1 on which a change of iω(x) happens must be n. This proves that

all the Floquet multipliers of x must locate on U, i.e. x is elliptic.

Note that based on the conclusion of the above Theorem 9.3 of [HWZ1], using the precise index

iteration formulae established in [Lon6], the author proved

Theorem 9.8. ([Lon6]) For Σ ∈ H(4) with #T̃ (Σ) = 2, both closed characteristics must be

elliptic.

Idea of the Proof. The idea of the proof of Theorem 4.7 is that all the integers in the set

2N−2+n should be covered by the union L(Σ) of all the index intervals [i(xm), i(xm)+ν(xm)−1]

of all iterations of all closed characteristics. Then using the above mentioned precise index iteration

formulae, we can classify the two closed characteristics into 9 different classes, and then get L(Σ)

precisely for each case. We prove first that 2N− 2 + n 6⊂ L(Σ) if both of them are not elliptic, and

then if at least one of the two closed characteristics is not elliptic. These contradictions prove the

theorem.

Using an index iteration estimate on the elliptic height and the index jump theorem, the fol-

lowing result was further proved by C. Zhu and the author.

Theorem 9.9. ([LZh1]) For Σ ∈ H(2n) with n ≥ 2, suppose #T̃ (Σ) < +∞. Then (i) there

exists at least one elliptic closed characteristic on Σ.

(ii) at least one closed characteristic on Σ satisfying î(x) ∈ R \ Q.

(iii) If n ≥ 2 and #T̃ (Σ) ≤ 2[n/2]. Then there exist at least two elliptic elements in T̃ (Σ).
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Other results on the multiplicity and stability problems can be found in the reference below.

In the next two sections, we shall give sketches on the proofs of Theorems 9.4 and 9.6 to show

how the index iteration theory play a crucial role in the studies.

10 The multiplicity theorem of Long and Zhu

In [LZh1], C. Zhu and the author proved the following result:

Theorem 9.4. ([LZh1]) There holds

#T̃ (Σ) ≥ [
n

2
] + 1 ∀Σ ∈ H(2n).

Moreover, if all the closed characteristics on Σ are non-degenerate, then #T̃ (Σ) ≥ n.

The main ingredient in the proof of Theorems 9.4 is our index iteration theory mentioned above.

To illustrate this method, we briefly describe below the main ideas in this proof.

Ideas of the Proof of Theorem 9.4. The proof is carried out in 6 steps.

Step 1. The Hamiltonian formulation.

To cast the problem (9.1) of closed characteristics on compact convex hypersurfaces in R2n into

a Hamiltonian version, following I. Ekeland’s book [Eke3], fix a Σ ∈ H(2n) bounding a convex set

C. Then the origin is in the interior of C. Let jΣ : R2n → [0,+∞) be the gauge function of Σ

defined by {
jΣ(x) = inf{λ > 0 | x

λ ∈ C}, for x 6= 0,

jΣ(0) = 0.
(10.1)

Fix a constant α satisfying 1 < α < 2 in this chapter. As usual we define the Hamiltonian function

Hα : R2n → [0,+∞) by

Hα(x) = jΣ(x)α, ∀x ∈ R2n. (10.2)

Then Hα ∈ C1(R2n,R) ∩ C2(R2n \ {0},R) is convex and Σ = H−1
α (1). The problem (9.1) is

equivalent to the following given energy problem of the Hamiltonian system

ẋ(t) = JH ′
α(x(t)), ∀t ∈ R, (10.3)

x(τ) = x(0), (10.4)

Hα(x(t)) = 1, ∀t ∈ R. (10.5)

Denote by T (Σ, α) the set of all solutions (τ, x) of the problem (10.3)-(10.5) where τ is the minimal

period of x. Note that elements in T (Σ) and T (Σ, α) are one to one correspondent to each other.

Step 2. The given period problem and the dual action principle.
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Consider the following given period problem:

ż(t) = JH ′
α(z(t)), ∀t ∈ R, (10.6)

z(1) = z(0). (10.7)

Let

Eα = {u ∈ Lα/(α−1)(R/Z,R2n) |
∫ 1

0
udt = 0},

with the usual L(α−1)/α norm. The Clarke-Ekeland dual action functional fα : Eα → R is defined

by

fα(u) =
∫ 1

0
{1
2
Ju · Πu + H∗

α(−Ju)}dt,

where Πu is defined by d
dtΠu = u and

∫ 1
0 Πudt = 0. The Fenchel conjugate H∗

α : R2n → R is

defined by

H∗
α(x) = sup

y∈R2n

{x · y − Hα(y)}.

Then fα ∈ C2(Eα,R). Suppose u ∈ Eα \ {0} is a critical point of fα. By [Eke3], there exists

ξu ∈ R2n such that zu(t) = Πu(t) + ξu is a 1-periodic solution of the problem (10.6).

Let h = Hα(zu(t)) and 1/m be the minimal period of zu for some m ∈ N. Define

xu(t) = h−1/αzu(h(2−α)/αt) and τ =
1
m

h(α−2)/α. (10.8)

Then there hold xu(t) ∈ Σ for all t ∈ R and (τ, xu) ∈ T (Σ, α). Note that the period 1 of zu

corresponds to the period mτ of the solution (mτ, xm
u ) of (10.3)-(10.5) with minimal period τ .

Note that by iteration, every solution (τ, x) ∈ T (Σ, α) gives rise to a sequence {zx
m}m∈N of

solutions of the problem (10.3)-(10.5), and a sequence {ux
m}m∈N of critical points of fα defined by

zx
m(t) = (mτ)−1/(2−α)x(mτt), (10.9)

ux
m(t) = (mτ)(α−1)/(2−α)ẋ(mτt). (10.10)

For every m ∈ N there holds

fα(ux
m) = −(1 − α

2
)(

2m

α
A(τ, x))−α/(2−α), (10.11)

where

A(τ, x) =
1
2

∫ τ

0
(−Jẋ · x)dt.

Step 3. Ekeland index, Maslov-type index, and estimates.
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In 1980s, I. Ekeland proved that the Hessian of fα at its critical point u possesses finite Morse

index and nullity, which are the so called Ekeland index and nullity, and denoted by iE(u) and

νE(u) respectively.

The following propositions relate Ekeland index to the Maslov-type index given in Chapter 1.

Proposition 10.1. ([Bro1] and [Lon5]) For u and xu defined above, there hold

i1(xu) = iE(u) + n, and ν1(xu) = νE(u). (10.12)

Proposition 10.2. ([Lon5], [Lon8]) For xu and zu defined above, there hold

i1(xm
u ) = i1(zu), and ν1(xm

u ) = ν1(zu). (10.13)

We need the following estimates on the iterated indices:

Proposition 10.3. ([LZh1], [Lon8]) Fix Σ ∈ H(2n) and α ∈ (1, 2). For any (τ, x) ∈ T (Σ, α) and

m ∈ N, there hold

î(x) > 2, (10.14)

i1(x) ≥ n, (10.15)

ν1(xm) ≥ ν1(x) ≥ 1, (10.16)

i1(xm+1) − i1(xm) − ν1(xm) ≥ i1(x) − e(γx(τ))
2

+ 1

≥ i1(x) − n + 1,

≥ 1, (10.17)

i(x,m + 1) + ν(x,m + 1) − 1 ≥ i(x,m + 1)

> i(x,m) + ν(x,m) − 1. (10.18)

Step 4. Faddel-Rabinowitz index method (Liusternik-Schinirelmann method).

I. Ekeland proved the following result by using the Faddel-Rabinowitz cohomological index

method:

Theorem 10.4. (cf. [Eke3]) For

[fα]c ≡ {u ∈ Eα | fα(u) ≤ c},

define

ck = inf{c < 0 | ind([fα]c) ≥ k}, ∀k ∈ N,

where ind denotes the Fadell-Rabinowitz cohomological index. Then {ck} are critical values of f .
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They satisfy

−∞ < c1 = inf
u∈Eα

fα(u) ≤ c2 ≤ · · · ≤ ck ≤ ck+1 ≤ · · · < 0, (10.19)

ck → +∞, as k → +∞, (10.20)
#J̃ (Σ) = +∞, if ck = ck+1 for some k ∈ N. (10.21)

For any given k ∈ N, there exists (τ, x) ∈ J (Σ, α) and m ∈ N such that for ux
m defined by (10.10),

there hold

f ′
α(ux

m) = 0, fα(ux
m) = ck, (10.22)

i1(xm) ≤ 2k − 2 + n ≤ i1(xm) + ν1(xm) − 1. (10.23)

Step 5. Application of the common index jump theorem.

Next we recall the common index jump theorem of Y. Long and C. Zhu. For any γ ∈ Pτ (2n),

its m-th index jump Gm(γ) is defined to be the open interval

Gm(γ) = (i1(γm) + ν1(γm) − 1, i1(γm+2)).

Note that under the assumption (10.24) below, the interval Gm(γ) is meaningful and non-empty.

Theorem 8.2. (cf. [LZh1], [Lon9]) Let γj ∈ Pτj (2n) with 1 ≤ j ≤ q satisfy

î(γj) > 0, i1(γj) ≥ n, 1 ≤ j ≤ q. (10.24)

Then there exist infinitely many positive integer tuples (N,m1, . . . ,mq) ∈ Nq+1 such that

∅ 6= [2N − κ1, 2N + κ2] ⊂
q∩

j=1

G2mj−1(γj), (10.25)

where κ1 = min1≤j≤q(i1(γj) + 2S+
γj(τj)

(1) − ν1(γj)) and κ2 = min1≤j≤q i1(γj) − 1.

Let

q ≡ #T̃ (Σ) < +∞.

Then we obtain

q ≥ #
(
(2N − 2 + n) ∩ ∩q

j=1G2mj−1(γxj )
)

, (10.26)

where a new version of the Liusternik-Schnirelmann theoretical argument at the iterated index level,

which distinguishes solution orbits geometrically instead of critical points only as usual methods do.

Here the estimate (10.17) and Liusternik-Schnirelmann type Theorem 10.4 are crucial, which guar-

antees that if one integer in (2N−2+n)∩∩q
j=1G2mj−1(γxj ) corresponds to two orbits, then at least

two corresponding critical values must equal and then yields infinitely many closed characteristics.
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Figure 10.1: Common index jump of 3 paths

Next by the common index jump theorem 8.2 we have

#
(
(2N − 2 + n) ∩ ∩q

j=1G2mj−1(γxj )
)

≥ # ((2N − 2 + n) ∩ [2N − κ1, 2N + κ2]) (10.27)

≥ min

{[
i1(x) + 2S+

γx(τ)(1) − ν1(x) + n

2

] ∣∣∣ [(τ, x)] ∈ T̃ (Σ, α)

}
≡ %n(Σ), (10.28)

where to get the last inequality we have used the definitions of κ1 and κ2.

We write M ≈ N if M ∈ Ω0(N).

Now because the system is autonomous, we have the basic normal form decomposition of γx(τ)

for each (τ, x) ∈ T (Σ, α):

γx(τ) ≈ N1(1, 1)¦M, (10.29)

for some M ∈ Sp(2n − 2). We have

2S+(x) − ν1(x) = 2S+
N1(1,1)(1) − ν1(N1(1, 1)) + 2S+

M (1) − ν1(M)). (10.30)

By Chapter 2, we obtain

S+
N1(1,a)(1) =

{
1, if a ≥ 0,

0, if a < 0.
(10.31)
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Thus there holds

2S+
N1(1,a)(1) − ν1(N1(1, a)) = a, for a = ±1, 0. (10.32)

By Chapter 2 again, we obtain

N1(1, 1)¦p−¦I¦p0
2 ¦N1(1,−1)¦p+¦G ∈ Ω0(M), (10.33)

for some nonnegative integers p−, p0, and p+, and some symplectic matrix G satisfying 1 6∈ σ(G).

By (10.32) and (10.33), we then obtain

2S+
M (1) − ν1(M) ≥ p− − p+ ≥ −p+ ≥ 1 − n. (10.34)

Therefore we obtain

i1(x) + 2S+(x) − ν1(x) + n ≥ n + 1 + (1 − n) + n

= n + 2. (10.35)

Then it yields

%n(Σ) = min

{[
i1(x) + 2S+

γx(τ)(1) − ν1(x) + n

2

] ∣∣∣ (τ, x) ∈ T̃ (Σ, α)

}
≥ [

n + 2
2

]

= [
n

2
] + 1. (10.36)

Therefore we obtain

q ≡ #T̃ (Σ) ≥ [
n

2
] + 1. (10.37)

Step 6. The non-degenerate case.

When all closed characteristics are non-degenerate, i.e.,

ν1(x) = 0, ∀ (τ, x) ∈ T (Σ, α), (10.38)

for the matrix M in the basic normal form decomposition (10.29) of γx(τ) we obtain 1 6∈ σ(M),

and then in stead of (10.34) we have

2S+
M (1) − ν1(M) = 0. (10.39)

Therefore we obtain

i1(x) + 2S+(x) − ν1(x) + n ≥ n + 1 + 0 + n

= 2n + 1. (10.40)
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Then it yields

%n(Σ) = min

{[
i1(x) + 2S+

γx(τ)(1) − ν1(x) + n

2

] ∣∣∣ (τ, x) ∈ T̃ (Σ, α)

}
≥ [

2n + 1
2

]

= n. (10.41)

Therefore if all the closed characteristics are non-degenerate, we obtain

q ≡ #T̃ (Σ) ≥ n. (10.42)

Here the common index jump Theorem 8.2 was discovered in fact when we tried to understand

precisely the behavior of the iterated index sequences of two closed characteristics on any Σ ∈ H(4)

and three closed characteristics on any Σ ∈ H(6) using the precise index iteration formulae of

[Lon6]. Then it was proved by using the abstract precise index iteration Theorem 6.1.

11 The multiplicity theorem of Wang, Hu and Long

In [WHL1], W. Wang, X. Hu and the author proved the following result:

Theorem 9.6. ([WHL1], 2007) There holds

#T̃ (Σ) ≥ 3 ∀Σ ∈ H(6).

The main ingredients in the proof of Theorems 9.6 include a new resonance identity and our

index iteration theory mentioned above. To illustrate this method, we briefly describe below the

main ideas in this proof based on the description on the proof of Theorem 9.4.

Ideas of the Proof of Theorem 9.6. The proof is carried out in 6 steps.

Step 1. A new resonance identity on closed characteristics.

In [Eke1] of 1984, I. Ekeland claimed that there exists a resonance condition on closed charac-

teristics whenever the total number of them is finite on the given Σ. In [Vit1] of 1989, C. Viterbo

established such an identity for star-shaped Σ ⊂ R2n with finitely many closed characteristics

T̃ (Σ) = {(τ1, x1), . . . , (τq, xq)}:

(−1)i(x1)

î(x1)
+ · · · + (−1)i(xq)

î(xq)
=

1
2
,

provided all (mτj , x
m
j ) ∈ T (Σ) are non-degenerate for all m ∈ N and 1 ≤ j ≤ q. Note that in

[Rad1] of 1989 and [Rad2] of 1992, H.-B. Rademacher established a mean index identity for closed

geodesics on compact Finsler manifolds.
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Motivated by these results, in [WHL1] we have established a new resonance identity for convex

hypersurfaces with finitely many closed characteristics. To describe this result, we use the concepts

and notations introduced in the above proof of Theorem 9.4 in Section 10 too. Specially we use

the Steps 1 and 2 there and make corresponding modifications.

Theorem 11.1. ([WHL1]) Suppose Σ ∈ H(2n) satisfies #T̃ (Σ) < +∞. Denote all the geo-

metrically distinct closed characteristics by {(τj , yj)}1≤j≤k for k = #T̃ (Σ). Then the following

identity holds ∑
1≤j≤k

χ̂(yj)
î(yj)

=
1
2
, (11.1)

where for each closed characteristic (τ, y), its the mean index is defined by

î(y) ≡ lim
m→+∞

i1(ym)/m ∈ R,

χ̂(y) ∈ Q is the average Euler characteristic defined by

χ̂(y) =
1

K(y)

∑
1≤m≤K(y)
0≤l≤2n−2

(−1)i(ym)+lkl(ym). (11.2)

Here K(y) ∈ N is the minimal period of critical modules of iterations of y, i(ym) is the Morse

index of a corresponding dual-action functional Ψa for some sufficiently large a > 0 at the m-th

iteration ym of y, kl(ym) is the critical type numbers of ym given by

kl(ym) = dim (Hl(W (ym) ∩ Λa(ym), (W (ym) \ {ym}) ∩ Λa(ym)))β(ym)Zm ,

where β(ym) = (−1)i(ym)−i(y), W (ym) is the characteristic manifold of Gromoll-Meyer given by

Ψa, and Λa(ym) is the subset of the free loop space not greater than the functional value Ψa(ym).

Idea of the proof. We apply the Morse theory for closed characteristics on Σ as follows:

〈1〉 Construction of the Hamiltonian function:

Let

j(λx) = λ, ∀x ∈ Σ, λ ≥ 0.

ϕa(t) =


quadratic, for 0 ≤ t ≤ t0 << 1,

ctα, for t0 < t < T0, where α ∈ (1, 2),

quadratic, for 1 << T0 < t.

Require ϕa(t) to be convex for t ≥ 0. Define

Ha(x) = aϕa(j(x)), ∀x ∈ R2n.

〈2〉 Dual action principle.

40



Now we apply the dual action principle. Let

L2
0(S

1,R2n) =
{

u ∈ L2([0, 1],R2n)
∣∣∣ ∫ 1

0
u(t)dt = 0

}
. (11.3)

Define the anti-derivative linear operator M : L2
0(S

1,R2n) → L2
0(S

1,R2n) by

d

dt
Mu(t) = u(t),

∫ 1

0
Mu(t)dt = 0.

The dual action functional on L2
0(S

1,R2n) is defined by

Ψa(u) =
∫ 1

0

(
1
2
Ju · Mu + H∗

a(−Ju)
)

dt. (11.4)

〈3〉 Computation on S1-invariant relative homological groups at every critical orbits.

〈4〉 Vanishing of S1-invariant relative homological group near 0.

〈5〉 Morse inequality argument.

Let X be an S1-space such that the Betti numbers bi(X) = dim HS1, i(X; Q) are finite for

all i ∈ Z. As usual the S1-equivariant Poincaré series of X is defined by the formal power series

P (X)(t) =
∑∞

i=0 bi(X)ti. Note that the functional Ψa is bounded from below on L2
0(S

1, R2n).

Hence the S1-equivariant Morse series M(t) of the functional Ψa on the space Λ−ε
a is defined as

usual by

M(t) =
∑

q≥0, 1≤j≤p

dimCS1, q(Ψa, S1 · vj)tq,

where we denote by {S1 · v1, . . . , S
1 · vp} the critical orbits of Ψa with critical values less than −ε.

Then the Morse inequality in the equivariant sense yields a formal power series Q(t) =
∑∞

i=0 qit
i

with nonnegative integer coefficients qi such that

M(t) = P (t) + (1 + t)Q(t), (11.5)

where P (t) ≡ P (Λ−ε
a )(t). For a formal power series R(t) =

∑∞
i=0 rit

i, we denote by Rk(t) =∑k
i=0 rit

i for k ∈ N the corresponding truncated polynomial. Using this notation, (11.5) becomes

(−1)pqp = Mp(−1) − P p(−1) = Mp(−1) − ([p/2] + 1), ∀ p ∈ N. (11.6)

Then one can prove

Claim 1. The coefficients wh of M(t) =
∑∞

h=0 whth are bounded by some constant C indepen-

dent of a. Consequently {qp} is bounded too.

Thus we obtain:

lim
p→+∞

Mp(−1)
p

= lim
p→+∞

P p(−1)
p

=
1
2
,
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On the other hand, one can prove the following claim:

Claim 2. There is a real constant C ′ > 0 independent of a such that∣∣∣∣∣∣∣∣M
p(−1) −

∑
1≤j≤k, 0≤l≤2n−2

1≤m≤Kj

(−1)i(um
j )+lkl(um

j )
p

Kj î(yj)

∣∣∣∣∣∣∣∣ ≤ C ′, (11.7)

where the sum in the left hand side of (11.7) equals to p
∑

1≤j≤k
χ̂(yj)

î(yj)
.

By Claims 1 and 2 we get the identity (11.1).

Step 2. Long-Zhu’s estimate.

Now for a compact convex smooth hypersurface Σ ⊂ R 6. Assume #T̃ (Σ) ≤ 2.

By Theorem 9.4, we have #T̃ (Σ) = 2. Write

T̃ (Σ) = {(τ1, x1), (τ2, x2)}.

Recall that Σ ⊂ R 2n convex compact hypersurface implies î(xj) > 2 for j = 1, 2.

Then Theorem 11.1 yields
χ̂(x1)
î(x1)

+
χ̂(x2)
î(x2)

=
1
2
, (11.8)

where both χ̂(x1) and χ̂(x1) are rational.

By (ii) of the stability Theorem 9.9 of Long-Zhu, at least one of x1 and x2 possesses irrational

mean index, say î(x1) ∈ R \ Q.

Now we consider two cases: χ̂(x1) 6= 0 or χ̂(x1) = 0.

Step 3. Case χ̂(x1) 6= 0

In this case, the identity (11.8) yields î(x2) ∈ R \ Q.

Then by the common index jump theorem, as in the Step 5 of the proof of Theorem 9.4, we

obtain

2 = q ≡ #T̃ (Σ)

≥ #

(2N − 2 + n)
∩ q∩

j=1

(
i(γ2mj−1

j ) + ν(γ2mj−1
j ) − 1, i(γ2mj+1

j )
)

(by L − S theory)

≥ # ((2N − 2 + n) ∩ [2N − κ1, 2N + κ2]) (by CIJ theorem)

≥ %n(Σ) (by index estimates)

≡ min

{[
i(x) + 2S+

γx(τ)(1) − ν(x) + n

2

] ∣∣∣ (τ, x) ∈ T̃ (Σ)

}
. (11.9)
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Here q = 2, n = 3.

Next we need to prove

i(xj) + 2S+
γj(τj)

(1) − ν(xj) + 3 ≥ 6, for j = 1, 2. (11.10)

where γj ≡ γxj : [0, τj ] → Sp(6) for j = 1 and 2.

Here we have i(xj) ≥ 3 for j = 1, 2 always holds.

By the proof in Step 5 for Theorem 9.4, the worst case happens if γj(τj) is connected within

Ω0(γj(τj)) to:

γj(τj) ≈
( 1 1

0 1

)
¦

( 1 −1

0 1

)
¦

( 1 −1

0 1

)
.

In this case, we then obtain

i(xj) + 2S+
γj(τj)

(1) − ν(xj) + 3 = 3 + (2 − 1) + (0 − 1) + (0 − 1) + 3 = 5.

Then (11.9) becomes

2 = q ≥ %n(Σ) ≥
[
5
2

]
= 2,

and yields no contradiction !

But here in this case, both x1 and x2 have irrational mean indices î(xj) ∈ R \ Q for j = 1, 2.

Thus γj(τj) can be connected within Ω0(γj(τj)) to:

γj(τj) ≈
( 1 1

0 1

)
¦

( cos θj − sin θj

sin θj cos θj

)
¦Mj ≡ N1(1, 1)¦R(θj)¦Mj ,

where Mj ∈ Sp(2), θj/π ∈ R \ Q. Then we have

2S+
N1(1,1)(1) − ν(N1(1, 1)) = 1, 2S+

R(θj)
(1) − ν(R(θj)) = 0,

2S+
Mj

(1) − ν1(Mj) ≥ −1.

where the worst case is given by Mj =
( 1 −1

0 1

)
.

Therefore for j = 1, 2 we obtain

i(xj) + 2S+
γj(τj)

(1) − ν(xj) + 3 ≥ 3 + (2 − 1) + (0 − 0) + (0 − 1) + 3 = 6. (11.11)

which yields

2 ≥ #T̃ (Σ) ≥ %3(Σ) ≥ 3,

contradiction !

Step 4. Case χ̂(x1) = 0

43



In this case, by Theorem 11.1, we obtain

χ̂(x2)
î(x2)

=
1
2
. (11.12)

For x1, as in Step 3, we still have

i(x1) + 2S+
γ1(τ1)(1) − ν(x1) + 3 ≥ 3 + (2 − 1) + (0 − 0) + (0 − 1) + 3 = 6. (11.13)

If for x2 we have i(x2)+2S+
γ2(τ2)(1)−ν(x2)+3 ≥ 6, then by (11.13) and (11.11) for x1 we obtain

2 ≥ #T̃ (Σ) ≥ %3(Σ) ≥ 3, (11.14)

contradiction !

Thus for x2, we have i(x2) + 2S+
γ2(τ2)(1) − ν(x2) + 3 ≤ 5.

This then implies i(x2) = 3 and in Ω0(γ2(τ2)) we have

γ2(τ2) ≈
( 1 1

0 1

)
¦

( 1 −1

0 1

)
¦

( 1 −1

0 1

)
.

Now by the precise index iteration Theorem 6.1 we obtain

i(xm
2 ) = m(i(x2) + 1) − 1 = 4m − 1, ν(xm

2 ) = 3, ∀ m ∈ N. (11.15)

Therefore we get î(x2) = 4, K(x2) = 1, iE(xm
2 ) = i(x2,m) − 3 = 0, iE(x1

2) = i(x2) − 3 = 0, and

χ̂(x2) ≡
1

K(x2)

∑
1≤m≤K(x2)

0≤l≤2

(−1)iE(xm
2 )+lkl(xm

2 ) = k0(x2) − k1(x2) + k2(x2) ≤ 1.

Here note that both of k0(x2) and k2(x2) take values in {0, 1} and at most one of them is positive.

Therefore we then obtain
1
4
≥ χ̂(x2)

î(x2)
=

1
2
.

Contradiction !
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Chapter 4. Closed geodesics on Spheres.

The content of this Chapter is based on my survey published in J. of European Math. Soc. 8

(2006) 341-353 and recent results after 2006 on this topic. In Section 15 we propose some questions

and conjectures based on old and recent new results and considerations on closed geodesics as well

as closed characteristics.

It is well known that the geodesic, i.e., the shortest curve, connecting two prescribed points

in the Euclidean plane is the line segment connecting them. But the geodesic, especially the

closed geodesic, problem on the earth is very difficult. In fact, the closed geodesic problem is a

very important subject in both dynamical systems and differential geometry, and has stimulated

many creative ideas and new developments in mathematics. For closed geodesics on spheres with

Riemannian structures or Finsler structures, modern mathematical studies can be traced back

at least to the work of J. Hadamard, H. Poincaré, G. D. Birkhoff, M. Morse, L. Lyusternik, L.

Schnirlmann, and many other famous mathematicians. In this short survey, I can only introduce

some of the vast literature which is related to closed geodesics on 2-dimensional and 3-dimensional

spheres and to our current interests. This chapter is organized as follows: §12 A partial and

certainly not complete history of the studies of closed geodesics mainly on spheres. §13 Recent

results obtained by V. Bangert, H. Duan, W. Wang, H.-B. Rademacher and the author on the

multiplicity and stability of closed geodesics on Finsler and Riemannian spheres. §14 Main ideas

in the proof of the multiplicity theorem of V. Bangert and the author. §15 Open problems.

12 A partial history of closed geodesics on spheres

First we introduce the concept of Finsler and Riemannian metrics on manifolds.

Definition 12.1. (cf. [BCS1], [She1]) Let M be a finite dimensional manifold. A function

F : TM → [0,+∞) is a Finsler metric if it satisfies

(F1) F is C∞ on TM \ {0},
(F2) F (x, λy) = λF (x, y) for all y ∈ TxM , x ∈ M , and λ > 0,

(F3) For every y ∈ TxM \ {0}, the quadratic form

gx,y(u, v) ≡ 1
2

∂2

∂s∂t
F 2(x, y + su + tv)|t=s=0, ∀u, v ∈ TxM,

is positive definite.

In this case, (M,F ) is called a Finsler manifold.
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F is reversible if F (x,−y) = F (x, y) holds for all y ∈ TxM and x ∈ M . F is Riemannian if

F (x, y)2 = 1
2G(x)y · y for some symmetric positive definite matrix function G(x) ∈ GL(TxM) de-

pending on x ∈ M smoothly. We denote by F(M) and R(M) the set of all Finsler and Riemannian

metrics on M respectively.

Note that one of the major differences between Riemannian and Finsler metrics is the irre-

versibility in the condition (F2). For a closed geodesic c in a Finsler manifold (M,F ), its inverse

curve c−1 defined by c−1(t) = c(1 − t) may not be a geodesic. If it is, it is usually viewed to be a

closed geodesic different from c.

For any closed curve f : S1 → M on a Finsler manifold (M,F ) or a Riemannian manifold

(M, g), the group G = S1 or G = O(2) acts on f by θ · f(t) = f(t + θ) for every θ ∈ G. For a

closed geodesic c, its m-th iterate is defined by cm(t) = c(mt). A closed geodesic is prime, if it is

not any m-th iterate of any other closed geodesics with m ≥ 2. Two prime closed geodesics c1 and

c2 on an irreversible (or reversible) Finsler manifold (M,F ) are distinct (or geometrically distinct),

if they do not differ by an S1-action (or O(2)-action). We denote the set of all distinct prime

closed geodesics on an irreversible Finsler manifold by CG(M,F ), and similarly by CG(M,F ) for

a reversible Finlser manifold.

It is a longstanding conjecture that there exist infinitely many distinct prime closed geodesics

on every compact Riemannian manifold (cf. Problem 81 in [Yau1]). J. Hadamard in 1898 and H.

Poincaré in 1905 studied closed geodesics on convex surfaces (cf. [Had1] and [Poi1]). Then G. D.

Birkhoff proved the following remarkable result:

Theorem 12.2. (G. D. Birkhoff, [Bir1], 1917 and [Bir2], 1927)

#CG(Sn, g) ≥ 1, ∀g ∈ R(Sn).

In 1951, L. Lyusternik and A. Fet proved the following important theorem:

Theorem 12.3. (L. Lyusternik and A. Fet, [LyF1], 1951) For every compact manifold M ,

there holds
#CG(M, g) ≥ 1, ∀g ∈ R(M).

Note that this theorem holds also for Finsler metrics, because the proof of Theorem 12.3 (cf.

[Kli1] and [Kli2]) is variational and does not really depend on the special properties of Riemannian

metrics.

Denote by ΛM the free loop space of a Riemannian manifold (M, g) and by Λ0M the single

point loops on M . For the Finsler case, we choose a Riemannian metric on M , and define ΛM

similarly. In 1969, D. Gromoll and W. Meyer proved the following important result:
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Theorem 12.4. (D. Gromoll and W. Meyer [GrM1], 1969) Let (M, g) be a Riemannian man-

ifold such that the Betti numbers {bi(ΛM)}i≥1 are unbounded. Then #CG(M, g) = ∞, where

bi(ΛM) = rankHi(ΛM, Λ0M ;K) for all i ∈ N and some field K.

Motivated by Theorem 12.4, M. Vigué-Poirrier and D. Sullian proved the following remarkable

result:

Theorem 12.5. (M. Vigué-Poirrier and Sullivan [ViS1], 1976) For a compact simply connected

Riemannian manifold (M, g), the Betti number sequence {bi(ΛM)}i≥1 is unbounded if and only if

the cohomology algebra of M requires at least two generators.

Note that in 1980, H. Matthias in [Mat1] generalized Theorem 1.4 to Finsler manifolds. There-

fore by Theorems 12.4 and 12.5, the most interesting unknown problem on closed geodesics is for

Finsler and Riemannian spheres.

Around 1990, V. Bangert (cf. [Ban1], [Ban2]) and J. Franks (cf. [Fra1], [Fra2]) proved the

following important result for Riemannian S2:

Theorem 12.6. (V. Bangert [Ban2] 1993, and J. Franks [Fra1] 1992)

#CG(S2, g) = +∞, ∀g ∈ R(S2).

For the closed geodesic problem on Riemannian (2-dimensional) manifolds, we refer readers to

the excellent survey papers [Ban1] and [Tai1].

On the other hand, in 1973 A. Katok constructed remarkable Finsler metrics on Sn which showed

that there is a major difference between Riemannian and general Finsler metrics dynamically:

Theorem 12.7. (A. Katok [Kat1], 1973) For any n ≥ 2, there exists an irreversible Finsler

metric FKatok on Sn which possesses precisely 2[(n + 1)/2] distinct prime closed geodesics.

In fact, for S2 by [Kat1] and W. Ziller’s paper [Zil2], Katok’s metric has the form Fα(x) =

‖x‖∗g + αx(V ) for any x ∈ T ∗S2, where ‖ · ‖g is the standard Riemannian metric on S2, and V is

a vector field corresponding to rotations on S2 along the equatorial direction. Locally in spherical

coordinates away from the north and the south poles, Fα has the form:

Fα(q1, q2, p1, p2) = (p2
1 cos−2 q2 + p2

2)
1/2 + αp1.

The two closed geodesics on (S2, Fα) are along the equator and are in fact inverse curves c and c−1

to each other. They have lengths length(c) = 2π/(1+α) and length(c−1) = 2π/(1−α) respectively.

The linearized Poincaré map Pc of c is conjugate to the following rotation matrix

R(θc) =
( cos θc − sin θc

sin θc cos θc

)
(12.1)
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with θc = 2π/(1 + α). Similarly Pc−1 is also conjugate to R(θc−1) with θc−1 = 2π/(1 − α). All

iterates of c and c−1 are non-degenerate. Then by the precise index iteration formulae of the author

proved in [Lon1] of 2000, one can show that the Morse index sequences of iterates of c and c−1

counting multiplicity satisfy {i(cm), i(c−m)}m≥1 = {1, 3, 3, 5, 5, 7, 7, . . .}.

12.1 Known multiplicity results

We refer readers to [Ano1] of 1974 ICM report of D. Anosov for comments on A. Katok’s Theorem

12.7, where he in fact conjectured that 2 is the minimal number of distinct prime closed geodesics

on every Finsler S2. We note also that in [Zil2], W. Ziller made a similar conjecture for Sn based

on Katok’s example:
#CG(Sn, F ) ≥ n, ∀F ∈ F(Sn). (12.2)

We are only aware of a few partial answers to these conjectures for Sn.

In [1] of 1965, Fet proved that there exist at least two distinct closed geodesics on every compact

reversible bumpy Finsler manifold (M,F ).

Theorem 12.8. (H.-B. Rademacher [Rad1], 1989) Let F be a bumpy Finsler metric on S2,

i.e., all the closed geodesics and their iterations on (S2, F ) are non-degenerate. Then

#CG(S2, F ) ≥ 2.

In the paper [HWZ2], 2003, H. Hofer, K. Wysocki, and E. Zehnder studied Hamitonian systems

on star-shaped hypersurfaces in R4. Their result can be applied to Finsler 2-spheres to yield:

Theorem 12.9. (H. Hofer-K. Wysocki-E. Zehnder [HWZ2], 2003) Let F be a bumpy Finsler

metric on S2. Assume that the stable and unstable manifolds at every close geodesic intersect

transversally. Then
#CG(S2, F ) = 2 or + ∞.

In 1993 and 1997, N. Hingston proved two theorems in [Hin1] and [Hin2] respectively which

showed the existence of infinitely many prime closed geodesics on Riemannian manifolds under

certain sufficient conditions. Specially Hingston’s two theorems can be adapted to Finsler 2-spheres

and yield the following theorem:

Theorem 12.10. (N. Hingston [Hin1] of 1993 and [Hin2] of 1997) Let F be a Finsler metric

on S2 and c is a closed geodesic on (S2, F ) such that S1 · cm is isolated as a critical orbit of the

energy functional E on ΛS2 for all m ≥ 1. Denote by

kj(c) = rankHj(N−
c ∪ {c}, N−

c ;Q), for j = 0, 1, 2,
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where Nc is a slice in kerE′′(c) transversal to S1 · c and N−
c = {x ∈ Nc |E(x) < E(c)}. Suppose

there hold either

(i) i(cm) = m(i(c) + 1) − 1, ν(cm) = ν(c) for all m ≥ 1 and k0(c) > 0, or

(ii) i(cm) + ν(cm) = m(i(c) + ν(c) − 1) + 1, ν(cm) = ν(c) for all m ≥ 1 and kν(c)(c) > 0.

Then there holds #CG(S2, F ) = +∞.

Based on the results of W. Klingenberg in 1968 [Kli1], W. Ballmann, G. Thorbergsson, and

W. Ziller [BTZ1] in 1982 about closed geodesics on Riemannian spheres under pinching conditions,

H.-B. Rademacher generalized their results to Finsler spheres and proved:

Theorem 12.11. (H.-B. Rademacher [Rad3], 2005) For F ∈ F(S2) let

λ = max{F (−v) |F (v) = 1, v ∈ TS2}.

Suppose the flag curvature K of (S2, F ) satisfies λ2(λ + 1)−2 < δ ≤ K ≤ 1. Then there holds

#CG(S2, F ) ≥ 2.

Denote the two closed geodesics by c1 and c2 with length(c1) ≤ length(c2). Then length(c1) ≤
2π/

√
δ, length(c2) ≤ π√

δ
( λ√

δ(λ+1)−λ
+ 3), and c1 is simple.

12.2 Known stability results

As usual, denote by Pc the linearized Poincaré map of a closed geodesic c on a manifold M and

U = {z ∈ C | |z| = 1}. Then c is hyperbolic if σ(Pc) ∩ U = ∅, is elliptic if σ(Pc) ⊂ U, and is

non-degenerate if 1 6∈ σ(Pc). Note that we have Pcm = Pm
c for all m ≥ 1. For a closed geodesic

c on a 2-dimensional surface, c is irrationally elliptic or rationally elliptic if Pc is conjugate to a

rotation matrix (0.1) with θc/π ∈ R \ Q or θc/π ∈ Q respectively,

In 1982-83, W. Ballmann, G. Thorbergsson, and W. Ziller studied the stability of closed

geodesics on Sn, specially they proved:

Theorem 12.12. (W. Ballmann, G. Thorbergsson, and W. Ziller, [BTZ2], 1983) For g ∈
R(Sn), if the sectional curvature satisfies 4

9 ≤ K ≤ 1, there exist at least two elliptic closed

geodesics on (Sn, g).

In 1989 and 2005, H.-B. Rademacher studied Finsler spheres Sn, and proved

Theorem 12.13. (H.-B. Rademacher [Rad1], 1989) Let F ∈ F(Sn) be bumpy and satisfy
#CG(S2, F ) < +∞. Then there exists at least two irrationally elliptic closed geodesics on (S2, F ).

Theorem 12.14. (H.-B. Rademacher [Rad3], 2005) Let F ∈ F(Sn) satisfy

λ < 2,

(
3λ

2(λ + 1)

)2

< δ ≤ K ≤ 1,
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where λ is defined in Theorem 1.11. Then there exists at least one elliptic closed geodesic on

(Sn, F ).

Note that in 2000 the author proved a related stability result for closed characteristics on convex

compact hypersurfaces in R4:

Theorem 12.15. (Y. Long [Lon1], 2000) Let Σ be a convex compact C2 hypersurface in R4

with precisely two closed characteristics on Σ. Then both of them are elliptic.

13 Main new multiplicity and stability results

Recently, V. Bangert and the author proved the following result which settles Anosov’s conjecture

for the lower bound of the number of distinct prime closed geodesics as well as (12.2) for S2

positively. This theorem was first reported in July 2004 in the conference to celebrate Professor I.

Ekeland’s 60th birthday.

Theorem 13.1. (V. Bangert and Y. Long [BaL1], 2005)

#CG(S2, F ) ≥ 2, for every Finsler metric on S2.

Motivated by Theorem 13.1 and those mentioned in Subsections 12.2, recently my student Wei

Wang and myself proved the following result:

Theorem 13.2. (Y. Long and W. Wang [LoW1]) Let F be an irreversible Finsler metric on S2

satisfying #CG(S2, F ) < +∞. Then there exists at least two irrationally elliptic closed geodesics

on (S2, F ).

As a consequence of this theorem we obtain

Corollary 13.3. (Y. Long and W. Wang [LoW1] and [LoW2]) Let F be an irreversible Finsler

metric on S2 satisfying #CG(S2, F ) = 2. Then both of the two closed geodesics c1 and c2 on

(S2, F ) are irrationally elliptic with rotation angles θ1 = 2π/(1 + α) and θ2 = 2π/(1− α) for some

α ∈ (0, 1) \ Q.

It is rather surprising that if Conjecture 1 in Section 15 holds, then Corollary 13.3 yields that

whenever #CG(S2, F ) is finite, there are precisely two distinct prime irrationally elliptic closed

geodesics and they behave analytically like those two prime closed geodesics of Katok’s metric, i.e.,

whose iterations possess the same Morse indices and nullities. Then their local critical modules

are all the same as the two of Katok. Note that here these two prime closed geodesics may not be

inverse curves of each other as the two of Katok.

When the metric is bumpy, recently the following results were proved:
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Theorem 13.4. (H. Duan and Y. Long [DuL1], H.-B. Rademacher [Rad4]) Every bumpy

irreversible Finsler metric on Sn possesses at least two distinct prime closed geodesics for any

integer n ≥ 2.

Note that recently H.-B. Rademacher ([Rad5]) proved a similar result for CP2.

Despite of lots of efforts on closed geodesics on Riemannian manifolds, it seems that so far, it

is still not known whether there exist always at least two geometrically distinct closed geodesics on

every Riemannian 3-sphere. After studies [LoW3] and [DuL2] on S3, very recently H. Duan and

the author in [LDu1] answered this question positively.

In [LDu1], we introduced the following defintion:

Definition 13.5. (Y. Long and H. Duan [LDu1], 2008) A prime closed geodesic c on a (re-

versible or irreversible) Finsler manifold (M,F ) is irrational if in the basic normal form decom-

position (4.7) of the linearized Poincaré map Pc contains no matrix R(θ) with θ/π ∈ R \ Q, and

irrational otherwise.

Then we proved the following results:

Theorem 13.6. (Y. Long and H. Duan [LDu1], 2008) For any integer n ≥ 2, let (Sn, F ) be a

Finsler sphere with #CG(Sn, F ) = 1. Then the prime closed geodesic c can not be rational.

Together with our Theorem 13.4 and the mean index identity of Rademacher ([Rad1]), it yields

Theorem 13.7. (Y. Long and H. Duan [LDu1], 2008) #CG(S3, F ) ≥ 2 holds always for every

reversible Finsler metric F on S3. Specially this holds for every Riemannian metric on S3.

Our method works also for irreversible Finlser metrics with some minor modification and yields:

Theorem 13.8. (Y. Long and H. Duan [LDu1], 2008) #CG(S3, F ) ≥ 2 holds always for every

irreversible Finsler metric F on S3.

Here I should mention a related recent result of H. Duan and myself:

Theorem 13.9. (H. Duan and Y. Long [DuL2]) Let F be a bumpy and irreversible Finlser

metric on S3. Then either there exist precisely two non-hyperbolic prime closed geodesics, or there

exist at least three distinct prime closed geodesics.

Note that Theorem 13.9 does not claim that the existence of precisely two non-hyperbolic prime

closed geodesics on (S3, F ) must happen for some F .

14 Main ideas in the proof of Theorem 13.1

The conditions (F1)-(F3) for Finsler metrics were introduced by P. Finsler for the local existence

and uniqueness of geodesics connecting two nearby points on a manifold. The problem of closed

geodesics is global. Thus our proof of the Theorem 2.1 is naturally topological and variational, and

does not depends on geometrical properties of each individual Finsler metric such as curvatures.
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The main ideas in the proof of Theorem 13.1 of V. Bangert and the author are contained

in the following four steps, where we explain more on the rationally elliptic case. Here to make

explanations shorter, topics related to the smoothness of the energy functional E on the free loop

space on S2 are all omitted. We concentrate on topological facts and variational arguments which

are related to the multiplicity.

Fix an F ∈ F(S2). Assuming that there exists precisely one prime closed geodesic c on (S2, F ),

we proceed as follows to reach a contradiction. In this section we use homological modules with

Q-coefficients only.

〈1〉 By the author’s precise index iteration formulae proved in Section 3 of [Lon1] of 2000 (cf.

Section 8.1 of [Lon2]), there are 9 possibilities for the closed geodesic c depending on the eigenvalues

of the linearized Poincaré map Pc which is a 2 × 2 symplectic matrix. Here the first three cases

are for eigenvalue 1, the next three cases are for eigenvalue −1, the 7th is for the rationally elliptic

case, the 8th is for the irrationally elliptic case, and the 9th is for the hyperbolic case. Note that

the closed geodesic c and all of its iterates are non-degenerate in the last two cases in which two

closed geodesics were found by H.-B. Rademacher in [Rad1] of 1989. Therefore we only need to

study the first seven degenerate cases.

Here we choose a Riemannian metric g on S2, and define Λ = ΛS2 to be the free loop space of

H1(S1, S2), where a curve c is H1, if it is absolutely continuous and ċ(t) is square integrable in g

as in the Chapter 1 in [Kli2].

Denote by E(c) =
∫ 1
0 F 2(ċ(t))dt and Λa = {γ ∈ Λ |E(γ) ≤ a} for a ∈ R.

〈2〉 In order to apply Morse theory, using the arguments of W. Ziller in [Zil1] of 1977, we obtain

the Betti numbers as follows (cf. V. Bangert and Y. Long [BaL1], 2005):

Hq(Λ,Λ0) =
{ 0, if q ≤ 0 or q = 2,

Q, if q = 1 or q ≥ 3.
(14.1)

bq ≡ rankHq(Λ,Λ0) =
{ 0, if q ≤ 0 or q = 2,

1, if q = 1 or q ≥ 3.
(14.2)

As usual the Morse type number Mk for all k ≥ 0 is defined by

Mk =
∑

1≤j≤q
m≥1

rankHk(Λ(cm) ∪ {S1 · cm},Λ(cm)), ∀k ≥ 0,

where Λ(cm) = {γ ∈ Λ | E(γ) < E(cm)}. Then for every integer k ≥ 1, it is well known that the

following Morse inequalities hold:

Mk ≥ bk, (14.3)

Mk − Mk−1 + Mk−2 − · · · +(−1)k−1M1 + (−1)kM0

≥ bk − bk−1 + bk−2 − · · · + (−1)k−1b1. (14.4)
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〈3〉 For each one of the first six cases, using index iteration formulae in [Lon6] we obtain precisely

all the Morse indices and nullities of all iterations cm of c. Together with techniques of D. Gromoll

and W. Meyer in [GrM1] of 1969, we are able to compute all the local critical modules of the

energy functional E(c) =
∫ 1
0 F 2(ċ(t))dt near cm for all m ≥ 1 in Λ. Then we find that either the

Morse inequalities yield already a contradiction which implies the existence of at least two distinct

prime closed geodesics on (S2, F ), or the Morse inequalities lift up the dimension of a certain local

homology group. Then Hingston’s Theorem 12.10 becomes applicable and yields infinitely many

distinct prime closed geodesics on (S2, F ) which completes the proof for this case.

For example, when Pc = −I, by the Morse inequality M1 ≥ b1, we obtain i(c) = 1 and ν(c) = 0.

By Theorem 8.1.5 of [Lon2], we obtain

i(cm) = m − 1 + (−1)m

2
, ν(cm) = 1 + (−1)m, ∀m ≥ 1. (14.5)

We denote by

k̂j(cm) = rankHj(N−
cm ∪ {cm}, N−

cm)Zm , for j = 0, 1, . . . , ν(cm).

Note that there holds

k̂j(cm) ≤ kj(cm), ∀m ≥ 1.

Using the method of D. Gromoll and W. Meyer in [GrM1], all the local critical modules can be

computed out and we obtain

M0 = 0, M1 = 1 + k̂0(c2), M2 = 1 + k̂0(c2) + k̂1(c2), M2 = 1 + k̂1(c2) + k̂2(c2).

Therefore by the Morse inequality we obtain

1 + k2(c2) ≥ 1 + k̂2(c2) = M3 − M2 + M1 ≥ b3 − b2 + b1 = 2. (14.6)

Let d = c2. Then (3.5) and (3.6) yield condition (ii) of Theorem 12.10 and thus #CG(S2, F ) = +∞.

〈4〉 For the 7th case, Pc is conjugate to the matrix R(θ) in (12.1) for some rotation angle

θ ∈ (0, 2π) ∩ (πQ \ {π}), i.e., c is rationally elliptic.

By the Morse inequality M1 ≥ b1 = 1, we obtain i(c) = 1. Thus by Theorem 8.1.7 of [Lon8]

there holds

i(cm) = 2[
mθ

2π
] + 1, ν(cm) = 0, if mθ 6= 0 mod 2π, (14.7)

i(cm) = 2[
mθ

2π
] − 1, ν(cm) = 2, if mθ = 0 mod 2π. (14.8)

Therefore there is a unique minimal integer n ≥ 3 such that ν(cn) = 2.
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By (14.8), both the iteration formulae in (i) and (ii) of Theorem 12.10 hold for the iterates of

cn. Thus we obtain #CG(S2, F ) = +∞ by Theorem 1.10 whenever k0(cn) + k2(cn) > 0. Therefore

we need only study case 7 under the condition

k0(cn) = k2(cn) = 0. (14.9)

Let κm = E(cm) for all m ≥ 1. Then we have κm → +∞ as m → +∞ and

0 < κ1 < κ2 < · · · < κi < κi+1 < · · · .

As an example we consider the case of θ = π/3, n = 6, and k0(c6) = k1(c6) = k2(c6) = 0.

Then we obtain Mk = 5 for all k ≥ 1. Thus the left hand side of the Morse inequality (14.4) is

always 5 and the right hand side of (14.4) is at most 2. Therefore (14.4) always holds and the

Morse inequality yields no information. Likewise Hingston’s Theorem 1.10 does not apply because

k0(c6) = k2(c6) = 0. Thus this case needs some new ideas and a new approach. Here we make the

following comparison on long exact sequences for the triple (Λ,Λκτ ,Λ0):

0 0 Q Q 0

‖ ‖ ‖ ‖ ‖

H2(Λ,Λ0)−→H2(Λ,Λκτ )−→H1(Λκτ ,Λ0)−→H1(Λ,Λ0)−→H1(Λ,Λκτ )

‖ ‖ ‖ ‖ ‖

0 0 Qτ Q 0. (14.10)

Here the top line gives the case of Katok’s example with τ = 1 which matches up perfectly. The

bottom line is for our sample of θ = π/3 with τ = 5 which yields a contradiction. This comparison

yields an important idea for dealing with the general case. Here our crucial observation is that the

alternative summation in the Morse inequality indicates how the higher dimensional local critical

groups kill the lower dimensional local critical groups at the dimension level. This is a too rough

understanding of the mutual relations among these local homology groups. To understand it further

we need to study them more carefully at the homological levels.

For the general case, let τ = max{j ≥ 1 | jθ < 2π}. Then we have the following three important

claims:

Claim 1. 2 ≤ τ ≤ n − 1.

Claim 2. H1(Λκτ ,Λ0) = ⊕τ
m=1H1(Λκm ,Λκm−1) = Qτ .

Claim 3. H2(Λ,Λκτ ) = 0 when τ < n − 1, or H2(Λ,Λκτ ) = Qa for some a ∈ [0, n − 3] when

τ = n − 1.
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Assuming these three claims for the moment, we continue our study of case 7 under the condition

(14.9). Suggested by (14.10) we consider the long exact sequence for the triple (Λ,Λκτ ,Λ0). By

(14.2) and D. Gromoll-W. Meyer’s technique in [GrM1] for computing local homological modules

we obtain

H2(Λ,Λ0)−→H2(Λ,Λκτ )−→H1(Λκτ ,Λ0)−→H1(Λ,Λ0)−→H1(Λ,Λκτ )

‖ ‖ ‖ ‖ ‖

0 H2 Qτ Q 0. (14.11)

When τ < n − 1, we have H2 = 0 by Claim 3. Thus (14.11) yields

Qτ = 0 ⊕ Q = Q.

This contradicts the fact τ ≥ 2 in Claim 1.

When τ = n − 1, we have H2 = Qa for some a ∈ [0, n − 3] by Claim 3. Thus (14.11) yields

Qn−1 = Qτ = Qa ⊕ Q = Qa+1.

This contradicts to the fact a ≤ n − 3 in Claim 3.

Therefore we are reduced to the proofs of Claims 1 to 3.

To prove Claim 1, we use the condition (14.9) and an identity satisfied by the mean index

î(c) ≡ limm→+∞ i(cm)/m = θ/π of c, and derive an important estimate 0 < θ < π. It implies

Claim 1.

In general the homological groups on different level sets may not be additive. We are only

aware of two papers [BoS1] of R. Bott and H. Samelson in 1958 and [Zil1] of W. Ziller in 1977

who studied such homological addition properties of level sets in the loop spaces for compact

globally symmetric spaces. But our (S2, F ) is not a globally symmetric space in general and their

techniques do not apply. For the proof of Claim 2, we carry out precise computations on the

connecting homomorphisms between level sets and prove the following vanishing property in the

long exact sequence for the triple (Λκm ,Λκm−1 ,Λ0):

∂2 = 0 : H2(Λκm ,Λκm−1) → H1(Λκm−1 ,Λ0).

Here the precise understanding (14.7) and (14.8) of the Morse indices and nullities of cm with

1 ≤ m ≤ τ are crucial. This yields

H1(Λκm ,Λ0) = H1(Λκm−1 ,Λ0) ⊕ H1(Λκm ,Λκm−1), ∀m = 1, . . . , τ,

which yields Claim 2.
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When τ < n − 1 by direct computation we obtain H2 = 0 in (14.11).

When τ = n − 1, together with the mean index identity mentioned above we obtain 2π =

nθ = (n − 1 − k̂1(cn))π, which implies k̂1(cn) = n − 3. By the long exact sequence for the triple

(Λ,Λκτ+1 ,Λκτ ) we obtain

Qk̂1(cn) = H2(Λκτ+1 ,Λκτ )−→H2(Λ,Λκτ ) ≡ H2−→H2(Λ,Λκτ+1) = 0.

Therefore Claim 3 holds.

This completes our study for the case 7 and the proof of Theorem 13.1.

15 Open problems

For further problems on closed characteristics, we refer readers to [Lon10] and [Lon11].

Based on what we already known for closed geodesics, the following problems seem to be

interesting and important for further studies about closed geodesic problem on Finsler as well as

Riemannian spheres.

Combining Theorems 12.9 and 13.1, it is natural to make the following conjecture:

Conjecture 1. There holds

#CG(S2, F ) = 2 or + ∞, ∀F ∈ F(S2).

Conjecture 2. For every F ∈ F(Sn), there exist two integers 2 ≤ pn ≤ qn satisfying pn → +∞
as n → +∞ such that

{#CG(Sn, F ) |F ∈ F(Sn)} = {k ∈ N | pn ≤ k ≤ qn} ∪ {+∞}.

Specially we suspect that

Conjecture 3. {#CG(S3, F ) |F ∈ F(S3)} = {p3, · · · , 4} ∪ {+∞} for some p3 ∈ {2, 3, 4}.
For this conjecture, very few is known other than the case of Katok’s metric F which satisfies

#CG(S3, F ) = 4 (cf. [Kat1] and [Zil2]), our Theorem 13.8 which yields p3 ≥ 2, and Theorem 13.9.

Conjecture 4. #CG(Sn, g) = +∞ for every g ∈ R(Sn) with n ≥ 3.

Note that our Theorem 13.7 #CG(S3, g) ≥ 2 holds for all g ∈ R(S3).

Conjecture 5. There exists at least one elliptic closed geodesic on (Sn, F ) for every F ∈ F(Sn)

with n ≥ 2.

For S2, by our Theorem 13.2, it is only necessary to study Conjecture 5 when #CG(S2, F ) =

+∞. But in this case it seems unfortunately that there is no effective method available yet with-

out pinching conditions. On the other hand, in an interesting paper [Grj1] of 1980, A. Grjuntal
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proved the existence of Riemannian metrics on S2 with positive curvature whose all closed non-

selfintersecting geodesics are hyperbolic.

Conjecture 6. For every Finsler metric F on Sn with #CG(Sn, F ) < +∞, all the prime

closed geodesics are irrationally elliptic.

Because our proofs of Theorems 13.1 to 13.9 are variational, we hope that they may help at

least in the study of some of the above conjectures for Finsler (as well as Riemannian) spheres.
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58



[CoZ1] C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations.

Comm. Pure Appl. Math. 37.(1984). 207-253.

[CoZ2] C. Conley and E. Zehnder, Subharmonic solutions and Morse theory. Physica 124A. (1984). 649-658.

[CuD1] R. Cushman and J. Duistermaat, The behavior of the index of a periodic linear Hamiltonian system under

iteration. Adv. in Math. 23. (1977). 1-21.

[DDE1] G. Dell’Antonio, B. D’Onofrio & I. Ekeland, Les systém hamiltoniens convexes et pairs ne sont pas ergodiques

en general. C. R. Acad. Sci. Paris. Series I. 315 (1992), 1413-1415.

[DoL1] D. Dong and Y. Long, The iteration formula of the Maslov-type index theory with applications to nonlinear

Hamiltonian systems. Trans. Amer. Math. Soc. 349 (1997) 2619-2661.

[DyL1] Y. Dong & Y. Long, Closed characteristics on asymmetric convex hypersurfaces in R2n and corresponding

pinching conditions. Acta Math. Sinica. 20 (2004) 223-232.

[DyL2] Y. Dong & Y. Long, Closed characteristics on partially symmetric convex hypersurfaces in R2n. J. Diff.

Equa. 196 (2004) 226-248.

[DyL3] Y. Dong & Y. Long, Stable closed characteristics on partially symmetric convex hypersurfaces in R2n. J.

Diff. Equa. 206 (2004) 265-279.

[DuL1] H. Duan and Y. Long, Multiple closed geodesics on bumpy Finsler n-spheres. J. Diff. Equa. 233 (2007)

221-240.

[DuL2] H. Duan and Y. Long, Multiplicity and stability of closed geodesics on bumpy Finsler 3-spheres. Calc. Var.

& PDEs. 31 (2008) 483-496.

[Dui1] J. J. Duistermaat, On the Morse index in variational calculus. Adv. in Math. 21. (1976). 173-195.
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