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Sampling

The problem: We observe only a sample, but are
interested in characteristics of the wider population or
distribution.

Population of units: 1, 2, . . . , N

Variables of interest : y1, y2, . . . , yN

Sample : s, a subset or sequence of units from the
population.
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Sampling in networks

Population of units or nodes: 1, 2, . . . , N

Node variables of interest : y1, y2, . . . , yN

Link-indicators or weights: wij , i, j = 1, . . . , N

(Variables of interest associated with pairs of nodes)

Sample : A subset or sequence s of units and pairs of units

from the population: s = (s(1), s(2))
y is observed in s(1).
w is observed in s(2).
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Types of sampling designs

The procedure by which we select the sample.

Conventional design : p(s)
Procedure for selecting the sample does not depend on
values of variables of interest observed during the survey.

Adaptive design : p(s | y)
Procedure for selecting sample can depend on values of
variables of interest.

(Design can also depend on auxiliary variables x.)
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Approaches to inference from samples

Design based approach:
The values of the variables of interest in the population are
fixed, unknown constants.

y = (y1, . . . , yN )

w = {wij}, i, j ∈ {1, . . . , N}

Probability enters only through the design

Model based approach:
The population values are random variables, which we try
to model.

Y1, . . . , YN , W11, . . . ,WNN have some joint probability
distribution, described by a stochastic graph model
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Optimal sampling strategies

Find the design p(s |y) and estimator Ẑ of population
quantity Z to minimize the mean square error

E(Ẑ − Z)2

subject to unbiasedness, E(Ẑ) = E(Z)

The optimal strategy is in most cases an adaptive one.
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Reasoning:

1. Stop part way through the survey and look at what has
been observed so far:

initial sample and values (s1, ys1
)

2. Choose the rest of the sample s2 to minimize the mean
square error of the estimate given what has been observed
so far.

min E
[

(Ẑ − Z)2 | s1,ys1

]

(Zacks 1969, Thompson and Seber 1996, Chao and Thompson 2000)
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Sufficiency, completeness, Rao-Blackwell

sampling data = (s, ys)

sufficient statistic = set of distinct units, associated y
values

Rao-Blackwell estimate = E[simple estimator | sufficient
statistic]

Minimal sufficient statistic is not complete so more than
one possible estimator.
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Likelihood function

Prob(data | parameters) = P(s,ys | θ)

L(θ; s,ys) =

∫

p(s |y; θ)f(y; θ)dys̄

=

∫

(design)(model)d(unobserved)

Wrong answer without design!
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“Ignorable” design

If the design depends only on values that are observed and
recorded in the data, then the design disappears from
likelihood-based estimates.

L(θ; s,ys) = p(s |ys; θ1)

∫

f(y; θ2)dys̄

(Caveat: May need to implement a probability design to
make the design ignorable!)
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Design-induced distribution

Implement a probability design p(s) to select sample s.

Look at the distribution of any sample statistic induced by
the design.

Avoids assumptions about population
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Modeling approach

assume statistical model f(y;theta) for population values

can help with design and inference

Works best when good design is implemented!
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Surveys of fish and shellfish
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Trawl survey, Kodiak Island

L. Watson
Sampling in Statistics and Research – p. 15/74



Migratory waterfowl survey

J.I. Hodges
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Studies of hidden populations

HIV/AIDS at-risk study

M. Miller
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Example network population

 

population graph
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Random sample

 

sample

Sampling in Statistics and Research – p. 19/74



Snowball sample

 

sample
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Snowball sample

 

sample
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One-wave snowball selection probabilities
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One−wave selection probabilities
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The population again

 

population graph
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk
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Random walk sample

walk

Sampling in Statistics and Research – p. 23/74



Random walk sample

walk
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Random walk limit selection probabilities

 

Limit random walk probabilities
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Random walk as Markov chain

Wk is the node of the graph selected at kth wave.
aij = 1 indicates a link from node i to node j.

{W0,W1,W2, . . . } is a Markov chain with
P (Wk+1 = j |Wk = i) = aij/ai·

Q is the transition matrix of the chain,
qij = P (Wk+1 = j |Wk = i).

The stationary probabilities (π1, . . . , πN ) satisfy πj =
∑

πiqij

for j = 1, . . . , N .
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Approach using limiting distribution of random walk

For random walk design with-replacement in a
single-component network and if the links are symmetric ,

then the limiting selection probability is proportional to the
person’s degree (di)

Generalized ratio estimator of mean for behavioral
characteristic y:

µ̂ =

∑

s yi/di
∑

s 1/di
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4. Targeted random walk designs

1. Uniform random walk

2. More general targetting

Sampling in Statistics and Research – p. 27/74



Targeted walk designs

Let πi(y) denote the desired stationary selection probability
for the ith node as a function of its value or degree.

The transition probabilities for the targeted walk are

Pij = qijαij for i 6= j

Pii = 1 −
∑

j 6=i

Pij

where

αij = min

{

πjqji

πiqij
, 1

}
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Adaptive web sampling

At any point in the sampling,

• the next unit or set of units is selected from a distribution
that depends on the values of variables of interest in an
active set of units already selected. (follow a link )
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Adaptive web sampling

At any point in the sampling,

• the next unit or set of units is selected from a distribution
that depends on the values of variables of interest in an
active set of units already selected. (follow a link )

• With some probability, however, the selection may be
made from a distribution not dependent on those
values. (random jump )
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Population graph

 

population graph
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Adaptive web design

weighted links
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Adaptive web design

weighted links

Sampling in Statistics and Research – p. 31/74



Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Inference

Estimation of a population characteristic such as a
population mean, degree distribution, or other quantity,
based on the sample data.

• Design-based
simple preliminary estimator
improve with Rao-Blackwell or resampling
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Inference

Estimation of a population characteristic such as a
population mean, degree distribution, or other quantity,
based on the sample data.

• Design-based
simple preliminary estimator
improve with Rao-Blackwell or resampling

• Model-based
assume stochastic graph model
produce realizations from predictive posterior
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Design-unbiased estimators

• Start with some preliminary unbiased estimator µ̂0, such
as the initial sample mean , an unequal probability
estimator , or conditional probability estimator
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Design-unbiased estimators

• Start with some preliminary unbiased estimator µ̂0, such
as the initial sample mean , an unequal probability
estimator , or conditional probability estimator

• Improve it using the Rao-Blackwell method:

µ̂ = E(µ̂0|d) =
∑

paths

µ̂0(s)p(s | d)
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Design-unbiased estimators

• Start with some preliminary unbiased estimator µ̂0, such
as the initial sample mean , an unequal probability
estimator , or conditional probability estimator

• Improve it using the Rao-Blackwell method:

µ̂ = E(µ̂0|d) =
∑

paths

µ̂0(s)p(s | d)

d is the minimal sufficient statistic
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Model based inference

Bayes approach: The object is to produce realizations
(ys,ys̄,ws,ws̄) of the entire graph from its posterior
distribution given the sample data.

1. Using current values of θ and β, select a realization of
(ys̄,ws̄) from P (ys̄,ws̄ | d).

2. Using the values (ys̄,ws̄) obtained in step (1) to
augment the data values (ys,ws), select new parameter
values (θ, β) from the posterior distribution of the
parameters given the whole graph realization
π(θ0, β0, β1, β2 |ys,ys̄,ws,ws̄)

Repeat.

Sampling in Statistics and Research – p. 34/74



Design and estimation comparisons

 

population graph
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Random walk n=20, initial pp-degree
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5 random walks, n=4 each, pp-deg starts

sample mean, random walk

rwmean
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random walk, n=20 , equal probability start

sample mean, random walk
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AWS, n0=1, n=20, random links, jump=.1

generalized ratio estimate 1
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AWS, n0=10, n=20, random links, jump=.1

generalized ratio estimate 1
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Design based estimators, AWS, n0=1

initial mean
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Design based estimators, AWS, n0=10
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Design and model based estimators, AWS n0=10, n=20

sample mean

ybar
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Designs and Estimators

grhh grht gre est1 est3 gre est1 est3 bayes

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

DESIGN

Random Walk
AWS n0=1, n=20
AWS n0=10, n=20
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Empirical Example

HIV/AIDS at-risk hidden population: Colorado Springs
Study on the heterosexual transmission of HIV/AIDS
(Potterat et al. 1993, Rothenberg et al. 1995, Darrow et al.
1999)
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Colorado springs study population

 

population graph
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Sample of 80 individuals

Initial n0 = 10, final n = 20, m = 4 independent selections.

samplesamplesamplesample
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Estimating idu use, random links design
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Estimating idu use, weighted links design
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Degree distribution, HIV/AIDS study
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Estimating mean degree

average degree in sample
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Design and Model based inferences

sample mean
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6. Network methods in spatial sampling

1. Relation of spatial and network sampling

2. Adaptive web sampling in a spatial setting
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Spatial adaptive web sampling

spatial population
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Network structure of spatial population

 

population graph
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Adaptive web sample

sample
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Adaptive web sample
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Adaptive web sample
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Adaptive web sample
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Adaptive web sample
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Adaptive web sample

sample
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The resulting spatial sample

spatial population
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Active set design variations

spatial population

 

population graph

active set sample active set sample
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Migratory waterfowl survey

J.I. Hodges
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Blue-winged teal population
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population graph
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Two samples, n=20. Top:n0 = 13. Bottom: n0 = 1.

sample

sample
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MSE of estimators depending onn0, with n = 20
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Rare, clustered population (Adaptive cluster sampling)

Sampling in Statistics and Research – p. 63/74



Random sample of 40 units
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Same population
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Initial sample of 20 units
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Adaptive cluster sample
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Adaptive cluster sample
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Adaptive cluster sample
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Adaptive cluster sample
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Changed population!
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Initial sample of 20 units
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Adaptive cluster sample
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Adaptive cluster sample
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Adaptive cluster sample
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Adaptive cluster sample
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Adaptive cluster sample
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7. Computational methods

1. Markov chain resampling in design-based estimation

2. Markov chain Monte Carlo in Bayes estimation

3. Computing and software
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Aside: On computing

R 9-10 times faster than commercial counterpart

C 20 times faster than R

For exploratory research, graphics needed at each iteration.
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Limits of computing

Exact Rao- Blackwell estimate with adaptive web sampling
involves selection and estimation computations for all
reorderings of the sample

Can do up to sample size 10

With a computer 1000 times faster I could handle a sample
size of 13.

Markov chain resampling a more practical answer.
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