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Elliptic Harnack inequality (EHI)

I A. Harnack (1887): There exists C > 1 such that, for any ball
B(x , r) ⊂ Rn and for any non-negative harmonic function
h : B(x , r)→ [0,∞), we have

sup
B(x ,r/2)

h ≤ C inf
B(x ,r/2)

h.

I EHI is an easy consequence of Poisson integral formula

u(y) =

∫
∂B(x ,r)

u(ζ)
r 2 − |y − x |2

rωn−1 |y − ζ|n
dζ, y ∈ B(x , r),

where ωn−1 is the surface area of Sn−1.

I EHI implies the Liouville property: Every bounded below
harmonic function on Rn is constant. (Proof: Replace h by
h − infRn h and let r →∞ in EHI).
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Parabolic Harnack inequality (PHI)

I Caloric function is a solution to the heat equation ∂tu = ∆u.

I PHI (J. Hadamard ‘54 and B. Pini ‘54): There exists C > 1
such that for all x ∈ Rn, r > 0 and for all non-negative caloric
function u defined on the time-space cylinder (0, r 2)× B(x , r)
we have

sup
(r2/4,r2/2)×B(x ,r/2)

u ≤ C inf
(3r2/4,r2)×B(x ,r/2)

u.

I PHI implies EHI (Proof: u(t, ·) = h(·), ∀t ∈ R is caloric
whenever h is harmonic).
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Harnack inequalities are stable in Rn

Jürgen Moser proved elliptic Harnack inequality (1961) and
parabolic Harnack inequality (1964) for uniformly elliptic operators
in divergence form

Lf (x) = div(A(·)∇f )(x) =
n∑

i ,j=1

∂i (aij(·)∂j f (·))(x),

where the matrix A(x) = [aij(x)]1≤i ,j≤n is measurable, essentially
bounded, symmetric and comparable to the identity matrix in the
following sense: there exists K ≥ 1 such that

1

K
In ≤ A(x) ≤ KIn ∀x ∈ Rn.
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Why study Harnack inequalities?

I Moser’s motivation was to obtain Hölder continuity of weak
solutions to PDE with uniformly elliptic operators.

I Hilbert’s 19th problem: Are minimizers to u 7→
∫

Ω F (∇u) dx
smooth? Here F : Rn → [0,∞) is smooth, strictly convex and
satisfies a growth condition and u has a prescribed boundary
condition on ∂Ω. (Dirichlet energy: the case F (x) = ‖x‖2

2)

I Positive answer given independently by E. De Giorgi (1957)
and J. Nash (1958) by establishing Hölder continuity of
solutions for uniformly elliptic operators.

I The De Giorgi-Nash-Moser estimates are of fundamental
importance to quasi-linear elliptic and parabolic PDE.
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PHI and heat kernel estimates

I Using Moser’s PHI, D. Aronson (‘68) proved two sided
Gaussian estimates for the heat kernel associated with an
uniformly elliptic operator. There exists C , c > 0 such that

c

tn/2
exp

(
−d(x , y)2

ct

)
≤ pt(x , y) ≤ C

tn/2
exp

(
−d(x , y)2

Ct

)
,

for all x , y ∈ Rn and for all t > 0.

I For general manifolds/graphs, we replace tn/2 by V (x ,
√

t).

I PHI is equivalent to the two sided Gaussian estimates on the
heat kernel (Fabes and Stroock ‘86).

I Harnack inequality and its variants apply to non-local
operators and to non-linear equations (e.g. Ricci flow).
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Gradient Harnack inequality

I S.T. Yau (‘75) proved Liouville property for manifolds with
non-negative Ricci cuvature using a gradient estimate.

I S.Y. Cheng and S.T. Yau (‘75) developed a local version of
the gradient estimate for manifolds with bounded below Ricci
curvature.

I Consider a manifold with non-negative Ricci curvature. Then
there exists C > 0 such that for any ball B(x , r) and for any
positive harmonic function h on B(x , r)

|∇ (ln h)| ≤ C

r
in B(x , r/2).

I P. Li and S.T. Yau (‘86) proved a parabolic version of the
above estimate that yields PHI for manifolds with
non-negative Ricci curvature.
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Gradient estimates vs Moser’s Harnack inequalities

I The gradient estimates of S.T. Yau and his co-authors are
stronger than Moser’s Harnack inequalities and yield sharper
constants.

I However, the assumption on curvature lower bound is not
robust. To see this, let (M, g) is a manifold with non-negative
Ricci curvature and (M, ĝ) is another metric on M such that

K−1g ≤ ĝ ≤ Kg , for some K > 1.

I Grigor’yan and Saloff-Coste (‘92) independently showed that
(M, ĝ) satisfies PHI. However (M, ĝ) need not have any
curvature lower bound and the gradient Harnack inequality
need not be true.
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Which spaces satisfy PHI?

Theorem (A. Grigor’yan ‘91, L. Saloff-Coste ‘92)

The following are equivalent for a Riemannian manifold (M, g).

(a) The conjunction of volume doubling property and Poincaré
inequality: there exists CD > 0 such that for all x ∈ M, r > 0

V (x , 2r) ≤ CDV (x , r);

there exists CP > 0 such that for all f ∈ C∞(M), x ∈ M, r > 0∫
B(x ,r)

∣∣f − fB(x ,r)

∣∣2 dµ ≤ CP r 2

∫
B(x ,r)

‖∇f ‖2
2 dµ.

(b) The scale-invariant parabolic Harnack inequality holds for
non-negative solutions of the heat equation ∂tu = ∆gu.

(c) The transition probability density for the Brownian motion on
(M, g) has Gaussian upper and lower bounds.
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Consequence : Stability under perturbations

I The parabolic Harnack inequality and Gaussian heat kernel
bounds are stable under bounded perturbations of the
Riemannian metric.

I Let (M, g) and (M̂, ĝ) be quasi-isometric Riemannain
manifolds. That is there exist K ≥ 1 and a diffeomorphism
φ : M → M̂ such that

K−1g(ξ, ξ) ≤ ĝ(dφ(ξ), dφ(ξ)) ≤ Kg(ξ, ξ), ∀ξ ∈ TM.

Then (M, g) satisfies PHI if and only if (M̂, ĝ).

I Question: Which properties of a manifold are preserved under
quasi-isometries?
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Extensions to other settings

I The characterization of PHI has been extended to diffusions
on local Dirichlet spaces (K.T. Sturm ‘95), random walks on
graphs (T. Delmotte ‘99) and random walks on metric spaces
(M., L. Saloff-Coste ‘15).

I A close variant of PHI holds for fractal and fractal-like spaces.
A similar characterization was established by M. Barlow and
R. Bass ‘03 for random walks on fractal-like graphs and by M.
Barlow, R. Bass and T. Kumagai ‘06 for diffusions on fractals
and fractal-like spaces.
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Weighted graphs

I A weighted graph (G , µ) is a graph G = (V ,E ) equipped with
a conductance/weight µ : E → (0,∞).

I We shall always assume that the graph is bounded degree and
the controlled weights: There exists c > 0 such that

P(x , y) =
µxy∑
z∼x µxz

≥ c , ∀(x , y) ∈ E .

I The weighted Laplace operator

∆µf (x) =
1∑

y∼x µxy

∑
y∼x

µxy (f (y)− f (x)) .

I Question: Which properties of a weighted graph are preserved
under bounded perturbation of conductances?

I (G , µ̂) is a bounded perturbation of (G , µ) if there exists
constant K ≥ 1 such that K−1µ ≤ µ̂ ≤ Kµ.
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Is EHI stable?

T. Lyons ‘87 showed that Liouville property is not preserved under
quasi-isometries. I. Benjamani ‘91 provided a simpler
counterexample.

PHI
Stable

=⇒ EHI
?

=⇒ Liouville Property
Not stable

However,

Liouville Property 6=⇒ EHI 6=⇒ PHI .

Question 1: Is EHI stable under quasi-isometries of a Riemannian
manifold/bounded perturbation of conductances in a weighted
graph?
Question 2: If so, characterize EHI by properties that are stable
under bounded perturbations.
Answer 1: Yes, EHI is stable. (Barlow, M. ‘16)
Answer 2: We will get there in a few more slides.
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EHI 6=⇒ PHI: Example 1

[Grigor’yan and Saloff-Coste ‘05] Define the measure

dµα(x) = (1 + |x |2)α/2 dx ,

on Rn, n ≥ 2.
Consider the family of diffusions corresponding to the Dirichlet
form

Eα(f , f ) =

∫
|∇f |22 dµα

on L2(Rn, µα) with generator (weighted Laplacian)

Lα =
(

1 + |x |2
)−α/2

n∑
i=1

∂

∂xi

((
1 + |x |2

)α/2 ∂

∂xi

)
= ∆+α

x .∇
1 + |x |2

.

This family of examples satisfy EHI for all α ∈ R but satisfy PHI
(volume doubling) if and only if α > −n.
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EHI 6=⇒ PHI: Example 2 – T. Delmotte ‘02

Consider any tree with polynomial volume growth rdf with df > 1.
Glue it to the graph Z but connecting an arbitrary vertex in one
graph to an arbitrary vertex in the other with an edge.

Viscek tree has df = log3 5 [Source: Isoperimetry, volume growth and
random walks by C. Pittet and L. Saloff-Coste.]
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EHI 6=⇒ PHI: Example 3 – Diffusion on fractals

Several classes of diffusions on fractals satisfy the following heat
kernel estimates (transition probability of Brownian motion):
There exists dw > 1 and C , c > 0 such that

pt(x , y) ≤ C

V (x , t1/dw )
exp

(
−
(

d(x , y)dw

C t

)1/(dw−1)
)
,

where the heat kernel pt satisfies a matching lower bound with C
replaced by c .
The parameter dw governs the space-time scaling of the diffusion
and called the exit time exponent since

ExτB(x ,r) � rdw , ∀x , ∀r > 0.

This generalization of Gaussian estimates are called sub-Gaussian
estimates.
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EHI 6=⇒ PHI: Example 3 – Diffusion on fractals

Sierpinski gasket satisfies sub-Gaussian upper and lower bounds
with dw = log2 5 6= 2 (M.T. Barlow and E. Perkins ‘88).
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EHI 6=⇒ PHI: Example 3 – Diffusion on fractals

The sub-Gaussian estimate with escape time exponent dw is
equivalent a parabolic Harnack inequality PHI(Ψ) with a scaling
given by the space-time scale function

Ψ(r) = rdw .

PHI(Ψ): There exists C > 1 such that for all balls B(x , r) and for
all non-negative caloric function u defined on the time-space
cylinder (0,Ψ(r))× B(x , r) we have

sup
(Ψ(r)/4,Ψ(r)/2)×B(x ,r/2)

u ≤ C inf
(3Ψ(r)/4,Ψ(r))×B(x ,r/2)

u.

By the same argument as before PHI(Ψ) implies EHI but PHI does
not hold unless dw = 2.
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PHI(Ψ) is stable

Theorem ( Barlow-Bass ‘03; Barlow-Bass-Kumagai ‘06)

The following are equivalent

(a) Volume doubling property, a Poincaré inequality PI(Ψ) and a
cutoff-Sobolev inequality CS(Ψ).

(b) A scale-invariant parabolic Harnack inequality PHI(Ψ).

(c) A two-sided sub-Gaussian estimate for the heat kernel
corresponding to the space-time scale function Ψ.

Stability of PHI(Ψ) follows the above theorem because (a) is
stable under bounded perturbations.
Here Ψ satisfies the following condition: There exists β1, β2 > 0
such that (

R

r

)β1

.
Ψ(R)

Ψ(r)
.

(
R

r

)β2

, ∀R > r > 0.
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A fractal like manifold

Example of a manifold satisfying PHI(Ψ) with

Ψ(r) = r 21r≤1 + r log2 51r>1.

Image Source: Barlow, Bass and Kumagai
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Energy measure

The energy measure Γ(f , f )(·) of a function f ∈ F ∩ L∞ for a
Dirichlet form (E ,F) on L2(X , µ) is defined as the unique Borel
measure ∫

M
g dΓ(f , f ) = E(f , fg)− 1

2
E(f 2, g)

for all g ∈ F ∩ Cc(X ). Examples:
For Brownian motion on Riemannian manifold

dΓ(f , f )(x) = |∇f (x)|2 µ(dx), where µ =Riemannian measure.

For random walk on weighted graphs (G , µ), we have

Γ(f , f )(x) =
1

2

∑
y∼x

(f (x)− f (y))2 µxy .
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Poincaré inequality PI(Ψ)

Consider the Dirichlet form (E ,F) on L2(X , µ).
PI(Ψ): There exists CP > 0 such that for all f ∈ F , x ∈ X , r > 0∫

B(x ,r)

∣∣f − fB(x ,r)

∣∣2 dµ ≤ CPΨ(r)

∫
B(x ,2r)

dΓ(f , f ).
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Cutoff Sobolev inequality CS(Ψ)

Definition (Cutoff function)

Let U1 ⊂ U2 be open sets in X . We say that φ : X → R is a cutoff
function for U1 ⊂ U2 if φ ≡ 1 on U1 and φ ≡ 0 on U{

2 .

Definition (Cutoff Sobolev inequality CS(Ψ))

We say that (E ,F , L2(X , µ)) satisfies the cutoff Sobolev inequality
CS(Ψ) if there exists C1,C2 > 0 such that for all x ∈ X , for all
r > 0, there exists a cut-off function φ for B(x , r) ⊂ B(x , 2r) such
that∫
A

f 2 dΓ(φ, φ) ≤ C1

∫
A

dΓ(f , f )+
C2

Ψ(r)

∫
A

f 2 dµ ∀f ∈ F∩L∞(X , µ),

where A = B(x , 2r) \ B(x , r).

The cutoff Sobolev inequality CS(β) is stable under bounded
perturbation of energy measure Γ and symmetric measure µ.

23 / 31



Characterization of EHI

Theorem (Barlow, M. ‘16)

Under mild assumptions on a Dirichlet space (E ,F , L2(µ)) on the
metric space (X , d), the following are equivalent

(a) There exists a Radon measure µ̂ satisfying the volume
doubling property, a space-time scale function
Ψ : X × (0,∞)→ (0,∞), β1, β2 > 0 such that(

R

r

)β1

.
Ψ(x ,R)

Ψ(x , r)
.

(
R

r

)β2

, ∀x ∈ X ,∀R > r > 0,

and

Ψ(x , r) � Ψ(y , r), ∀x , y ∈ X ,∀r > 0 such that d(x , y) ≤ r .

Furthermore, the corresponding time-changed Dirichlet space
(E , F̂ , L2(µ̂)) satisfies PI(Ψ)and CS(Ψ).

(b) Elliptic Harnack inequality.
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Poincaré inequality PI(Ψ)

PI(Ψ): There exists CP > 0 such that for all f ∈ F , x ∈ X , r > 0∫
B(x ,r)

∣∣f − fB(x ,r)

∣∣ 2 d µ̂ ≤ CPΨ(x , r)

∫
B(x ,2r)

dΓ(f , f ).
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Consequence: Stability of EHI

I Under mild hypotheses, EHI is a quasi-isometry invariant of
weighted Riemannian manifolds.

I EHI is a invariant under bounded perturbation of conductance
of a weighted graph.

I Under mild hypothesis, EHI is a rough isometry invariant.
(rough isometry = quasi-isometry in the sense of Gromov)

I Generalized Moser’s EHI: Under mild hypotheses, if a
Riemannian manifold satisfies EHI for the Laplace-Beltrami
operator, then it satisfies EHI for any uniformly elliptic
operator on the Riemannian manifold.
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Partial progress by Barlow ‘04, Bass ‘13

I M. Barlow ‘04: If a graph satisfies EHI, then there exists
C , α > 0 such that

|B(x , r)| ≤ Crα, ∀x ∈ V ,∀r > 1.

I R. Bass ‘13 proved a characterization of EHI similar to our
result, but he assumed volume doubling property for the
symmetric measure along with certain regularity conditions on
capacity that rule out Examples 1 and 2.

I On such assumptions, Bass remarks “Since every known
approach to proving an EHI uses volume doubling in an
essential way, the problem of finding necessary and sufficient
conditions for the EHI to hold without assuming any regularity
looks very hard.”
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Few remarks on the proof

I Study of diffusions on fractals provided fruitful ideas for the
solution to a question about Riemannian manifolds/graphs.

I The proof of EHI from (a) follows the existing proofs in the
literature that go back to work of De Giorgi/Moser.

I Probabilistic interpretation of Ψ(x , r): Expected exit time for
the time-changed process started at x to exit B(x , r).

I Analytic interpretation of Ψ(x , r): Inverse spectral gap of the
‘Neumann Laplacian’ on the ball B(x , r) corresponding to the
time changed process.
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Few remarks on the proof

I Time change of the process (or equivalently change of
symmetric measure of the Dirichlet form) does not affect the
space of harmonic functions. Therefore one could hope to
construct a nicer measure satisfies volume doubling along with
Poincaré and cut-off Sobolev inequalities.

I A metric space (X , d) satifies metric doubling property, if
there exists M > 1 such that, every ball of radius r can be
covered by at most M balls of radius r/2, for all r > 0.

I A metric space (X , d) admits a measure that satisfies volume
doubling property if and only if it satisfies the metric doubling
property. (A. Vol‘berg, S.V. Konyagin ‘87, J. Luukkainen, E.
Saksman ‘98).

I The proof of existence of doubling measure is not constructive.
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Few remarks on the proof

I First step is to show that every space satisfying EHI satisfies
the metric doubling property.

I This implies that the space admits a doubling measure.
However, an arbitrary doubling measure need not satisfy the
desired Poincaré and cut-off Sobolev inequalties.

I We use the ideas of A. Vol‘berg, S.V. Konyagin, J.
Luukkainen, E. Saksman with some new ingredients to
“construct” the desired measure satisfying volume doubling
along with Poincaré and cut-off Sobolev inequalities.
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Thank you
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