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Flow around a sphere

density p

Problem: Calculate the drag force F (“resistance of the medium”)

History:
1687 Newton F~c pRzU2 (Principia, Cor. 1 of Thm. 30, Book 2)
1752 d’Alembert F=0 in ideal fluids

1851 Stokes F=6mprRU for low velocities



Mathematical Model

unit normal n

— . u(x,t) velocity field
p(x,t)  pressure
— 0 density (assumed to be constant)

.

Q = R3\ ball domain of the flow

PDE for u and p, formula for F (Navier, Stokes, 1845-1851, for v =0 Euler, 1757)

u+ uVu+ Vp/g - vAu=0 } in  Qx(t, 1)

divu=0

0 attheboundaryof Q (un=0when v=0)
=U atoo

F=/[;0 [pn-on] dS, with g;;=0V (u;+Uu;;)  (force at a given time)



Attempt #1:

water: r=10°, air: v=107 (in SI units)

Let’s just take r =0 and the Euler boundary condition un=0
(rather than a very small >0 and the natural Navier-Stokes boundary condition u=0)

We can find an explicit solution!

u=Vh with h = Ux (1+R3/2|x|3)

\plane of symmetry

the drag force F=0 |
“d’Alembert’s paradox”; can be derived for general shape, _/\
mathematically there is no mistake, the source of the paradox 5 —

is in the assumption =0 ’\—/_



Stokes’ Calculation (1851)

Calculate  dF/dU at U=0 by solving the equation linearized about the trivial
solution u=0

in Q

vAu+Vp=0
divu =0

at the boundary of the ball

u=0
u=U at oo

EXp|iCit solution, invariant w. resp. to rotations about the X, axis , in polar coordinates
u,= U cos 6 [1-3R/2r+R3/ 2r3]
u,=-U sin 0 [1-3R/4r-R3/ 4r3]

gives F=6mov RU for infinitesimal U



Attempt #2:

Continue Stoke’s solution

numerically to the non-linear —> 5
regime (larger velocities),

assuming the same symmetries:

u=u(x), rotational symmetry about the x_1 axis v Au+uVu+V p=0
divu=0
u=0 at 0Q2
’/\ u=U at oo
Good results for small U )
correct prediction of O

drag force F V

Unrealistic flows for larger U, o
(re-circulation region too large)
drag force F too low \j




(b1 K=179. | R= 738

id) R= 268 thy R=133



What’s wrong this time?

In the real world the unrealistic solutions we calculated are unstable.
They are stable in the computer, because of the extra symmetry assumptions
we imposed (u=u(x), u symmetric under rotations about x_1 axis).

The symmetry assumptions restrict the degrees of freedom which real solutions
can explore.

Solution:

e calculate the time-dependent equation

e do not impose the rotational symmetry

* make sure that the algorithm does not artificially impose extra symmetries
e possibly introduce small perturbations which break the symmetries

(There are non-trivial Numerical Analysis issues, some of them already present in the previous
calculation, which could be a subject of a separate lecture...)



Attempt #3:
Full time-dependent equation

1 b2
instanteneous drag force is F(t), resulting drag force is F = ﬁ / F(t) dt
2 — U1 Jyy

At first everything looks very good, but another issue appears:

Fine-scale structures
which put huge demands

Q J‘\;J\VTJ/_ on the computing power
 —

the computer is soon overwhelmed

Exa mples . (assuming the best available computers today) Example of a real flow WhICh. 'S
beyond present-day computing

tennis ball: cannot get beyond 5 to 10 m/s (not relevant for the game) power
automobile: cannot do much better than 0.1 m/s

We also find out that doubling the speed needs about 8 to 10-fold increase in
the computing power (once the oscillatory regime is reached).



“Non-dimensionalization” (reducing F=F(p, v, R,U) to a function of one variable)

* select the unit of length so that R=1 Siizzi:%ygy
* select the unit of time so that U=1 N

select unit of mass so that p=1
the one remaining given variable v has
changed to v '=v/RU.

U

Reynolds number: Re=RU/v =1/v‘ (the main parameter of the flow)

(the equation becomes u, + uV u+ Vp—-1/Re Au=0) densit “normalized flow”
ensity =1
viscosity v
* the output variable F has changed to f=f(Re) —> R=1
u=1

* back to the original units:

F = oR2U%f(Re) = % cp(Re) o R? U2 (conventional normalization)

the drag coefficient



Experimental curves c, =c,(Re) (Newton’s formula equivalent to c, = const.)
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Reynolds number (Re) Drag crisis:

Limit for
stable steady
state solutions

how much further

we would get by

a 1000-fold increase
of computing power

time independent sol

not only ¢, but the drag
force itself drops as U
is increased

It seems to be unknown if this

also happens in 2d flows (since

it is hard experimentally to keep

to flows two dimensional for

large Re). The conclusion from

what is known numerically is unclear.



Change of the flow geometry accompanying the drag crisis



Challenges for PDE theory:

e Are the turbulent flows still described by the Navier-Stokes equations?
In particular, do the Navier-Stoked equations have (smooth) solutions
which would correspond to the experimental flows?

* If we were able to calculate/solve the Navier-Stokes solutions would
we observe some of the remarkable experimental effects, such as

a) The fact that for large Reynolds numbers the drag force is quite
independent of the viscosity. (From the PDE point of view, the

viscosity term v Au is the dominant term in the equations!) Out of reach

of rigorous

b) The drag crisis and its sensitivity to the roughness of the boundary [ ?;‘rz'eyj::é‘”

future?

e Understanding the nature of the turbulent oscillations so that they
could be treated “statistically”, without calculating all the microscopic
details

Remark: An extra puzzle — significant drag reduction by minute amounts of polymer additives

—_—



The heuristics of the vindependence (L. F. Richardson, 1920s)

cartoon picture (in reality it is important that the flow is 3D)

larger whirls smaller whirls

Ia?rger. @ @ extinction
viscosity ‘ ‘ due to viscosity
@ @ at some length scale

@ tinction
\S/:Ts]c?cl)lsei':y ﬂ@ @~8 M Zﬁe to viscosity

at smaller
length scale
The net macroscopic effect remains (approximately) the same



Picture to be shown during the lecture

Real situation illustrating the previous cartoon picture




This “Richardson effect” is what makes it possible to do practical calculation

of flows which cannot be resolved by DNS (and also explains why scale models work
better than one would expect based on comparison of Reynolds numbers)

viscosity v . _ . . _
We are not interested in the microscopic details
— w/]//of the velocity field u(x,t) , we are only interested
A/\&\/ in the macroscopic quantity F

Cartoon picture:

Do the calculation with v=p(x) where in some (well chosen) areas 1/(x)
is much larger than the original viscosity. This terminates the cascade sooner
- we save many degrees of freedom. At the same time we will find that for
F = Flv(x)]
O0F/dv(x) ~ 0 in some large regions



Manipulating v(x) is only one of many ways to regularize the flow.

Other possibilities include:

e Regularizing u in uVu by a “high frequency filter” (“LES”)

* Add terms modeling fine-scale structures (“Reynolds stress”)

* Assess the importance of various degrees of freedom by
“sensitivity tests” (analogues of dF/dv(x) )

* many other ideas...

All this is a huge research area by itself, with obvious practical
consequences for engineering and weather prediction.

Remarkable successes, but many problems remain. A typical

example: try to “catch” the drag crisis:
/ calculated curve

\ . By the time we have reached
h have discarded
s O|ere, we rpfy jve |5E§rh e
real curve egrees of freedom whic

region where V‘{e. suddenly become important
do parameter fitting



Examples of flows where we cannot directly solve the Navier-Stokes equations and must
instead solve some modified model equations.

Pictures to be shown during the lecture




Challenges for PDE theory:

Are the turbulent flows described by smooth density 1
solutions of Navier-Stokes? What if the smooth viscosity v = 1/Re
solutions cease to exist as the viscosity gets -
very small and we get into the highly oscillatory u=1
regimes?

u+tuVu+Vp- rAu=0
Possible scenario: the smooth solutions exist only if divu=0
the Reynolds number stays below some critical value.

u ... solutions for a given v=1/Re (\

imagine a critical v, > 0 such that u™ “break down” as v — 1,

various possibilities:

frequencies increase beyond any limit “bursts” with maximal
velocities increasing beyond
any limit



Regu |a r‘ity Cr'ite r‘ia (Leray, Ladyzhenskaya, Prodi, Serrin, Scheffer, Caffarelli-Kohn-Nirenberg,
Struwe, Constantin-Fefferman, Seregin - V.S., and many others; )

(non-technical description)

The only possibility for the breakdown of the smooth solutions is through
the bursts of high velocity (growing beyond any limits). Moreover, the bursts
must have certain minimal dimensions.

Dimensions of the bursts

|ul qe—— velocity U, .,

~—— minimalwidth L ~ v/U__

minimal duration T~ v /U,__ 2

Kinetic energy in the burst ~pL3U, 2% ~ o 13/U_., —no contradiction!

However, a (much more sophisticated) version of this calculation can be used
to show that the singularity set must be mall (CKN).



Typical data from numerical calculations and experiments:

distance from the averages —
no extreme bursts

/14{] (\Hﬂ )’\/\ The quantities do oscillate,
, w Uﬂ U but seem to stay within reasonable

Can we be sure that bursts with exceedingly large velocities do not
exists, or do the measurements / numerics just miss them because
the volumes involved are too small?

It is likely the former, but we do not really know with 100% certainty.



Consider complex-valued functions u: R® x (t1,t5) — C and the equation
iug 4 (1 —ie)Au+ |uf*u =0
with initial condition u(z,0) = ug.
This equations shares with Navier-Stokes
o the energy estimate [, [u(z,t2)|* drte fttf Jrs 2|Vul? de dt = [ [u(z, t1)|* de

e the scaling symmetry u(z,t) — Au(Az, \°t) (so that the Reynolds number
considerations are the same).

e regularity criteria analogous to Navier-Stokes: possible breakdown of so-
lutions can happen only through “bursts” of u with the same estimates
for the dimension for the bursts.

Solutions of this equation can blow-up in finite time (from smooth initial data),

with self-similar bursts of the same dimensions as the estimates for Navier-
Stokes. (P. Plechac, V. S.)



The regularity problem is somewhat related to the following issue:

daily temperatures in Minneapolis in 2008

40

oC

time

What keeps the temperatures quite firmly between -40 and 40 °C?

Energy conservation by itself would be insufficient, there must
be other mechanisms.

Do we have similar mechanisms for Navier-Stokes solutions, so that
the energy is kept “dispersed” and the high velocity bursts do not happen?



Navier-Stokes in a bounded domain
with zero boundary condition:

with u=0 at oo

In the absence of forcing terms the solution
must decay to zero as t—00, just based on
energy conservation. Steady state solutions
must be trivial.

Can the solution sustain itself by drawing energy

Replace Q by all space  from oo and transporting it to sustain itself

(despite the dissipation)?
The total energy may not be finite, but the equation
may put constraints on how it can be transported.

Relevance to possible singularities:

watch the singularity by a microscope in slow motion.
At the microscopic scale, events at a finite distance
from the singularity are effectively at oco.



Ancient solutions and Liouville theorems

Classical Liouville Theorem:
Au=0inR" and u is bounded, then u is constant

Parabolic version:
u,- Au=0inR" X (-00, 0) and u is bounded, then u is constant.

Conjectured steady-state Navier-Stokes version:
uVu+Vp- rvAu=0,divu=0inR3and uis bounded, then u is constant.

Conjectured time-dependent Navier-Stokes version:
u+uVu+Vp- vAu=0,divu=0in R x (-00, 0) and u,p are bounded,
then u,p are constant.

Status of the conjectures:

true in 2 dimensions, open in 3d, except for some partial results for 3d
axi-symmetric flows (Koch, Nadirashvili, Seregin, V.S.), and the case

of Leray’s self-similar singularities (Necas-Ruzicka-V.S., Tsai).

Another related topic: behavior of solutions with u, € L (Y. Giga); do they stay bounded?



Both the regularity of solutions, and the validity of the Liouville conjecture
would require extra properties of the equation beyond energy conservation
and the usual consequences of diffusion.

Where can the extra properties come from?

One possibility: hidden monotone quantities, maximum principles, etc.

Simple classical example: axisymmetric flows without swirl

u+uVu+Vp- rAu=0, divu=0, u(Rxt)=Ru(x,t) for reflections R about planes
containing the x, axis

Hidden monotone quantity (cylindrical coord.):

o A
gives full regularity of solutions, except possibly at”and at

also gives the Liouville conjecture for this special case



A non-classical monotone quantity to rule out self-similar singularities
(Necas, Ruzicka, V.S.; Tsai)

Leray’s self-similar singularities

1 T
T 2R(T 1) Ul V2R(T — 1)

Monotone quantity ruling out these singularities:

u(x,t) ) -

[ul?
(T —1) (T +p+ Kzu) ,

a modification of the Bernouli quantity

uf?

2

+p.



Link between the regularity theory and the control theory  (Escauriaza-seregin-v.s.)

/
t find a “control” g
so that u(x,T)=0
t=T
A typical control .
theory problem
/ U-u, =0 u(b,t)=0
u(a,t)=g(t) e
X
a b

u(x,0)=uy(x)

given function

Classical result:
For each u_0 a suitable g can be found



A situation arising in NSE regularity theory (simplified picture)

t
\ goal : u(x,T)=0

t=T

/ controls
£ N T u(00,t)=0

u(a,t)=g(t) u, -u,+ a(xt)u, +b(xt)u =0

X=a u(x,0)=u,(x)

achieving u(x,T) =0 —— the solution can concentrate,
the non-linear effects can prevent

via some rescaling and . .
limiting procedures the expected diffusion of the energy

yretation: g(t), a(x,t), b(x,t) represent unknown effects of the non-linearity

Result (ESS): such controls never exists, unless u, =0
Implication for regularity: [ |u(x,t)|3 dx stays bounded == no singularity.

Remark: | |u(t)|| ;3 /v is dimensionless ....analogue of Reynolds number



The world of special solutions

So far we have talked about “general solutions” at relatively high
Reynolds number. But there is another world of “special solutions”,
which are not chaotic and resemble more the world of celestial
mechanics, rather then the fluctuating ensembles of statistical
mechanics. The study of such solutions goes back to

the classics of the 19t century (Kelvin, Poincare, ...)



Movie to be shown during the lecture




Euler’s equation and geometry

ut+uVu+Vp=0 Particles which interact through
divu=0 the incompressibility constraint
Compare with free particles n Burger’s equation
u+uVu=0 - it is much better
understood than
- Euler/Navier-Stokes;
or free particles with (not very physical) friction v>0 — no singularities,

due to not-so-hidden
max principles,
— v=0— well understood

/ singularities

——>

o A constraint system — details of the motion

Free particles — easy to understand can be counter-intuitive and difficult to
predict without calculation - think of gyroscopes

u+t+uVu-vAu=0



Euler’s equations is completely geometric — it describes geodesics
on the non-linear manifold of volume preserving diffeomorphisms
(V.I.Arnold). It has no “free parameters” - the whole structure is
canonical and quite “rigid” — it is hard to deform it meaningfully.

It is an (infinite-dimensional and complicated)
Hamiltonian system which can be roughly
described as an infinite dimensional spinning top.
(Spinning tops have only 3 degrees of freedom,
but are already complicated enough!)



boundary of the
“manifold of solutions”

Examples of a few limiting regimes of Navier-Stokes / Euler \/

(there are many more)
1d non-linear Schroedinger
equation (Hasimoto)

iwt + wxx - ‘¢’2¢ =0

Thin vortex filaments

(dolphin movie) 1d water wave equations:
/ Benjamin-Ono equation, KdV, ...
Euler solutions /7 Ut + utly + Hugy =0
— \ Ut + Uy — Ugge = 0
Navier-Stokes
luti 2d Euler solutions — > Finite-dim Hamiltonian systems
solutions (point vortices),
\ Statististical Mechanics with
negative temperatures (Onsager)
Steady 3d OH OH
solutions G =——, D= ——
N\ Opi g
behaviour at oo, Conformal geometry of
regularity of very ——>  the sphere S?, via Landau
weak solutions solutions (V.S.)

—Ap 42 =2e¥



Classical Mechanics

(planets, spinning tops...):
relatively few degrees of freedom,
follow all of them, use geometry...

extremely many degrees of freedoms,
“average out” all but a few, use conservation
laws to deal with those which remain

Fluid Mechanics:

too many degrees of freedom to follow, but not enough
“disorder” for the known averaging methods to work reliably.

Future Solutions:

fusion of Geometry + Statistical Physics + PDE theory + Numerical Analysis
+ Computer Science + “brute force”

.

A lesson from computer chess:
do not underestimate brute force!



