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Sampling

-

fThe problem: We observe only a sample, but are
Interested in characteristics of the wider population or
distribution.

Population ofunits: 1,2,.... N
Variables of interest : y1,v2,...,ynN

Sample: S, a subset or sequence of units from the
population.
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Sampling in networks
fPopulation of units or nodes: 1,2,..., N T
Node variables of interest : y1,ys2,...,yn

Link-indicators or weights: w;;, ,7=1,...,N
(Variables of interest associated with pairs of nodes)

Sample: A subset or sequence S of units and pairs of units
from the population: S = (3(1), 5(2))

y is observed in stb),
w is observed in s(2).
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Types of sampling designs

fThe procedure by which we select the sample. T

Conventional design : p(s)
Procedure for selecting the sample does not depend on
values of variables of interest observed during the survey.

Adaptive design : p(s |y)
Procedure for selecting sample can depend on values of
variables of interest.
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Approaches to inference from samples

fDesign based approach: T
The values of the variables of interest in the population are

fixed, unknown constants.
y =(y1,.---,YN)

W = {UJZ]},Z,] S {177N}
Probabllity enters only through the design
Model based approach:

The population values are random variables, which we try

to model.
Yi,..., YN, Wi, ..., Wy have some joint probability

distribution, described by a stochastic graph model
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Optimal sampling strategies

-

Find the design p(s|y) and estimator Z of population
guantity Z to minimize the mean square error

E(Z — Z)?

A

subject to unbiasedness, F(Z) = E(Z)
The optimal strategy Is in most cases an adaptive one.
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Reasoning:

- N

1. Stop part way through the survey and look at what has

been observed so far:
Initial sample and values (s1, ys,)

2. Choose the rest of the sample sy to minimize the mean
square error of the estimate given what has been observed

so far.
min £ (Z o Z)2 ‘ 3173’81}

(Zacks 1969, Thompson and Seber 1996, Chao and Thompson 2000)
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Sufficiency, completeness, Rao-Blackwell

- N

sampling data = (s, ys)

sufficient statistic = set of distinct units, associated y
values

Rao-Blackwell estimate = E[simple estimator | sufficient
statistic]

Minimal sufficient statistic  Is not complete so more than
one possible estimator.
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Likelihood function

. N

Prob(data | parameters) = P(s,y | 0)

L(0;s,ys) = /p(S!y;G)f(y;G)dys

/ (design)(model)d(unobserved)

Wrong answer without design!
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“Ilgnorable” design

-

If the design depends only on values that are observed and
recorded In the data, then the design disappears from
likelihood-based estimates.

-

L#B:;s,ys) = pls|ys6n) / F(y:02)dys

(Caveat: May need to implement a probability design to
make the design ignorable!)
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Design-induced distribution
fImplement a probability design p(s) to select sample s. T

Look at the distribution of any sample statistic induced by
the design.

Avoids assumptions about population
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Modeling approach

-

assume statistical model f(y;theta) for population values

-

can help with design and inference
Works best when good design is implemented!
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Surveys of fish and shellfish




Trawl survey, Kodiak Island
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Migratory waterfowl survey

J.I. Hodges
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Studies of hidden populations

HIV/AIDS at-risk study

M. Miller
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Example network population

population graph
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Random sample




Snowball sample




Snowball sample

sample
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One-wave snowball selection probabillities

- N

One-wave selection probabilities
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The population again

population graph
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Random walk sample

walk




Random walk sample
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Random walk limit selection probabilities

-

Limit random walk probabilities
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Random walk as Markov chain

- N

Wy Is the node of the graph selected at kth wave.
a;; = 1 Indicates a link from node : to node ;.

{Wy, W1, W, ...} Is a Markov chain with
P(Wk_|_1 — ] | Wk — Z) — aij/ai.

Q Is the transition matrix of the chain,
Gij = PWip1 = 7| Wi =1).

The stationary probabilities (71, ..., my) satisfy m; = > mq;;
fory=1,...,N.
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Approach using limiting distribution of random walk

-

For random walk design with-replacement In a
single-component network and if the links are symmetric

-

then the limiting selection probabillity is proportional to the
person’s degree (d;)

Generalized ratio estimator of mean for behavioral
characteristic y:

~ Zsy‘t/dz
SISV
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4. Targeted random walk designs

-

1. Uniform random walk
2. More general targetting
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Targeted walk designs

- N

Let ;(y) denote the desired stationary selection probability
for the ith node as a function of its value or degree.

The transition probabilities for the targeted walk are

Pz'j = (04 fori £

Pi=1-) Py

J7i

where

. ) T445i
L (vj; = Min { — : 1} J
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Adaptive web sampling

-

e the next unit or set of units is selected from a distribution
that depends on the values of variables of interest in an
active set of units already selected. (follow a link )

A

t any point in the sampling,
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Adaptive web sampling

-

e the next unit or set of units is selected from a distribution
that depends on the values of variables of interest in an
active set of units already selected. (follow a link )

A

t any point in the sampling,

e With some probability, however, the selection may be
made from a distribution not dependent on those
values. (random jump )
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Population graph

population graph
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Adaptive web design

weighted links




Adaptive web design

weighted links




Adaptive web design
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Adaptive web design

weighted links




Adaptive web design
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Adaptive web design
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Adaptive web design

weighted links




Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Adaptive web design

weighted links
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Inference

-

Estimation of a population characteristic such as a
population mean, degree distribution, or other quantity,
based on the sample data.

-

e Design-based
simple preliminary estimator
Improve with Rao-Blackwell or resampling
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Inference

-

Estimation of a population characteristic such as a
population mean, degree distribution, or other quantity,
based on the sample data.

-

e Design-based
simple preliminary estimator
Improve with Rao-Blackwell or resampling

e Model-based
assume stochastic graph model
produce realizations from predictive posterior
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Design-unbiased estimators

- .

e Start with some preliminary unbiased estimator /i, Suc
as the initial sample mean , an unequal probability
estimator , or conditional probability estimator
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Design-unbiased estimators

- .

e Start with some preliminary unbiased estimator /i, Suc
as the initial sample mean , an unequal probability
estimator , or conditional probability estimator

e Improve it using the Rao-Blackwell method:
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Design-unbiased estimators

.

Start with some preliminary unbiased estimator /i, Suc
as the initial sample mean , an unequal probability
estimator , or conditional probability estimator

Improve it using the Rao-Blackwell method:

d 1S the minimal sufficient statistic
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Model based inference

-

fBayes approach: The object is to produce realizations
(vs,¥s, Ws, wg) Of the entire graph from its posterior
distribution given the sample data.

1. Using current values of 6 and 3, select a realization of
(y§7 W§) from P(y<§7 Wgs ‘ d)

2. Using the values (ys, ws) obtained in step (1) to
augment the data values (ys, ws), select new parameter
values (4, 3) from the posterior distribution of the
parameters given the whole graph realization

7T((907 507 617 52 ‘ Ys; Y5, Ws, W§)

Repeat.
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Design and estimation comparisons

population graph
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Random walk n=20, initial pp-degree
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5 random walks, n=4 each, pp-deg starts
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random walk, n=20 , equal probability start
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AWS, n0=1, n=20, random links, jump=.1

-
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AWS, n0=10, n=20, random links, jJump=.1
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Design based estimators, ANVS, n0=1
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Design based estimators, AWS, n0=10
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Design and model based estimators, AWS n0=10, n=20
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Empirical Example

- N

HIV/AIDS at-risk hidden population: Colorado Springs
Study on the heterosexual transmission of HIV/AIDS
(Potterat et al. 1993, Rothenberg et al. 1995, Darrow et al.

1999)
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Colorado springs study population

population graph
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Sample of 80 individuals

- N

Initial ny = 10, final n = 20, m = 4 independent selections.

sample
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Estimating idu use, weighted links design
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Density
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Design and Model based inferences
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6. Network methods in spatial sampling

- N

1. Relation of spatial and network sampling
2. Adaptive web sampling in a spatial setting
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Spatial adaptive web sampling

spatial population




Network structure of spatial population

- N

population graph
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Adaptive web sample




Adaptive web sample
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Adaptive web sample
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Adaptive web sample
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The resulting spatial sample

spatial population




Active set design variations
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Migratory waterfowl survey

J.I. Hodges
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Blue-winged teal population

spatial population
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Two samples, n=20. Topny = 13. Bottom: ny = 1.
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MSE of estimators depending om0, with n = 20
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Rare, clustered population (Adaptive cluster sampling)
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Random sample of 40 units




Same population
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Initial sample of 20 units




Adaptive cluster sample




Adaptive cluster sample
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Adaptive cluster sample
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Initial sample of 20 units
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/. Computational methods

- N

1. Markov chain resampling in design-based estimation
2. Markov chain Monte Carlo in Bayes estimation
3. Computing and software
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Aside: On computing

fR 9-10 times faster than commercial counterpart
C 20 times faster than R

For exploratory research, graphics needed at each iteration.

-
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Limits of computing

-

fExact Rao- Blackwell estimate with adaptive web sampling
Involves selection and estimation computations for all
reorderings of the sample

Can do up to sample size 10

With a computer 1000 times faster | could handle a sample
size of 13.

Markov chain resampling a more practical answer.
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