The geometry of Euler’s
eguations



Subgroup of Nx N
matrices for some N

/

G ... finite dimensional Lie group - we can think of it as a matrix group

A Lie group G as a configuration space

Notation: a,b,... elements of the group

Basic point: we can move objects around (vector fields, forms, etc.)
by left (or right) multiplication.

~ for the right
=d/dt a(t)|,_,,
&=d/ (t) | =0 multiplication

with a(0)=a left mult. by b o
we can define
gt V= | b- & =d/dt (ba(t)) | v e
:f;tor b tangent in a similar way

vector
at ba

co-vectors (~ forms): thedualof (¢ — b-&) movesformsfromT*  GtoT* G
S T*ba G —> b* o & T*a G (abusing the notation: b* is not the adjoint matrix)



The tangent space at the unit element: g (the Lie algebra of G)

The adjoint action of GG on g:

§—a-&-at=Ad(a)¢

Lie bracket on g:
Let n € g and b(t)|¢—g = 1. Then

1,&] = d/dt|;—oAd (b(2)) &

Structural constants of g:
e1,...,e, basisofg, |e;e;] = cfjek

Jacobi identity (¢, [, C]] + [n, [¢, €]] + [¢ [€;ml] = 0

the group operation
induces the Lie algebra
structure



Coordinates on TG and T*G: \\/\/\\</\\/\

move the basis e, ..., e, by the left multiplication to each point of the group

get a frame of left invariant vector fields, still denoted e,,..., e,

Identify T'G with G x g or with G x R™ by using the frame.

(a, ) eGxg—a-£eT,G
or

(a5 &....8") = a-(§e) € TG



Similarly, T*G is identified with G x g* or with G x R"

(a,0) G xg* = (a*) 1 aeTrG

or
(a; 91, Yn) € G X R* = (a*) " (y;e}) € TG
dual basis to e, ...,e,
The coordinates y1,...,y, can also be thought of as functions on T*G.

Prolongation of the action of G on itself by the left multiplication to T™G:

b‘(CL;yl,---,Z/n) — (ba'7yl7"°7yn)

Note thaty,, ..., y, considered as functions on T*M are invariant under
(the prolongation of) the left multiplication. This is more or less by definition.



Interpretation:
T*G ... we follow
a(t) and d/dt y(t) (momentum)

C®(G \ T*G) are exactly the functions of y,, ..., y,,. Y= G\ T*G reduced

« phase space:
In fact, in this case Y =G \ T*G can be identified with R" or @ we “forget” a(t)
and follow only
d/dt y(t)

The functions y, ..., y,, provide coordinates on Y (which are global)

equations for y:

C°(Y) inherits a Poisson bracket from T*M. What is the bracket? d/dt y(t) = {H,y}
hamiltonian
enough to calculate {y , y j} This needs a little work, the main point H=H(y)
is to use the formula
de*; (e, e)= -e*{([e, el
/ for the invariant forms/fields
Calculation: {vi,y;}= ckij Y -see next

where c¥; are the structure constants of the Lie algebra §



Canonical form of T*G

e_1%, ..., e_n* frame of the left-invariant forms, dual to the frame e_1,...,e_n

Recall the natural coordinates on T*G:

(a;yy . Y, €GXR" > yje*j

The canonical 1-formon T*G: «a = y;e¥;

The symplecticform: w = da = dy,Ae* + vy de¥ =

= dy,Ae*; -y de* A e¥
where we used the Cartan formula

dalen) = &alm) - nald) - allen)) witha=e*, , t=e, n=e,

N/ \

=0 in our case
- r
[ep' eq] = Cpq &



In the local frame in T*G given by y,,...,y,, €,,...,€, the form omega is given by the matrix

0 I | | k
( I —C(y) ) with notation  y, ¢, ~  C(y)

The inverse w™ of this (anti-symmetric) matrix is given by
-Cly) -1
1 0
The Poisson bracket is (in our conventions) {f,g}=w"™f, g,

In particular, {y;,y;}= Ckij Yk



Remark:
Note that the group G was any Lie group. We have shown:

k

If G is a Lie group and g is its Lie algebra with structural constants ¢,

then on the dual g* of g the formula

{yia yj} — Cf]:yk:
J

defines a Poisson bracket on g*.

This was already known to S. Lie, but he did explore the implications.

In the 1960s this structure was used by A. A. Kirillov to obtain important
results in representations of nilpotent groups, and to develop his
“method of orbits”.



be G = theleftshifts a-—ba extendtoasymplectic diffeom. of T*G:

represent the form y,e* ata

in the coordinates ( a, yl,...,\n)/: b-(a,y, ..., ¥,) =(ba, y,, ..., ¥,))

the infinitesimal version of these deformations:

¢ € g generates an infinitesimal symplectic deformation of T*G

y does not change, since the coordinate functions

ba=(1+€ £) a / y, are invariant under the left shifts

(ary) — (a+€§'aly)

Recall: Infinitesimal sympl. defs. «— s functions (perhaps modulo corrections)



What is the generating function f for (a,y) > (ate&a,y) ?
In the coordinates of lecture 1 it would be f = p, &

We need to express this in the presently used coordinate frame vy,,...,y,, €, .., €,

coordinates of the infinitesimal deformation in this frame:

first coordinate

\

(0,..,0, [Ad(@Y) €Y, ..., [Ad (@) &)

need to use this form because our
coordinate frame is left invariant
(not right-invariant).

no shiftiny
arisesfrom &-a= aal-£-a=a-Ad(a?l)



recall f=p,;& incoordinates

of lecture 1
Recall Noether’s Theorem:

The generating function of the infinitesimal symplectic transformation above will be

f(ay) = <y, Ad(a?){> = <Ad(at)*y, >

Moreover, f(a,y) will be conserved for any Hamiltonian depending only ony
Exercise: check “by hand” that { f, y,} = 0 for each i

.. Example: rigid body rotation
Definition: gic body :
y momentum in the coordinate

frame moving with the body
- 1) % *
M(a,y) = Ad(a?)*y € ¢ Ad(al)y momentum in the

coordinate frame fixed in space

is called the moment map.

For any Hamiltonian depending only on y the evolution preserves M, or dM/dt = 0.

This is because the & above can be taken as any element of g



/ determined by C,(y)=c, C, the Casimir functions, {C, yj}=0 for each j=1,...,n %/7

“Symplectic leaves” of the Poisson manifold g" (a connected G)

A subspace through y generated by all possible
vectors dy/dt={H,y}, as H runs through all H=H(y)

Y is contained in the tangent space to the orbit
O, = {Ad*(a)y, a€ G} (because of the conservation
of M for any such H, for example).

Vice versa, any vector in T, O, can be obtained

orbit O, in this way.

Hence: Symplecticleaves <—— orbits

(See A.A.Kirillov’s book for more and implications to representations.)

Hence the evolution on § given by H(y) and { , } really describes a family

of hamiltonian systems (parametrized by the orbits)



Example: non-degenerate stationary points are (locally) parametrized by the orbits:

manifold of stationary
points (transversal
to the orbit foliation)

Non-degenerate critical
point of H on one orbits
implies critical points in
neighboring orbits
S .
5 orbits
i -



Example: the simplest non-commutative group G (Commutative G leads to {y, y;}=0)

the group of orientation-preserving
a b affine transformation of R
G = { A= 0 1 ;a > O7 b -~ R} (maps of the form x — ax+b ) with a>0
Y
g= {X — ( g g ) T,y € R} adjoint orbits

g*Z{P=<g );p,qéR} |

O

< P, X >=px+qy

co-adjoint orbits

q

Ad(4) ~ (_1b 2) Ad(A)* ~ (é _b) —erereeeyp




Left invariant geodesics

given by Hamiltonian

H=H(p,q)=(p?*+q?)/2

{p,a} = q

dp/dt = {H,p} = @

dg/dt = {H,q} =-pq

Momentum conservation:

da/dt = pa, db/dt=ga

Example of solutions: a(t) = a, tanh(t)
b(t) = a,/cosh(t)

e,=a0/0 b
e,* =db/a

e,=ad/0a

geodesics

Poincare model
of the hypefbolic plane



Remark: Direct Lagrangian approach (see also V.I.Arnold’s book)

L left-invariant Lagrangian on TG

a(t) curvein G

v(t) = a 1 da/dt velocity in the coordinates of the left-invariant frame
ftltZ L(v(t)) dt action

a(t) = a(t)b _(t) with b, _~ 1+€ “nearby trajectory”

v.=a lda/dt=Ad (b, 1) v+b_ldb_/dt velocity of the nearby trajectory
v.=v+ e -[§v]+ d§/dt) + Of(e?)

L(v,) = L(v) + eL,( - [£,v] + d¢/dt) + O(e2)

ftltZ(L(vf) —L(v)) dt=-¢ ftltZ( <dL,/dt, &+<L, , [£,v]>) dt + O(€?)

F(v) defined by <F(v),£>= -<L,, [{,v]>, or (abusing notation), F(v)=Ad*(v) L,

Equation for v: dLV/dt = F(v) (does not involve a(t); recovering a: da/dt= a(t) v(t))



Other calculable geodesics for left-invariant metrics:

SI(2,R) ~ motion of a rigid body in the hyperbolic plane
H;, tree-dimensional Heisenberg group, Caratheodory metrics
S30rS0O(3) ~ three-dimensional rigid body (Euler’s equations for rotating bodies)

and more ....

We expect: 3d group with a left-invariant hamiltonian
=- co-adjoint orbits have dimension at most 2
= equations for geodesics solvable by quadratures

On the other hand: 6d groups (such as SI(2,C) or SO(4)) — will often have
4d orbits — potential for “chaos” in the reduced equations

Special Hamiltonians can still give integrability:
Kovalevskaya’s top, n-dim rigid body in Euclidean space (Manakov)



N unit normal

Ideal Incompressible Fluids

/

Configuration space: G=Diff,(€2) volume-preserving
diffeomorphisms of Q2
(group under map composition)

¢'(x)

Motion the fluid: curvesinG, t — ¢

t —> ¢! (x) trajectory of a “particle”

Symmetries: @tis asolution, YeG = ¢ toisasolution

“particle re-labeling”



Hamilton’s principle: the actual fluid motions “solutions” \
are extremals of
t2 . /
[ [16@Pdoa
t1 Q
P'(x)
among curves ¢! in G with ¢ and ¢*2 fixed
This leads to Euler’s equations for X
o —1 we are now using right shifts,
U(CC, t) _ ¢( ¢ (337 t) Y t ) rather then the left shifts....

It’s not hard to get the equation by direct calculation — but we will follow
the Hamiltonian approach, which also immediatelly gives the conservation
laws coming from the invariance by G (“particle re-labelings”)



The Lie algebra of G=Diff, (2) and its dual

U = Tigentity G weeene the Lie algebra of G ~ div-free vector fields in Q) tangent
to the boundary
uv € U........ [u,v] the usual Lie bracket of u,v (is exactly the bracket induced from the group)
Pyu
u
¢
Adjoint action: Ad(¢) u=¢,u (Puu)(x) = Do (¢1(x)) u(e™(x)) 51(x) y
The dual U* linear functionals on U can be obtained most naturally by

u —  Jo a(x)ui(x)dx = <a,u>

where a is viewed as a 1-form.



The co-adjoint action (of G=Diff,(€2) on U*)

<a, pyu>=<¢p*a, u> o*a ... the usual pull-back
[ ¢*a (p(x)) ] i - aj(x) ij,i(x)
Ad*(¢) a = ¢*a

So it seems natural to identify U* with one-forms, but the problem is
that the correspondence is not one-to-one:

a=df = <au>=0foreachucU: [,Vfu=/[,-f(divu) =0

To get a one-to-one correspondence

replace 1-forms by (1-forms)/(exact differentials df)



ia the vol lement
1-forms / differentials df —dH 2-forms mmen vector fields

a. dx a;; dXIAdX w'0/Ox, with wi=elka | .

Or, in the “vector calculus” notation:

a~ (a;, a, a;) w=curla

Action of Diff, (Q)

in the “a-coordinates” In the “w-coordinates”

Ad*(¢) a = ¢*a Ad*(B)w = Pyw



Duality in between U and U* in the w-coordinates on U*

a ~ a, dx! da ~ curla ~ w ~ WO/Ox]

vector potential of u, analogue
/ of the 2d stream function

ue U, u=curl?,div¥y=0 inQ, WAn=0o0n o (whenQistopologically trivial)

fQ audx-= fQ w ¥ dx (Check that the boundary term vanishes due to the boundary conditions)

In these “coordinates” the basic variable is w=w(x,t) (“vorticity”)

The vector fields ucU are identified with their vector potentials ¥

The Hamiltonian = kinetic energy : we U*, curlu=w, divu=0, un|;=0,
-AVY=w, div¥=0, YAn|,,=0

H = Hw) = [o % |ul?dx = [5 %w?dx



Poisson bracket

Lie bracket in U in terms of the vector potentials ¥
u = curly, v=curl® € U, w=[uyv], w=curl®
w = [uyv] = uVv-=vVu-= - curl (UAvV) (we used div u = div v = 0)

G = -curl ¥ Acurl @
¥ and @ can be considered as linear function on U*

lg: w> [qw¥ and l;:w— [owd o o
variational derivative”,
expressing F’ and G’
using the duality with U
Poisson bracket: {l;, Iz} = lo = o rcuns (need some smothness)

general functionals: {F,G}(w)=[o w (-curl (6F/dw) A curl(0G/dw) ) dx



Example: H(w) = [o% wW¥ (the Euler Lagrangian introduced earlier)

OH/dw =" (with - A¥ = w + boundary cond.)
w=curlu,divu=0 +boundarycond., u=curl¥

d/dt Is(w) = [qw®@ = {H, 5} (w) = [qw(- curl U A curl @) = [, curl(wAu) D

evolution of the “coordinate” given by @ Analogous to the
finite-dimensional
equation

dy,/dt={H,y;}

@ is arbitrary div-free with @An =0 at the boundary

w, + curl (uAw)

]
o

or

vorticity formulation of Euler’s equations
w, + [u,w]

1]
o

Noether’s theorem (conservation of the moment function)

Ad* (') w(t) = w(0) or w(t) = ¢, w(0) Helmholtz’s law

“vorticity moves with the flow”



Consequences of Helmholtz’s law

Vortex filament at initial time

elocity u

[, u;dx;
is conserved
(v moving with the flow)

section S

Jswn is conserved

(S moving with the flow)



folding necessary
not to increase energy

volume of the filament
must be preserved

eventually it will
presumably
become very
complicated

/ velocity near the filament increases

w
vorticity is “stretched”

must become very thin
at many places (preservation
of volume) — high velocities,
a lot of folding necessary so
that energy is not increased



A benefit of the co-adjoint orbit approach:

some “reduced” systems (such as point vortices, vortex fillaments,...)
come with natural hamiltonian structure.

1) 2d..... sets of a given number of points can be moved around by
Diff,(€2) - finite dimensional orbits — finite dimensional Hamiltonian
system - “point vortices” (Hamiltonian can be taken from

the original Euler’s eq. if we remove the infinite “self-energy”
of each vortex.

2) 3d.... curves can be moved around by Diff,(€2)
get a natural symplectic structure on the “manifold of curves”
for certain “weak filaments” energy ~ length
curves with the sympl. structure, Hamiltonian = length,
- flow of curves by binormal curvature



Geometric picture of the steady-states for 2d Euler:

manifold of stationary
points (transversal
to the orbit foliation)

Non-degenerate critical
point of H on one orbits
implies critical points in
neighboring orbits
<— :
5 orbits
i -

Can be established rigorously in 2d under some (reasonable) assumptions
(A. Choffrut, V.S.)
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