Bowen factors of Markov shifts and surface diffeomorphisms

Jérôme Buzzi (CNRS & Université Paris-Sud)

The Mathematical Legacy of Rufus Bowen

July 31st, 2017 at UBC, Vancouver

Outline

Introduction

- Symbolic dynamics from Bowen to Sarig
- Consequences for classification and periodic orbits

2 Background on Markov shifts

- Spectral decomposition and their entropy
- Periodic points

Factors of Markov shifts

- Pathologies
- Bowen factors

Results

- Almost Borel classification
- Periodic points

5 Conclusion - Some questions

The classical setting: uniform hyperbolicity

Theorem (Sinai, Bowen)

Any Axiom-A diffeomorphism $f: M \to M$ has a Markov partition with small diameter

 $(f, \Omega(f))$ is a Holder continuous factor of a subshift of finite type with good properties: (i) finite-to-one; (ii) described by a relation on the alphabet:

We will now discuss the quotient map $\pi: \Sigma_A \to \Omega_i$ defined by $\pi(\underline{x}) = \bigcap_{j=-\infty}^{\infty} f^{-j} R_{x_j}$. The Markov partition $C = \{R_1, \dots, R_n\}$ is taken so that $2 \max_{1 \le j \le n} \operatorname{diam}(R_j)$ is less than an expansive constant. Define a relation \sim on $\{1, \dots, n\}$ by $j \sim k$ iff $R_j \cap R_k$ $\neq \emptyset$. Define \approx on Σ_A by $\underline{x} \approx \underline{y}$ iff $x_r \sim y_r \quad \forall r \in \mathbb{Z}$. It is easy to prove that $\pi(\underline{x}) = \pi(y)$ precisely if $\underline{x} \approx \underline{y}$.

p. 13 of Bowen, On Axiom A diffeomorphisms (1978); Manning (1971)

Consequences

The factor is an isomorphism wrt any ergodic measure with support $\Omega(f)$ Finitely many ergodic **measures maximizing the entropy (mme)** μ_1, \ldots, μ_r each $\mu_i \equiv \text{Bernoulli} \times \mathbb{Z}/p_i\mathbb{Z}$

$$\begin{split} |\{x = f^n x\}| &\sim (p_1 + \dots + p_r) e^{n h_{top}(f)} \text{ for } n \in \mathsf{lcm}(p_1, \dots, p_r) \mathbb{Z} \\ \text{In fact, } \zeta_f(z) &= \prod_{\mathcal{O}} (1 - z^{|\mathcal{O}|})^{-1} \text{ is rational (Manning)} \end{split}$$

Goal: generalize to surface diffeomorphisms using Sarig's codings

Almost Borel classification

Definition

 $S: X \to X$ and $T: Y \to Y$ are almost Borel conjugate mod zero entropy if \exists invariant Borel subsets $X' \subset X$, $Y' \subset Y$ and a Borel isomorphism $\psi: X' \to Y'$ s.t. (i) $\psi \circ S = T \circ \psi$; (ii) $X \setminus X'$ and $Y' \setminus Y$ carry only measures with zero entropy

Using the Bowen property of Sarig's coding and Hochman's almost Borel classification:

Theorem 1 (Boyle-B)

Any C^{1+} -diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift

Using "magic word" isomorphisms as between almost conjugate SFTs

Theorem 2 (B)

Let f be a C^{∞} -diffeomorphism of a compact surface and $0 < \chi < h_{top}(f)$ Let μ_1, \ldots, μ_r be mme's, with μ_i isomorphic to Bernoulli $\times \mathbb{Z}/p_i\mathbb{Z}$ Let $p := \operatorname{lcm}(p_1, \ldots, p_r)$ $\lim_{n\to\infty,p\mid n}|\{x\in M: f^nx=x, \ \chi\text{-hyperbolic}\}|e^{-nh_{\rm top}(f)}\geq p_1+\cdots+p_r$

Compare Sarig; Kaloshin; Burguet

Markov shifts

G oriented, countable graph with vertices \mathcal{V}_G and edges $\mathcal{E} \subset \mathcal{V}_G \times \mathcal{V}_G$

Definition

The **Markov shift** defined by *G* is $S_G : X_G \to X_G$:

$$X_G := \{x \in \mathcal{V}_G^{\mathbb{Z}} : \forall n \in \mathbb{Z} \ x_n \xrightarrow{G} x_{n+1}\} \text{ with } S_G : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

(will drop indices G whenever possible)

Subshifts of finite type (SFT)

A Markov shift is C^0 -conjugate to some SFT iff X compact iff G can be chosen finite

Theorem (Spectral decomposition)

The non-wandering set of a Markov shift (X, S) splits into transitive components

$$\Omega(X_G) = \bigsqcup_{i \in I} X_{G_i}$$
 with $S : X_{G_i} \to X_{G_i}$ (topologically) transitive

Furthermore,

$$X_{G_i} = igsqcup_{j=0}^{p_i-1} S^j(Y_i)$$
 with $S^{p_i}: Y_i o Y_i$ topologically mixing

 $(G_i)_{i \in I}$ are the strongly connected components of G and p_i are their periods

Markov shifts – entropy

 $h(S, \nu)$ Kolmogorov-Sinai entropy

Theorem (Gurevič)

For a Markov shift S, the Borel entropy

 $h(S) := \sup_{\mu \in \mathbb{P}(S)} h(S, \mu) \in [0, \infty]$

is the upper growth rate of the periodic orbits through a given vertex

Definition

An mme (ergodic invariant probability measure maximizing the entropy) is

 $\mu \in \mathbb{P}_{erg}(S)$ such that $h(S, \mu) = \sup_{\nu \in \mathbb{P}(S)} h(S, \nu)$

Theorem (Gurevič)

If X is transitive then it has at most one mme μ

In this case, X is called **positive recurrent (PR)** and μ is (fully-supported, Markov) Parry measure, isomorphic to Bernoulli $\times \mathbb{Z}/p\mathbb{Z}$ (or simply: **periodic-Bernoulli**)

Markov shifts – periodic points

Markov shift $S: X \to X$ defined by graph GAssume **transitive** with $h(S) < \infty$ and period p

Classical positive matrix theory yields:

Theorem

$$\begin{split} & [F] := \{x \in X : x_0 \in F\} \text{ for some finite set } F \neq \emptyset \text{ of vertices of } G\\ & \mathsf{Fix}(S^j, F) := \{x \in X : S^j x = x \text{ and } \mathcal{O}(x) \cap [F] \neq \emptyset\}\\ & \text{ If } G \text{ is not } PR, \ & \mathsf{lim}_{k \to \infty} \ |\mathsf{Fix}(S^{kp}, F)| e^{-kp \ h(S)} = 0\\ & \text{ If } G \text{ is } PR, \qquad & \mathsf{lim}_{k \to \infty} \ |\mathsf{Fix}(S^{kp}, F)| e^{-kp \ h(S)} = p \end{split}$$

Counter-examples

Without restricting to a finite set of vertices:

- $Fix(S^{kp}, G)$ can be infinite
- $Fix(S^{kp}, G)$ can be finite but grow arbitrarily fast

Factors of Markov shifts – pathology from loss of entropy

(X, S), (Y, T) selfmaps

Definition

A factor map $\pi : (X, S) \to (Y, T)$ is an onto map $\pi : X \to Y$ with $\pi \circ S = T \circ \pi$ $S : X \to X$ is called the extension and $T : Y \to Y$ the factor

Claim: Without additional assumptions, their factors can be very different

Pathology 1 Bad MMEs

MMEs of Markov shifts

A Markov shift has at most countably many mme's and each is periodic-Bernoulli (

Counter-example of Boyle-B

There are continuous factors of mixing SFTs whose mme's include *uncountably* many isomorphic copies of an *arbitrary ergodic automorphism* with positive entropy

Remark (Sarig, applying Ornstein's theory)

Any finite-to-one, C^0 factor of a Markov shift satisfies (*1)

Factors of Markov shifts – pathology of finite-to-one factors

Pathology 2 Finite-to-one factors can still be bad "at a period"

```
\mu totally ergodic \iff \mathsf{Per}(S,\mu) = \{1\}
```

Counter-example of Boyle-B

There is a finite-to-one, continuous factor of an SFT which has a unique totally ergodic measure with nonzero entropy

Compare:

Remark

A Markov shift has infinitely many totally ergodic measures with nonzero entropy, or none

The Bowen relation

 $\pi: (X, S) \to (Y, T)$ factor map with (X, S) a symbolic system: $X \subset \mathcal{A}^{\mathbb{Z}}$ and $S : (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$ (Y, T) arbitrary

Let $[a] := \{x \in X : x_0 = a\}$ for $a \in A$

Bowen relation (Boyle-B)

The **Bowen relation** of π is the symmetric relation over A defined by:

 $a \sim b \iff \pi([a]) \cap \pi([b]) \neq \emptyset$

It is of finite type if $|\{b \in \mathcal{A} : a \sim b\}| < \infty$ for each $a \in \mathcal{A}$

The factor $\pi: X \to Y$ has the **Bowen property** if, for all $x, x' \in X$

 $\pi(x) = \pi(x') \iff \forall n \in \mathbb{Z} \ x_n \sim x'_n$

Recall Bowen On Axiom A diffeomorphisms (1978):

We will now discuss the quotient map $\pi: \Sigma_A \to \Omega_i$ defined by $\pi(\underline{x}) = \bigcap_{i=-\infty}^{\infty} (-iR_x)$. The Markov partition $\mathcal{C} = \{R_1, \dots, R_n\}$ is taken so that $2 \max_{1 \le i \le n} \operatorname{diam}(R_i)$ is less than an expansive constant. Define a relation \sim on $\{1, \ldots, n\}$ by $j \sim k$ iff $R_j \cap R_k$ $\neq \emptyset$. Define \approx on Σ_A by $\underline{x} \approx \underline{y}$ iff $x_r \sim y_r \quad \forall r \in \mathbb{Z}$. It is easy to prove that $\pi(\underline{x}) =$ $\pi(y)$ precisely if $x \gtrsim y$.

Bowen factors of finite type

Examples

1. The coding of an Axiom A diffeomorphism induced by $\ensuremath{\textit{Markov partitions}}$ defines a finite-to-one Bowen factor

2. Expansive continuous factors, in particular of SFTs (ie, Fried's **finitely presented systems**)

3. Any **one-block code** between two symbolic systems is a Bowen factor. Note: need not preserve entropy, even if of finite type.

#-recurrent set (Sarig)

 $X^{\#}$ is the set of $x \in X$ s.t. $|\{n \leq 0 : x_n = a\}| = |\{n \geq 0 : x_n = b\}| = \infty$ for some a, b

Theorem (Sarig)

Given a surface C^{1+} -diffeomorphim, and $\chi > 0$, let $\pi_{\chi} : X_{\chi} \to M_{\chi}$ be Sarig's Hölder continuous factor map with X_{χ} a Markov shift and M_{χ} its χ -hyperbolic part π_{χ} restricted to $X_{\chi}^{\#}$ is finite-to-one and a Bowen factor of finite type (Boyle-B)

Almost Borel conjugacy to a Markov shift

(X, S) a Markov shift and $(X_i)_{i \in I}$ be its spectral decomposition

Theorem (Boyle-B)

Let $\pi: (X,S)
ightarrow (Y,T)$ be a Borel factor of a Markov shift with $h(S) < \infty$

Assume for all $i \in I$: the restriction $\pi | X_i^{\#}$ is finite-to-one with the Bowen property

Then (Y, T) is almost Borel conjugate modulo zero entropy to a Markov shift

Main ingredients of the proof

- Hochman's almost Borel generator theorem
- Countable unions of Markov shifts are almost Borel conjugate to Markov shifts, etc.
- Low entropy part (injectivity from marker lemma)
- Top entropy part (a.e. injectivity a la Manning)

Theorem (Boyle-B)

Any C^{1+} -diffeomorphism of a compact surface is almost Borel conjugate mod zero entropy to a Markov shift

Almost Borel classification of C^{1+} -diffeos

We are reduced to the classification of Markov shifts (Boyle-B)

We need the set of periods of a measure

 $\mathsf{Per}(f,\mu) := \{ p \geq 1 : e^{2i\pi/p} \in \sigma_{\mathsf{rat}}(f,\mu) \} \text{ for } \mu \in \mathbb{P}_{\mathsf{erg}}(f,\mu)$

and to maximize entropy at a period:

Corollary (Boyle-B)

For each $p \ge 1$ let:

$$\begin{array}{l} -H(p) := \sup^+ \{h(f,\mu) : \mu \in \mathbb{P}_{\text{erg}}(f), \max \operatorname{\mathsf{Per}}(f,\mu) | p \} \\ -M(p) := |\{\mu \in \mathbb{P}_{\text{erg}}(f) : \max \operatorname{\mathsf{Per}}(f,\mu) = p, h(f,\mu) = H(p)\} \end{array}$$

Then (H, M) is a complete invariant of almost Borel conjugacy mod zero entropy among C^{1+} -diffeomorphisms f of compact surfaces

Almost Borel classification for C^{∞} diffeos

f C^{∞} -diffeo of a compact surface with $h_{top}(f) > 0$: **purely topological** invariant

Definition

The **homoclinic class** of a hyperbolic periodic orbit \mathcal{O} is

 $HC(\mathcal{O}) := \overline{W^s(\mathcal{O}) \pitchfork W^u(\mathcal{O})}$

It has **period** $p \ge 1$ if $HC(\mathcal{O}) = \bigcup_{k=0}^{p-1} f^k(A)$ and

 $\operatorname{int}_{HC(\mathcal{O})}(A \cap f^k(A)) = \emptyset$ for 0 < k < p and $f^p : A \to A$ topologically mixing

Corollary of B-Crovisier-Sarig

Let $(HC(\mathcal{O}_j))_{j \in J}$ be the distinct homoclinic classes and p_j their periods The previous complete invariant (H, M) of almost Borel conjugacy mod zero entropy satisfies

$$- H(p) := \sup_{j:p_j|p}^+ h_{top}(f, HC(\mathcal{O}_j))$$

- $M(p) := |\{j \in J : h_{top}(f, HC(\mathcal{O}_j)) = H(p), p_j = p\}|$

Example

Among top. mixing surface C^{∞} diffeos, the topological entropy is a complete invariant for almost Borel conjugacy mod zero entropy (in fact Borel conjugacy mod periodic points)

J. Buzzi

Lower bounds on periodic points

As for almost conjugacy between SFTs, we have magic word isomorphisms

Theorem (B, in preparation)

Let $\pi: (X, S) \to (Y, T)$ be a Borel factor of a transitive Markov shift with $h(T) < \infty$ Assume the restriction $\pi | X^{\#}$ is finite-to-one and a Bowen factor of finite type Then \exists X-word w s.t. $X_w := \{x \in X : w \text{ occurs i.o. in the past and future}\}$ satisfies:

$$\exists 1 \leq d < \infty \,\, orall x \in X_w \,\, |\pi^{-1}(\pi(x)) \cap X_w| = d$$

Proof: deg_{π}($v_1 ... v_n, i$) := $|\{u_i : u \in A^n, u_1 \sim v_1, ..., u_n \sim v_n\}|$

Theorem (B)

Let f be a C^{∞} -diffeomorphism of a compact surface and $0 < \chi < h_{top}(f)$ Let μ_1, \ldots, μ_r be its mme's, with μ_i isomorphic to Bernoulli $\times \mathbb{Z}/p_i\mathbb{Z}$ Let $p := \operatorname{lcm}(p_1, \ldots, p_r)$ $\lim_{n\to\infty,p\mid n}|\{x\in M: f^nx=x, \ \chi\text{-hyperbolic}\}|e^{-nh_{\rm top}(f)}\geq p_1+\cdots+p_r$

Conclusion

The Bowen property gives good control of the (necessary?) failure of injectivity

Number of periodic points

```
Are there f compact surface C^{\infty}-diffeo and \chi > 0 s.t.
\limsup_{n \to \infty} |\{x = f^n x, \chi\text{-hyperbolic}\}| e^{-nh_{top}(f)} = \infty?
```

True Borel conjugacy

For a C^{∞} -diffeo, each $HC(\mathcal{O})$ is almost Borel conjugate *mod zero entropy* to a transitive Markov shift

Can this be strengthened to almost Borel mod periodic points?

The dream coding

Is the (χ ??)hyperbolic part of a surface diffeomorphism a factor of a Markov shift s.t.

- the factor is Hölder-continuous
- each "piece" (say homoclinic class) is coded by a single transitive component
- Ithe factor is 1-to-1 (wrt ergodic measures fully-supported on their "piece"??)