u: displacement
v = Oyu: particle velocity
o stress tensor
Inverse problem: least squares formulation
1. Data: d; s+
2. source: fs(x,t) = d(x — s)w(t), w: source wavelet (signature)
Def: J[c| = 1||dys¢ — us(r, t)||3, where u, comes from solving the corrsponding wave equaiton. Problem:

%agus - Aus = fsa

II(liI)l Jlc] st ug(x,0) = Oug(x,0) =0
propper boudary conditions

Write u = Fc|; Fle] = Fleo] + %[Co](CQ —c2) + .... Note, 5?5;) is an operator, Frechet derivative.
Assume know background wave speed cy(x). Want to call F[¢y] the incident wave, often assume ¢y is
smooth. This approach works well when ¢~ — ¢;? is oscillatory, (has zero mean, etc). Want to call

%[co] primary reflected waves; further terms would correspond to multiples. If these conditions are

not met, then further terms in the Taylor expansion are significant, otherwise not.
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zero initial conditions, propper boundary conditions.

— Uine(x, ) = //G(x, y; t7) fs(y, 7)dydr = G f

if Co = 1, Gla,y,y) = Sl

ct=llz—yl|
— Ugcat = —G(V8t2U>, U = Uipec — GV@?U
(I +GVI*u = iy,

Lippman-Schwinger equations.

Born sereis:

U = Uine — GV P Uine + GV GV tine + ...
B

Write F = g%;[co], which is the forward / linearized modeling operator, FV = u}’ (superscript stands
for Born). Weak scattering: require that ||G(V9?)||2 < 1, which implies the series converges; usually
this is too strong a contidion, and is not practical.

Linearized Inverse Problem: minimize over V'

(50% — Aul = —V(2)0Puine.s,
1 5 ) 1 B ) c (x) t x,s t s
JL[V] - §Hdr,s,t - uinc,s(ra t) - ux,s(rv t)||2 = §Hd - FVHQ s.t. zero initial conditions

propper boudary conditions

(removes multiples, compares to primaries).



Solution of Linearized Inverse Problem: is V = F~'uZ = (F*F)~ 1F* B ML =F*(FV —d),

scat - scat

oV = —a‘;‘(} Gradient descent works for full non-linear problem: 5 2 — F*(F[ | — d), Landweber

iteration. Generally, we're motivating the use of the adjoint state operator F*, there are many reasons
why this is usefull.

Adjoint-State Method:
(d,FV)pys = (F*d, V), = Z / HFV (r,t)d / F*d(z)V (z)dz (fix s)

one construction:

then,

Z/ HOFV (r,t)dt = // ot (x, )FV (z, t)dtdx

now, uZ(x,t) = FV(z,t), which solves the wave equation, so let

1
dext(xat) = (C_%at2 - A)Q(x>t)

called the adjoint wavefield. Now integrate by parts. Boundary terms:
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/—28tqu|gdx,/—2q8tu|gd:x / /—dS dt/ /q—dS dt
&0} &0

The last two terms are zero, due to finite speed of propagation. The lower boundary terms in the frist
two terms are zero due to initial conditions. Require ¢(z,T) = 8‘1(:1: T) = 0, then the upper boundary
terms are zero aswell. Final value problem (backward in time). This is the adjoint state problem:

{dext@;, t)
q(z,T) =

( 82 - A)Q(xvt)

%(m T)=0

LHS:

1

//q(x,t)((?af — A)uf (v, t) dzdt = /V(x) [(—1)/q(az,t)@fuinc($,t)dt dx
0
—V(x)@:{uinc(x,t) Frd(x) Imag‘i,ng Operator
Fix s.
ainc($7w> - /G($ay7w)f(y7w)dy
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Parseval:
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= Z/ r,w)w // oy, )V ()Gy, 2, w) f(z,w)dydzdw
- [ave | dwaZ:md(ﬁ o) [ a6l 0w

F*d(x) / ZG r,x,w)d )/de(x z,w)f(z,w) (RTM)

s WV

(e w) ine(7)

= /dwaqAKnC = —(q, (—w*)line)w

Connection with RADAR:

~

d=FV(s,w) = / exp(2iw|[1(5) - yl/€) Aw. 5,9V (v)dy

Fd(x) = /eXp(%wHV(S) —yll/)A(w, s, y)d(s,w)dy

Fld(x) = / exp(2iw|1(s) — yll/€) B(w, 5,y)d(s,w)dy
RADAR:

ds.t) [ 6t~ 2Ih(s) ~ al)V (o)

Iiew(a / 5(t — 21 (s) — (s, st
CT:

g(0,s) :/5(3—x-0)f(x)dm

Iy = /5(3 —x-0)g(0,s)d0ds = /g(ﬁ, x-0)do

(unfiltered back projection)
Seismology:

d(r,t) =~ /6(t —7(r,x) — 7(s,z))V(x)dx
Ty (x Z/ (t—71(r,z) —71(s,z))d(r,t)dt = Zd(T,T(T, x)+71(s,1))

Assume ¢(z) is smooth (no reflection, refraction). y: take off point. (Eikonal, Transport Equation)
Examples, with ¢(z) = ¢o: 7(x,y) = ||x — y||/co, T(x,y) = x1/co, distance function to any curve.
Iso-phase lines of €7 = iso-level lines of 7 = wavefronts. See viscocity solution of the eikonal
equation, progressive wave expansion.



Eikonal:

1
IV (z,9)|| = )
Rays: characterstic curves. Wavefronts: level curves of 7, rays: perpendicular to wavefronts. So
: V7(X(t),y)
X(t) = (X)) Ty
(X (@), y)l
chain rule:

(X(1),y) = X(O) Va1 (X (1), y) = (X (1)) Vot (X(t),y) = (X (1), y) [V (X (8), y)l| = 1

—T
dt Ve (X (), y)l
7: travel time; 7(X(t),y) — 7(X(0),y) = ¢, 7(X(0),y) = 0. Example: for X (¢) still depens on 7.

p(t) = Vor(X(t),y),p(t) = VVT- X

1 1
— VYT Ve = SV|VTVEE = - V(@) ()]

get

and 7(X(t),y) = t.

WAVE: )
(59 = A)G =3z —y)
G(z,y,t) = ap(r,y)d(t — 7(z,9))
(tszy)
oty

Hamilton-Jacobi

FINISH

T(x,y) =inf{7T: 3X s.t. X(0)=0,X(T) =y, || X({@)|| =c(X(t)VO<t < T}

arguement is X (¢) that solves hamilton system for osme py.

rleay) =int { [ 009, X (95 X00) =, X() =}

(any parameterization), £(z, 1) = ﬁ” ol f) Tlx)df and any min is X (¢) for some py. Euler-Lagrange:

s dsL _
6 X ds 6X

Amplitude:
2V - Vao + GQAT =0

. 2
%aO(X(t), y) = X(t)V,a = *V1Vay = —%CLQAT

V- -a*VTr =0



Model Velocity Estimator:
1
T = 54~ Fld] 3

us(ryt) = FIe| & (5508 = A)u, = .

oF 1
ugzat,s(r7 t) = 52 [CO]V =FV < (6_28152 - A)ugzat,s = _VatQusBi:at,s
5] .
_F[CO] =F*(d - F[c])

T
F:ds<x> - - / ds (.’L’, t)afuinc,s(xa t)dt
0

(1) Landweber iterations:

1
2
Ch+1

{5Vk+1 = —Oé(;g—{z[ck]

P29

max [(d, f(r — co))|

co

Full Waveform Inversion: new data as d,.s(w) add freq w from low to high (Karzmarz), A from large to
small. Requires knowledge of d,. s(w) for small w.

(2) Extension Principles (symes): d,. ., F*d(z) = >, Fids(x) (stack). F = (Fy,...,Fy,), F* =) F’
(adjoint and operator-sum commute). Idea: let Vi(z) = Fid,(x), look at images before summing. If ¢q
is good, then V;, ~ V,,, else not. Example: Differential semblance optimization (Symes).

1 1 .
Josolco, (Vs -, Vi)l = 5 > Ve = Vil + 3 > llds = FLVi|[3, minJpso

) C R3, Extension: manifold €, operator x, such that (see notes).
Example: (Standard extension), Q@ =Q x 5, (zr € Q,s € S). V € D'(Q) in V(z,s).

(XV)(z,5) = V(c)

(F)V, st = /dl’V(SL’)/dTG(I,J?T,T)a?(IS,I,t—T)

V), 5) = V(e)

(F)Vts,t = /da:V@)/dTG(x,:BT,T)Of(xS,x,t—7')

(insert)



(3) Travel Time Tomography:

1 . 1
Jrr(c] = 5”7‘,«,3 —7(x, x5)]|, min Jrrle] st. ||Vt (2, 2,)|| = —

c(x)

Solution in layered media( Hergoltz-Wiechert (1910)). Data: 7(r), fix s. Horizontal slowness
T (z) =p(x) = % cos(fy).



