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Université Paris-Dauphine

July 20-24, 2009

Analysis of nonlinear PDEs
and free boundary problems:

Applications to homogenization

C. Imbert (Paris-Dauphine) Fractional mean curvature PIMS July 2009 1 / 37



Acknowledgment.

The results presented here are published in Interfaces and Free Boundaries.

This paper was written after the series of papers written with R. Monneau
and after visiting T. Souganidis in Austin. In particular, I had the
opportunity to discuss with L. Caffarelli about this subject.

It is closely related to their joint work about Threshold dynamics
associated with non-local diffusions (Archive for Rational Mechanics and
Analysis) and to the ongoing work with T. Souganidis about phasefield
theory for fractional diffusion-reaction equations. See also the working
paper of Caffarelli, Roquejoffre and Savin about non-local minimal
surfaces.

C. Imbert (Paris-Dauphine) Fractional mean curvature PIMS July 2009 2 / 37



Outline

1 Motion of interfaces
Interfaces
The level-set approach
The phasefield approach

2 Fractional mean curvature
Definitions
Examples
Further comments

3 The associated geometric flow
A question and an example
The level-set equation
The Cauchy problem

4 Works in progress and conclusion

C. Imbert (Paris-Dauphine) Fractional mean curvature PIMS July 2009 3 / 37



Outline

1 Motion of interfaces
Interfaces
The level-set approach
The phasefield approach

2 Fractional mean curvature
Definitions
Examples
Further comments

3 The associated geometric flow
A question and an example
The level-set equation
The Cauchy problem

4 Works in progress and conclusion

C. Imbert (Paris-Dauphine) Fractional mean curvature PIMS July 2009 4 / 37



Outline

1 Motion of interfaces
Interfaces
The level-set approach
The phasefield approach

2 Fractional mean curvature
Definitions
Examples
Further comments

3 The associated geometric flow
A question and an example
The level-set equation
The Cauchy problem

4 Works in progress and conclusion

C. Imbert (Paris-Dauphine) Fractional mean curvature PIMS July 2009 5 / 37



Interfaces

In this talk, interface = hypersurface separating two regions of RN

Examples of interfaces

In a polycrystalin material,
2 stable zones (phases) separated by 1 instable zone (transition layer)

In combustion, burnt region / unburnt region

In a biology, infected region / sane region

Linear defect in a crystal

Different problems

Study of interfaces at equilibrium (ex: minimal surfaces)

Study of dynamics of interfaces
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Geometrical law

If V = speed along the normal n at point x at time t

V = F (t, x , n,S , . . . )

where S = curvature tensor of the interface at x

Strategy for constructing a flow for a given law

Represent the inner region Ωt and the interface Γt = ∂Ωt as follows

Γt = {x ∈ RN : u(t, x) = 0} & Ωt = {x ∈ RN : u(t, x) > 0} .

Exhibit an equation satisfied by u

Solve the PDE

Check the invariance principle

Osher-Sethian, Evans-Spruck, Chen-Giga-Goto
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Motion by mean curvature

A simple example of geometric motion

V = Tr(S) = Tr(Dn)

where S = Dn

The geometric PDE

∂tu −∆u +
D2uDu · Du

|Du|2
= 0 .

This motion is local

Convex sets move faster and faster along their normal

Lines do not move (minimal surfaces)
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The phasefield approach

Allen-Cahn equation

ε2∂tuε −∆uε + uε((uε)2 − 1) = 0

uε(t, x)→ ±1

∂Ωt = ∂{x : uε(t, x)→ 1}: moving front

Allen-Cahn, Chen, Evans-Soner-Souganidis

Dislocation dynamics

∂tu + (−∆)1/2u + u(u2 − 1) = 0

Recall: The fractional Laplacian

(−∆)1/2u = F−1(|ξ|1Fu)

with α ∈ (0, 2)
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Integro-PDEs in applications and literature

elliptic/parabolic + nonlinear + singular integral terms

A increasing litterature

Continuum mechanics: dislocation dynamics

Combustion models

Mathematical finance: stochastic control of jump processes

fluid mechanics: the quasi-geostrophic model, Boussinesq equation

statistical mechanics: mean field equation for stochastic Ising models

Biology, plasmas etc

April 2008 (Banff)

April 2010

Workshop in Bedlewo at Banach Center
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The fractional Laplacian: a typical example of (monotone) singular
integral operator

(−∆)1/2u(x) = −C1

∫ (
u(x + z)− u(x)

− Du(x) · z1B(z)

)
dz

|z |N+1

()

This operator differentiates α times the function u

Well defined for u ∈ C 2

The singularity at 0 is compensated

The singularity is assumed to be of order less than 2
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Definition (Fractional mean curvature)

(Caffarelli-Souganidis, CI)

κα[x , Γ] =
2Cα
α

∫
z:x+z∈Γ

z

|z |N+α
· n(x + z) σ(dz)

κα[x , u] =
2Cα
α

∫
z:u(x+z)=0

z

|z |N+α
· ∇u

|∇u|
(x + z)σ(dz)

Geometrical version

ν(z : x + z ∈ Ωt

, n(x) · z ≤ 0

) − ν(z : x + z /∈ Ωt

, n(x) · z ≥ 0

)

where ν(dz) = Cα|z |−N−αdz with α ∈ (0, 1)

Level-set formulation

ν(z : u(x + z) ≥ 0

,∇u(x) · z ≤ 0

)

− ν(z : u(x + z) < 0

,∇u(x) · z ≥ 0

)
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Comments on these definitions

Can be defined for general singular measure

“convex” part / “concave” part

On the geometric version, one can see that this operator is elliptic

Another definition for bounded measures

κ = ν ? 1Ωt − ν ? 1Ωc
t

= ν ? 1Ωt − ν ? (1− 1Ωt )

= 2ν︸︷︷︸
c0

? 1Ωt + (−ν(RN))︸ ︷︷ ︸
c1

−→ Dislocation dynamics

Later on, we will discuss:

If ν is singular, then well defined only for regular curves

In which sense is this mean curvature fractional?
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Fractional MC of a line and a circle

Recall: κ =
∫

Γ n(y) · (x−y)
|x−y |N+α dσ(y)

For lines: κ ≡ 0

For a circle of radius R >: κ = C
Rα .

If |x | = R, write x = Rx0 and

κ[x ] =

∫
S(0,R)

y

|y |
· x − y

|x − y |N+α
dσ(y)

=
R1+(N−1)

RN+α

∫
S(0,1)

y0

|y0|
· x0 − y0

|x0 − y0|N+α
dσ(y0)

=
1

Rα
C
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Why is it necessary that the curve be regular?

See Barles and Georgelin

Fractional mean curvature of a parabola in dimension 2

κ[0,P] =

∫ +∞

−∞

∫ x2

0

dy

(x2 + y 2)
2+α

2

dx

=

∫ +∞

−∞

∫ |x |
0

|x |
|x |2+α

d(y/|x |)
(1 + (y/|x |)2)

2+α
2

dx

=

∫ +∞

−∞

|x |
|x |2+α

∫ |x |
0

dz

(1 + z2)
2+α

2

dx

=

∫ +∞

−∞

F (|x |)
|x |1+α

dx
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In which sense is this curvature “fractional”?

Proposition (Da Lio, Forcadel, Monneau (JEMS’05))

Consider c0 even, smooth, non-negative and c0(z) = |z |−N−1 if |z | ≥ 1. If
νε(dz) = 1

εN+1 c0( z
ε )dz then

1

| ln ε|
κε[x , u]→ κ1[x , u] as ε→ 0

Proposition (CI (IFB’09))

lim
α→1,α<1

(1− α)κα[x , u] = Cκ1[x , u] .

To be compared with: limα→2(2− α)(−∆)α/2u = (−∆)u.
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A question

Bence-Merriman-Osher scheme

Let Ω0 be an open set of RN and h a given paramater (time mesh size).

Solve the heat equation with initial condition 1Ω0

Consider Ωh = { x where the solution at time h is greater than 1/2}
Iterate this process: Ω2h, Ω3h . . .

As h→ 0, Ωih approximates the motion of Γ0 = ∂Ω by MC

[Caffarelli, Souganidis] If one replaces the heat equation with

∂tu + (−∆)α/2u = 0 ,

what is the new limit as h→ 0?
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An example: Dislocation dynamics
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Example of a geometric law

V = c(x) + F (x)

where
c = is a forcing term
F = the Peach-Koehler force (self force) at x

Linear elasticity
F (x) = ∆1/2(1Ωt )(x)

where Ωt is such that ∂Ωt is the dislocation line

The resulting eikonal equation

∂tu = (c(x) + ∆1/21Ωt )(x))|∇u|
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The level-set equation

∂tu =

µ(
Du

|Du|
)

(

c(x) +

κ[x , u(t, ·)]

)
|∇u|

dislocation dynamics of a single line
=motion by fractional mean curvature flow

Geometric equation
If u is a solution and φ is non-decreasing, then φ(u) is a solution
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Viscosity solution for the level-set equation

Super-solution

A lsc function u is a super-solution of (f-MCM) if, for any bounded test
function φ touching u at x from below{

∂tφ(t, x) ≥ κ∗[x , φ(t, ·)]|∇φ(t, x)| if ∇φ(t, x) 6= 0
∂tφ(t, x) ≥ 0 if not

Solution = super-solution AND sub-solution
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Technical difficulty: to get stability

Main difficulties to overcome

The fractional mean curvature is neither continuous in x nor in t.

The most difficult results: stability and strong comparison principle

Notion of relaxed semi-limits (Barles and Perthame)

Discontinuous stability (Barles-CI’08, CI’09)

Let (uα)α be a family of super-solutions of (f-MCM) uniformly bounded
from below. Then the infimum of this family

(its lsc envelope in fact)

is a
super-solution of (f-MCM).

See also the recent preprint by Ishii and Matsumura
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Consider ν(dz) = |z |−N−αdz

Theorem (CI’09)

Consider u0 ∈W 1,∞. There then exists a unique bounded continuous
viscosity solution of (f-MCM).

Theorem (The invariance principle — Forcadel CI Monneau’08, CI’09)

If u0, v0 ∈W 1,∞ satisfy

{u0 = 0} = {v0 = 0} and {u0 > 0} = {v0 > 0}

then the corresponding solutions u and v satisfy

{u(t, ·) = 0} = {v(t, ·) = 0} and {u(t, ·) > 0} = {v(t, ·) > 0}
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Anomalous diffusion-reaction equations

Fractional Allen-Cahn equation (joint work with Souganidis)

Scaling properly the fractional AC eq’n makes appear a front moving

by anisotropic mean curvature if α ≥ 1,

by fractional mean curvature if α < 1 (to be finished).

Application : Scaling mean field equation in statistical mechanics
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Conclusion

Interfaces moving by fractional mean curvature and corresponding
non-local minimal surfaces (Caffarelli, Roquejoffre, Savin) appear in
different situations: dislocations, combustion, statistical mechanics

A new (good?) formulation of the geometrical problem

This formulation relies on the idea of compensating the singular
measure in a geometrical way

The ellipticity of the operator permits to construct a geometric flow
after the onset of singularities

This permits to get homogenization results of moving fronts in the
regular case

Repeated games to approximate the flow (with Serfaty)
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