The Geometry of Euler’s
equation

Introduction
Part 1



Mechanical systems with constraints, symmetries

T fixed length

/ In principle can be dealt with by applying
flexible F=ma, but this can become complicated
joint

Lagrangian mechanics:

M manifold of possible configurations — “configuration space”
q points of M (either abstract, or in specific coordinates q=(q?, ..., ")
t - qg(t) trajectoriesin M (to be computed)

Effective algorithm (due to Lagrange) for writing the equations for q(t)
without some complicated analysis of the forces:



For a curve g(t) in M (not necessarily a real motion), find the expression for
the kinetic energy T and the potential energy V of the system.

Typically T'=T(q,q) with a quadratic expression in q

and | = V(q) alt,)

Consider the Lagrangian L = L(q, q) = T(C], Q) — V(Q)

Hamilton’s principle:

The actual motions are extremals of the “action functional” q(t,)

to
/ L(q, q) dt inthe class of trajectories with fixed endpoints q(t,), q(t,)
t1

d oL 0L
dt 9¢t  Oq"

Lagrange equations:




Systems with symmetries

G group actingon M geM—> g-q& M

Groups of interest: q(t) a solution = g - g(t) a solution

sufficient condition: L is invariant under G W
g

L: TM = R a g g

Gactsalsoon TM:  (q,v) €T, (M) — g(q,v)= (8 q,Dglq) -v) € T,, M

Invariant L: L(g-(q, v)) = L(q,v)



Goal: use the symmetries to simplify the equations

For reducing the equations, we need “continuous symmetry groups” (Lie groups)
and the corresponding “infinitesimal symmetries” (Lie algebras).

Infinitesimal transformation of M = vector fields £(q) on M. Their fluxes generate
a 1-parameter family of transformtions gt.

d vector field £(q)

E ( t . q) = g(gt . q) and its integral lines

Example: by cost —sint 1
g ~ \ sint  cost T



f const.

on integral
Functions f on M invariant under an infinitesimal transformation &(q) ines

¢-f=d/def(g+e &lg)) .., =0 (derivative in the £ direction vanishes)

Infinitesimal transformations £ on M extend to infinitesimal transformations of TM,
(still denoted by &)

o
4= g+e £(q) (q,v) = (q+€€(q), v + eDE() v ) £(0,v) = (g q, Dgla) v

original transformation .
extension

Lagrangian L: TM — R invariant under an infinitesimal transformation &

£-L=0
A

the derivative of L in the direction
of the extended &



A simple version of Noether’s theorem:

M  configuration space, L: TM— R a Lagrangian,
¢ a vector field on M which is an “infinitesimal symmetry” of L (i.e. £ - L=0)

oL

Then the quantity fz(q) oL is conserved, i.e. i ’L(q) Y
q’L

. 0
9g dt

Proof: Chain rule, the Lagrange equations, the assumption&-L=0

Example: A motion in a radial potential (in R or R3) conserves the
angular momentum.

Lgd) = gmld — V()
£(g) = (—qqf)

i 9% ata? — o2l
5341 (¢¢" —q°q)



Hamiltonian mechanics

Instead of working with TM, work with the co-tangent space T"M.

Additional structures on T"M: canonical 1 — form « and the symplectic form do

Example: Let X be a 1-d linear SPacCe (itis of course ~ R, but with the ambiguity of choosing a fixed vector)

Let e be a basis of X and e* the basis of X* dual to e, i.e. <e*,e>=1.

q coordinate in X with respect to e
P coordinate in X* with respect to e*
(p,q) coordinates in X* xX

pqg is independent of the choice of e (by the very construction)

a=p dq 1-form on X*x X -itis “canonical” (independent of the “arbitrary” choice of e)
da=w=dpAdg canonical 2-form on X*Xx X

Conclusion: X* xX has a canonical volume element (unlike XxX)



The situation in T*M is very similar:

q=(q',...,q")

_0_ _0_
3q117"'78qn
dq-,...,dq"

(q17"'7qn7€17"'7€n)

1

(q 7°"7qn7p17°"7pn>

a = pdq'
w = da = dp; N\ dq*

coordinates in M

basis of T, M (at a given q)
basis of T;"M dual to the above basis of T, M
coordinates in T'M,

¢ being the coordinates in the basis 8‘31

coordinates in T™ M

p; being the coordinates in the basis dg*
canonical 1-form in 7™M

symplectic form on 1™ M

In particular we have a canonical volume form wA ... A w (n times) on T*M,
in addition to the anti-symmetric form w. (And the forms wAw, wAwAw, etc.)

Eventually we wish to work in function spaces, and the expressions in local coordinates will not really
be suitable, but it is important to understand the finite dimension first.



Nice structures on T*M, but the natural evolution quantity d/dt q(t)
(generalized velocity) undoubtedly belongs to TM.

We need a natural map between TM and T*M.
We have the Lagrangian L to provide it!

(¢,) eTM — (q,p) €T*M

oL
inversion (¢,p) € T*"M — (q,4q) € TM

Hamiltonian q" = OH

(Legendre trasnform ap’l,

of L (at a fixed q))

H(p,q) = inf (piv* — L(g,v)) = pi§* — L(gq,q)



Exercise: check this

The equations in p,q, H

q — —_ Our system now “lives” completely
8p7; in T*M, where we have the benefit
OH of the canonical geometric structures.
pi — In particular, the space of parameters
6(]@ which describe the state of our system,

has a canonical volume (and much more)

Another view: the form w =dp;, A dgi on X=T*M ~ {(p,q)}
provides an isomorhism J: T*(X) and T(X) by compare:

Riemannian metric: use the symmetric
form g; to identify T*M and TM;

< ﬁ f >—= w(f Jﬁ) raise and lower indices with g; or g
) y

(inverse of g;)

Symplectic form: use the anti-symmetric
. . . form w;; to indetify T*M and TM;
Letting X=(p,CI), we can write the equations raise and lower indices with w;; or W

(inverse of wl-j)

raise H;
d/dt x

OH/Ox, byl ~ w¥:
Wt H,

Riemannian geometry ~ g;,  symplectic geometry ~ w,; , T*M comes with a natural wij

1] 7



Transformations of X=T*M leaving the equations invariant — same as transformations leaving
the form w;; invariant - “canonical transformations”, or “symplectic transformations”

Every transformation q—q= Cb(CI) of the configuration space
w;; - preserving
A

extends to a canonical ( = symplectic) transformation of the phase space

(p,q) = (5,9 = (([Do(D)]")""p. 8(a) ) Do(@l*
In 1d one can see easily how this is volume-preserving: T ¢(q)
possible squeezing in q is compensated by stretching linearin p T* /\ ¢(q)
in p and vice versa q
q

On the other hand, there are many more symplectic transformation than this:

Example:

dimM=1

dim T*M = 2 .
volume-preservmg



Symmetries in the Hamiltonian picture

1. The Lagrangian picture (confinuration space, etc.) is invarian
under the change of coordinates in the configuration space.

(Example: polar or cartesian coordinates give equivalent equations)

2. The Hamiltonian picture is invariant under transformations
of the phase space which preserve the symplectic form:

(8,q) = (p(p,q),d(p,q))

“canonical transformation”
also called symplectic trans.

dp; N dg*t = dp; N dq"

~

H(p,q) = H(p,q)

(p(t), g(t)) solve for Hamiltonian H = (p(t), §(t)) solve for Hamiltonian H.



x=(p,q) , X=T*M, w=dpAAdq , J: T*X— TXinduced by w

Infinitesimal symplectic tranformations:
vector field &(x) on X such whose flux is a 1 parameter family of symplectic
transformations

Alternatively: x — x + €£(x) is symplectic modulo O(e ?), or
¢ - w=0 (Lie derivative of w in the direction &)

For any smooth f on X, £(x) = J df is an infinitesimal symplectic transformation
it is just the vector field generating the evolution by the hamiltonian f

Vice-versa, for any infinitesimal symplectic transformation &, there
locally exists a function f such that J df = ¢

“generating functions”
generalize the usual
/ stream functions in 2d
infinitesimal symplectic transformations 7 functions
ocally

J1
Proof: We must check that d J! £ =0. We can either do it 7 :

by direct calculation, or use Cartan’s formula ¢ - w = tedw + d(iew)

=0 by assumptions
(w is infinitesima sympl. tr.)

=0 for the
sympl. form



Example: ¢ vector field on M

Extend {to T*M:  (p,q) = (p - € (D&(a)) p, g + € &(a))

This vector field is generated by f(p,q) = p; £(q),
the quantity from Noether’s theorem:

J df = the extension of £ to T*M

Noether’s theorem:
Assumption: the Hamiltonian H is invariant under (the extension of) &

which is the same as: H is invariant under the flow generated by f=p, £
Conclusion: fisinvariant under the flow generated by H

Proof: (JdH)°f:Hpifqi _Hq@-fpi =—(Jdf)-H

Or: (w); (anti-sym form on vectors) is non-singular and it also
gives (w)¥ = [(w);] *, anti-sym. form on co-vectors.



Definition: f,g smooth functions on T*M

{f7 9} = fpigqi — 9p; fqi is called the Poisson bracket

Can be defined on any symplectic manifold by {f,g}= () df) g = w" f; g,

If H is a Hamiltonian, the evolution of any quantity f is

df/dt = {H,f} (Taking f=p,, or g', we get the canonical equations)

Noether’s theorem is now clear:
{H,f}=0 means that f is a conserved quantity, but it also means (equivalently)
that H is invariant under the infinitesimal transformations generated by f



Properties of the Poisson bracket

{f,9t=—19, 1}
{fga h} — f{g, h} + g{f, h} (it is a derivative)

{f,{g,h}} +{g,{h, f}} +{h,{f,g}} =0 (Jacobi identity)

Corollary: His a Hamiltonian, f,g are conserved = {f,g} is also conserved:

Proof: {H,{f,g}}={{H,f},g}+{f,{H,g}} =0



The Lie bracket and the Poisson bracket

¢, nvector fields on any manifold
we can differentiate functions in those direction: f —> ¢ - f = D, f (often also denoted by L F)

The Lie bracket [&,m] of &, n is avector field given by

Remark: [&,1]=0
§ ’ (77 - f) - n- (§ -f) = [§;77]' f iff the flows given by
& and n commute
In coordinates U Tt o Jet
[f, 77] € 77’3 { é’j the corrections are
of course important

Relation between the Lie bracket and the Poisson bracket for symplectic geometry,
Lie alg. representations,

etc., see e.g. the book

Jdf , Jdg| = J{f,g} of A.A. Kirillov

Conceptually, and modulo some corrections which will not be important for us here

infinitesimal symplectic . .
. . ~Y functions, Poisson bracket
transformations, Lie bracket T

|

symmetries conserved quantities



X=T*M, Hamiltonian H, group G of symmetries (i.e. leaving invariant H and w)

use G to simplify the system on X: project X — Y=G \ X, follow trajectories in Y

™~

“manifold of G-orbits” (not quite
a smooth manifold, but often close)

J

C>(G \X) smooth functions invariant under G e.g. smooth near
g-f=1f ge G, where g- f(x)=f(g?- x) most points

instead working with Y, work with

{gf, g f,}=g{f.F)} (because G preserves w)

I

The algebra C>(G \X) is closed under the Poisson bracket

We have the Poisson bracket on C*(Y) inherited from X .

no in general

(for example,
Does the Poisson bracket on Y come from a symplectic form, dim Y can be odd),
i.e. does Y also inherit the symplectic structure? but the “correction”

is in fact beneficiall



Example: motion in a central field (~ radial potential) in R3

X=T*M = R3x R3, coordinates (p,q), H=|p|%/2m + V(|q|)
G=SO(3), g-(p,a)=(g-p, g q)

(infinitesimal rotations about the q; axis

/ are generated by q,p,-q,p,
similar for the other axes)

Noether’s theorem: qAp is conserved

This is enough for integrating the equations, but it is instructive to look also at G \ X

The invariant functions C>(G\X) can be obtained as functions of

Yo = P-0, v.= % 1ql%, and  y,=% |p|?

Calculate the Poisson brackets {y;, y;}



Yo 0 2y; | -2y, This table also defines
the Lie algebra sl(2,R)

y1 '2y1 0 'yo

Y> 2y, Yo 0

For general functions f, g of y,, y.,Y, {f,g} =18 Vi {y.y;}

Equations fory,, y,, y, are

d/dt y;={H, y;}



The “manifold” Y with the coordinates y; and the bracket { f, g }
cannot be a symplectic manifold - dimY = 3.

A special functionCon Y :

C(y0ry11y2) = 4dy1¥, Yo 2
satisfies { C, f }=0 for each f  (check that{C,y;} = 0, j=0,1,2)

The evolution by any Hamiltonian always preserves C

So the evolution d/dt y; ={H, y;} takes place on C=const.,
and we are dealing with a system with 1 degree of freedom.

The solutions curves are given by C=const. and H=const.,
time-dependence is calculated by integrating along the curves.



C=c,H=¢c,

S surfaces C = const.
S «
each of them is a symplectic
manifold of dimension 2

Solution of d/dt y; = {H, y;} moving along C=const. H=const.

In general, the structure of the manifolds Y= G \ X is similar:
Y is foliated into “symplectic leaves”, the leaves “do not interact”.

In general, Y is not a manifold, the foliation can have singularities, etc.

The conservation law C=const. looks first unexpected:
naively we expect to reduce the dimension of the system by the dimension
of the group G, but the symplectic structure gives often more!



Example: general ODE system with a 1d symmetry group G on a Manifold X

& = f(x)

symmetry flg-x)=g- f(x)

the reduced systemisonY=G \ X, dimY=dimX-dimG

Symplectic situation: we still have the same reduction as in the general case.

In addition: the equations on Y are again dy,/dt = {H, y.}
and (given dim G=1), we have an additional reduction: . o
. o ) Typically Cis given by
There is at least one Casimir function C <" thefunction generating
and the evolution in Y takes place on C=const. the conservation law



Example: we can see without calculation that a rigid body rotating about
a given point in the absence of external forces should be integrable:

Configuration space: M= S0(3)

Phase space: X=T*M
Symmetry groups: G=SO(3) (acting on M by left multiplication)
Reduced space: Y=G\ X,dimY =3 (it turns out Y=so(3) ~ R3)

But symplectic leaves must have even dimension,
so there should be at least one Casimir function

l

2d symplectic leaves =- integrable



