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What is filtering (data assimilation)?

A predictor-corrector method that includes observations (via
Bayesian update) to improve the real time prediction.
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Difficulties in Real Time Filtering and Prediction of
Turbulent Signals from Partial Observations

1. For turbulent signals from nature with many scales, even with
mesh refinement the model has inaccuracies from
parametrization, under-resolution, etc. How to overcome
them? Can judicious model error help filtering?

2. Computational efficiency: how big of ensemble is needed in
representing the uncertainty of billions of variables?

3. The most accurate ensemble filters is not immune from
“catastrophic filter divergence” (beyond machine infinity).
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Goal: Provide math guidelines and new numerical strategies thru
modern applied math paradigm

Numerical Analysis

Classical Von-Neumann
stability analysis for 

frozen coef!cient linear systems

Modelling Turbulent Signals

Stochastic Langevin Models

Complex Nonlinear
Dynamical Systems

Filtering

Extended Kalman Filter

Classical Criteria:
Observability
Controllability
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Filtering Linear Problem
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How to deal with Sparse Regularly Spaced Observations ?

ALIASING !!
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Example: 123 grid pts (61 modes) but only 41 observations (20
modes) available

sparse observations for P=3

Physical Space

Fourier Space

0 20-20 61-61

aliasing set !(1) = {1,-40,42} for P=3 and M=20

0 20-20 61-61

aliasing set !(11) = {11,-30,52} for P=3 and M=20
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Example: Stochastically forced advection-diffusion equation

∂u(x , t)

∂t
= − ∂

∂x
u(x , t)−µ

∂2

∂x2
u(x , t)+F̄ (x , t)+σ(x)Ẇ (t), 0 ≤ x ≤ 2π

I Fourier Domain Kalman Filter (FDKF)

dûk(t) = [(−µk2 − ik)ûk(t) + F̂k(t)]dt + σkdWk(t),

FDKF : v`(t) =
∑

ki∈A(`)

uki
(t) + ηo

` (t),

I Reduced Fourier Domain Kalman Filter (RFDKF)

RFDKF : v`(t) = u`(t) + ηo
` (t),

where ηo
` (t) ∼ N (0, ro/2M + 1), |k| ≤ N, |`| ≤ M.

I Strongly Damped Approximate Filter (SDAF, VSDAF):
Observation is modeled as in FDKF but we implement it with
dynamic-less unresolved modes.

e−µk2
1∆t = O(1),

e−µk2
i ∆t = O(ε)� 1, 2 ≤ i ≤ P.
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Skill of cheaper approximate filters with model error depends on
observation time at given wave number and how rough spectrum is
for truth signal.
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ETKF Filter Divergence (K = 150, r = 40%), observability is
violated
Extreme event, ∆t2 = 0.1,Ek = k−5/3
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SDAF high skill (observability is satisfied) Spontaneous
development of extreme event for ∆t2 = 0.1 and Ek = k−5/3
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Stochastically 
forced linear PDE

Uncoupled 
Langevin eqn

FT

Nonlinear Chaotic 
Dynamical 

Systems

Coupled nonlinear 
ODE through 

nonlinear terms

FT

Replace the Nonlinear terms
with an Ornstein-Uhlenbeck 

process

Radical Filtering Strategy for Nonlinear System
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Filtering turbulent nonlinear dynamical systems

L-96 model (Lorenz 1996), 40 modes.
(absorbing ball property)

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F , j = 0, . . . , J − 1

Energy Rescaled Variables:
F=6 weakly chaotic
F=8 strongly chaotic
F=16 fully turbulent
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Climatological Variance and Correlation time

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9
x 10!3 Variance Spectrum

Va
ria

nc
e

Wave Numbers
 

 
F=0
F=5
F=6
F=8
F=16

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40
Correlation times

Co
rre

la
tio

n 
tim

e

Wave Numbers
 

 
F=0
F=5
F=6
F=8
F=16

Climatological Stochastic Model (CSM): fit the damping
coefficient and stochastic noise strength to these climatological
statistical quantities.
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Regularly spaced sparse observations: weakly chaotic regime
F = 6,P = 2, ro = 1.96,∆t = 0.234
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Regularly spaced sparse observations: weakly chaotic regime
F = 6,P = 2, ro = 1.96,∆t = 0.234 hrs

Table: This is a regime where EAKF true is superior.

scheme RMS corr.

EAKF true 0.82 0.95
EAKF CSM 2.20 0.64
ETKF true ∞ -
ETKF CSM 2.50 0.55
FDKF CSM 2.07 0.69
RFDKF CSM 2.39 0.60

No Filter 2.8 -
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Regularly spaced sparse observations: fully turbulent regime
F = 16,P = 2, ro = 0.81,∆t = 0.078 hrs
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Regularly spaced sparse observations: fully turbulent regime
F = 16,P = 2, ro = 0.81,∆t = 0.078 hrs

Table: This is a regime where FDKF is superior.

Scheme RMS corr.

EAKF true ∞ -
EAKF CSM 5.15 0.61
ETKF true ∞ -
ETKF CSM 5.80 0.54
FDKF CSM 4.80 0.66
No Filter 6.3 -
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Summary:

I For M < N sparse regular observations, FDKF reduces
(2N+1)-dim filtering problem to M decoupled P-dim filtering
problems with a single scalar observation.

I The “poor-man’s” CSM model degrades the filtering skill in
the weakly chaotic regime but suggests encouraging results in
the strongly chaotic and fully turbulent regimes.

I Practically, our radical strategy is independent of tunable
parameters and ensemble size.

I Catastrophic filter divergence in a chaotic DS with absorbing
ball property needs further mathematical theory.
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