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Outline

The goal is to understand the rate of relaxation of the solutions of a
kinetic equation

∂tf + v · ∇xf −∇xV · ∇vf = Lf

towards a global equilibrium when the collision term acts only on the
velocity space. Here f = f(t, x, v) is the distribution function. It can
be seen as a probability distribution on the phase space, where x is
the position and v the velocity. However, since we are in a linear
framework, the fact that f has a constant sign plays no role.

A key feature of our approach [J.D., Mouhot, Schmeiser] is that it
distinguishes the mechanisms of relaxation at microscopic level
(convergence towards a local equilibrium, in velocity space) and
macroscopic level (convergence of the spatial density to a steady
state), where the rate is given by a spectral gap which has to do with
the underlying diffusion equation for the spatial density
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A very brief review of the literature

Non constructive decay results: [Ukai (1974)] [Desvillettes (1990)]

Explicit t−∞-decay, no spectral gap: [Desvillettes, Villani (2001-05)],
[Fellner, Miljanovic, Neumann, Schmeiser (2004)], [Cáceres, Carrillo,
Goudon (2003)]

hypoelliptic theory :
[Hérau, Nier (2004)]: spectral analysis of the Vlasov-Fokker-Planck
equation
[Hérau (2006)]: linear Boltzmann relaxation operator

Hypoelliptic theory vs. hypocoercivity (Gallay) approach and
generalized entropies:
[Mouhot, Neumann (2006)], [Villani (2007, 2008)]

Other related approaches: non-linear Boltzmann and Landau
equations:
micro-macro decomposition: [Guo]
hydrodynamic limits (fluid-kinetic decomposition): [Yu]

Hypocoercivity for kinetic equations with linear relaxation terms – p.3/28



A toy problem

du

dt
= (L − T ) u , L =

(

0 0

0 −1

)

, T =

(

0 −k

k 0

)

, k2 ≥ Λ > 0

Nonmonotone decay, reminiscent of [Filbet, Mouhot, Pareschi (2006)]

H-theorem: d
dt |u|

2 = −2 u2
2

macroscopic limit: du1

dt = −k2 u1

generalized entropy: H(u) = |u|2 − ε k
1+k2 u1 u2

dH

dt
= −

(

2 −
ε k2

1 + k2

)

u2
2 −

ε k2

1 + k2
u2

1 +
ε k

1 + k2
u1 u2

≤ −(2 − ε) u2
2 −

εΛ

1 + Λ
u2

1 +
ε

2
u1u2
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Plots for the toy problem
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. . . compared to plots for the Boltzmann equation

Figure 1: [Filbet, Mouhot, Pareschi (2006)]
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The kinetic equation

∂tf + T f = L f , f = f(t, x, v) , t > 0, x ∈ R
d, v ∈ R

d (1)

L is a linear collision operator

V is a given external potential on R
d, d ≥ 1

T := v · ∇x −∇xV · ∇v is a transport operator

There exists a scalar product 〈·, ·〉, such that L is symmetric and T is
antisymmetric

d

dt
‖f − F‖2 = −2 ‖L f‖2

... seems to imply that the decay stops when f ∈ N (L)
but we expect f → F as t → ∞ since F generates N (L) ∩N (T )
Hypocoercivity: prove an H-theorem for a generalized entropy

H(f) :=
1

2
‖f‖2 + ε 〈A f, f〉
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Examples

L is a linear relaxation operator L

L f = Π f − f , Π f :=
ρ

ρF
F (x, v)

ρ = ρf :=

∫

Rd

f dv

Maxwellian case: F (x, v) := M(v) e−V (x) with

M(v) := (2π)−d/2 e−|v|2/2 =⇒ Πf = ρf M(v)

Linearized fast diffusion case: F (x, v) := ω
(

1
2 |v|

2 + V (x)
)−(k+1)

L is a Fokker-Planck operator

L is a linear scattering operator (including the case of non-elastic
collisions)
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Some conventions. Cauchy problem

F is a positive probability distribution

Measure: dµ(x, v) = F (x, v)−1 dx dv on R
d × R

d ∋ (x, v)

Scalar product and norm 〈f, g〉 =
∫∫

Rd×Rd f g dµ and ‖f‖2 = 〈f, f〉

The equation
∂tf + T f = L f

with initial condition f(t = 0, ·, ·) = f0 ∈ L2(dµ) such that

∫∫

Rd×Rd

f0 dx dv = 1

has a unique global solution (under additional technical assumptions):
[Poupaud], [JD, Markowich,Ölz, Schmeiser]. The solution preserves mass

∫∫

Rd×Rd

f(t, x, v) dx dv = 1 ∀ t ≥ 0
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Maxwellian case: Assumptions

We assume that F (x, v) := M(v) e−V (x) with M(v) := (2π)−d/2 e−|v|2/2

where V satisfies the following assumptions

(H1) Regularity: V ∈ W 2,∞
loc (Rd)

(H2) Normalization:
∫

Rd e−V dx = 1

(H3) Spectral gap condition: there exists a positive constant Λ such that

∫

Rd |u|
2 e−V dx ≤ Λ

∫

Rd |∇xu|2 e−V dx

for any u ∈ H1(e−V dx) such that
∫

Rd u e−V dx = 0

(H4) Pointwise condition 1: there exists c0 > 0 and θ ∈ (0, 1) such that

∆V ≤ θ
2 |∇xV (x)|2 + c0 ∀x ∈ R

d

(H5) Pointwise condition 2: there exists c1 > 0 such that

|∇2
xV (x)| ≤ c1 (1 + |∇xV (x)|) ∀x ∈ R

d

(H6) Growth condition:
∫

Rd |∇xV |2 e−V dx < ∞
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Maxwellian case: Main result

Theorem 1. If ∂tf + T f = L f , for ε > 0, small enough, there exists an explicit,
positive constant λ = λ(ε) such that

‖f(t) − F‖ ≤ (1 + ε) ‖f0 − F‖ e−λt ∀ t ≥ 0

The operator L has no regularization property: hypo-coercivity
fundamentally differs from hypo-ellipticity

Coercivity due to L is only on velocity variables

d

dt
‖f(t) − F‖2 = −‖(1 − Π)f‖2 = −

∫∫

Rd×Rd

|f − ρf M(v)|2 dv dx

T and L do not commute: coercivity in v is transferred to the x
variable. In the diffusion limit, ρ solves a Fokker-Planck equation

∂tρ = ∆ρ + ∇ · (ρ∇V ) t > 0 , x ∈ R
d

the goal of the hypo-coercivity theory is to quantify the interaction of T

and L and build a norm which controls ‖ · ‖ and decays exponentially
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The operators. A Lyapunov functional

On L2(dµ), define

bf := Π (v f) , af := b (T f) , â f := −Π (∇xf) , A := (1+â·a Π)−1
â·b

b f =
F

ρF

∫

Rd

v f dv=
F

ρF
jf with jf :=

∫

Rd

v f dv

a f =
F

ρF

(

∇x ·

∫

Rd

v ⊗ v f dv + ρf ∇xV

)

, â f = −
F

ρF
∇xρf

A T = (1 + â · a Π)−1
â · a

Define the Lyapunov functional (generalized entropy)

H(f) :=
1

2
‖f‖2 + ε 〈A f, f〉
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. . . a Lyapunov functional (continued): positivity, equiva lence

〈â · a Π f, f〉 =
1

d

∫

Rd

∣
∣∇x

( ρf

ρF

)∣
∣
2
mF dx

with mF :=
∫

Rd |v|
2 F (·, v) dv. Let g := A f , u = ρg/ρF , jf :=

∫

Rd v f dv

(1 + â · a Π) g = â · bf ⇐⇒ g −
1

d
∇x (mF ∇xu)

F

ρF
= −

F

ρF
∇x jf

ρF u −
1

d
∇x (mF ∇xu) = −∇x jf

‖A f‖2 =
∫

Rd |u|
2 ρF dx and ‖T A f‖2 = 1

d

∫

Rd |∇xu|2 mF dx are such that

2 ‖A f‖2 + ‖T A f‖2 ≤ ‖(1 − Π) f‖2

As a consequence

(1 − ε)‖f‖2 ≤ 2 H(f) ≤ (1 + ε)‖f‖2
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. . . a Lyapunov functional (continued): decay term

H(f) :=
1

2
‖f‖2 + ε 〈A f, f〉

The operator T is skew-symmetric on L2(dµ). If f is a solution, then

d

dt
H(f − F ) = D(f − F )

D(f) := ...
...〈f, L f〉
︸ ︷︷ ︸

micro

−ε 〈A T Π f, f〉
︸ ︷︷ ︸

macro

−ε 〈A T (1−Π) f, f〉+ε 〈T A f, f〉+ε 〈L f, (A+A
∗) f〉

Lemma 2. For some ε > 0 small enough, there exists an explicit constant λ > 0 such
that

D(f − F ) + λH(f − F ) ≤ 0
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Preliminary computations (1/2)

Maxwellian case: Πf = ρf M(v) with ρf :=
∫

Rd f dv

Replace f by f −F : 0 =
∫∫

Rd×Rd f dx dv = 〈f, F 〉,
∫

Rd(Π f − f) dv = 0

L is a linear relaxation operator: L f = Π f − f

〈Lf, f〉 ≤ −‖(1 − Π) f‖2

The other terms: for any c,

−ε 〈A T (1 − Π) f, f〉 = −ε 〈A T (1 − Π) f, Π f〉

≤
c

2
‖A T (1 − Π) f‖2 +

ε2

2 c
‖Π f‖2

ε 〈T A f, f〉 = ε 〈T A f, Π f〉 ≤
c

2
‖T A f‖2 +

ε2

2 c
‖Π f‖2

ε 〈(A + A
∗) L f, f〉 ≤ ε ‖(1 − Π) f‖2 + ε ‖A f‖2
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Preliminary computations (1/2)

A T (1 − Π) = Π A T (1 − Π) and T A = Π T A. With mF :=
∫

Rd |v|
2 F dv

〈â · a Π f, f〉 =
1

d

∫

Rd

∣
∣∇x

( ρf

ρF

)∣
∣
2
mF dx

Recall that one ca compute A f := (1 + â · a Π)−1
â · b f as follows: let

g := A f u := ρg/ρF

By definition of A, â · bf = (1 + â · a Π) g means

−∇x

∫

Rd

v f dv =: −∇x jf = ρF u −
1

d
∇x (mF ∇xu)

‖A f‖2 =
∫

Rd |u|
2 ρF dx and ‖T A f‖2 = 1

d

∫

Rd |∇xu|2 mF dx are such that

2 ‖A f‖2 + ‖T A f‖2 ≤ ‖(1 − Π) f‖2
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Preliminary computations (2/2)

D(f) ≤ −
(

1 −
c

2
− 2 ε

)

‖(1 − Π) f‖2

︸ ︷︷ ︸

micro: ≤0

− ε 〈A T Π f, f〉
︸ ︷︷ ︸

macro: “first estimate”

+
c

2
‖A T (1 − Π) f‖2

︸ ︷︷ ︸

“second estimate...”

+
ε2

c
‖Π f‖2

...(A T (1 − Π))∗f = (â · a (1 − Π))∗g with g = (1 + â · a Π)
−1

f means

ρf = ρF u −
1

d
∇x (mF ∇xu)

where u = ρg/ρF . Let qF :=
∫

Rd |v1|4 F dv, uij := ∂2u/∂xi∂xj

‖(A T (1 − Π))∗f‖2 =

d∑

i, j=1

∫

Rd

[(
2 δij+1

3 qF − m2

F δij

d2 ρF

)

uii ujj +
2(1−δij)

3 qF u2
ij

]

dx
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Maxwellian case

With ρF = e−V = 1
d mF = qF , B = â · a Π, g = (1 + B)−1 f means

ρf = u e−V −∇x

(
e−V ∇xu

)
if u =

ρg

ρF

Spectral gap condition: there exists a positive constant Λ such that

∫

Rd |u|
2 e−V dx ≤ Λ

∫

Rd |∇xu|2 e−V dx

Since A T Π = (1 + B)
−1

B, we get the “first estimate"

〈A T Π f, f〉
︸ ︷︷ ︸

macro

≥
Λ

1 + Λ
‖Π f‖2

Notice that B = â · a Π = (T Π)∗(T Π) so that 〈B f, f〉 = ‖T Π f‖2
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Second estimate (1/3)

We have to bound (H2 estimate)

‖(A T (1 − Π))∗f‖2 ≤ 2

d∑

i, j=1

∫

Rd

|uij |
2

e−V dx

Let ‖u‖2
0 :=

∫

Rd |u|
2 e−V dx. Multiply ρf = u e−V −∇x

(
e−V ∇xu

)
by u e−V

to get

‖u‖2
0 + ‖∇xu‖2

0 ≤ ‖Π f‖2

By expanding the square in |∇x(u e−V/2)|2, with κ = (1 − θ)/(2 (2 + Λ c0)),
we obtain an improved Poincaré inequality

κ ‖W u‖2
0 ≤ ‖∇xu‖2

0

for any u ∈ H1(e−V dx) such that
∫

Rd u e−V dx = 0

Here: W := |∇xV |
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Second estimate (2/3)

Multiply ρf = u e−V −∇x

(
e−V ∇xu

)
by W 2 u with W := |∇xV | and

integrate by parts

‖W u‖2
0 + ‖W ∇xu‖2

0 − 2 c1

(
‖∇xu‖0 + ‖W ∇xu‖0

)
· ‖W u‖0

≤
κ

8
‖W 2u‖2

0 +
2

κ
‖Π f‖2

Improved Poincaré inequality applied to W u −
∫

Rd W u e−V dx gives

κ ‖W 2u‖2
0 ≤

∫

Rd

|∇x(W u)|2 e−V dx + 2 κ

∫

Rd

W u e−V dx

∫

Rd

W 3 u e−V dx

(...) κ ‖W 2 u‖2
0 ≤ 4 ‖W ∇xu‖2

0 + 8 c2
1 (‖u‖2

0 + ‖W u‖2
0) + 4 κ ‖W‖4

0 ‖u‖
2
0

‖W ∇xu‖0 ≤ c5 ‖Π f‖

Hypocoercivity for kinetic equations with linear relaxation terms – p.20/28



Second estimate (3/3)

Multiply ρf = u e−V −∇x

(
e−V ∇xu

)
by ∆u and integrating by parts, we

get

‖∇2
xu‖2

0 −
(
‖W ∇xu‖0 + ‖Π f‖

)
‖∇2

xu‖0 ≤ ‖W u‖0 ‖∇xu‖0

Altogether (...)

‖(A T (1 − Π)) f‖2 ≤ c6 ‖ (1 − Π) f‖2.

Summarizing, with λ1 = 1 − c
2 (1 + c6) − 2 ε and λ2 = Λ ε

1+Λ − ε2

c

D(f) ≤ −λ1 ‖(1 − Π) f‖2 − λ2 ‖Π f‖2
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The Vlasov-Fokker-Planck equation

∂tf + T f = L f with L f = ∆vf + ∇v(v f)

Under the same assumptions as in the linear BGK model... same result !
A list of changes

〈f, L f〉
︸ ︷︷ ︸

micro

= −‖∇vf‖2 ≤ −‖(1 − Π) f‖2 by the Poincaré inequality

Since Π f = ρf M(v), where M(v) is the gaussian function, and
F (x, v) = M(v) e−V (x)

〈A f, L f〉 =

∫∫

ρA f M(v) (L f)
dx dv

F
=

∫∫

ρA f (L f) eV dx dv= 0

A f = u F means ρF u − 1
d ∇x (mF ∇xu) = −∇x jf , jf :=

∫

Rd v f dv.
Hence jL f = −jf gives

〈A L f, f〉 = −〈A f, f〉
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Motivation: nonlinear diffusion as a diffusion limit

ε2 ∂tf + ε
[

v · ∇xf −∇xV (x) · ∇vf
]

= Q(f)

with Q(f) = γ

(
1

2
|v|2 − µ(ρf )

)

− f

Local mass conservation determines µ(ρ)

Theorem [Dolbeault, Markowich, Oelz, CS, 2007] ρf converges as ε → 0

to a solution of
∂tρ = ∇x · (∇xν(ρ) + ρ∇xV )

with ν′(ρ) = ρ µ′(ρ)

γ(s) = (−s)k
+, ν(ρ) = ρm, 0 < m = m(k) < 5/3 (R3 case)
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Linearized fast diffusion case

Consider a solution of ∂tf + T f = L f where L f = Π f − f , Π f := ρ
ρF

F (x, v) := ω

(
1

2
|v|2 + V (x)

)−(k+1)

, V (x) =
(
1 + |x|2

)β

where ω is a normalization constant chosen such that
∫∫

Rd×Rd F dx dv = 1

and ρF = ω0 V d/2−k−1 for some ω0 > 0

Theorem 3. Let d ≥ 1, k > d/2 + 1. There exists a constant β0 > 1 such that, for any

β ∈ (min{1, (d − 4)/(2k − d − 2)}, β0), there are two positive, explicit constants C
and λ for which the solution satisfies:

∀ t ≥ 0 , ‖f(t) − F‖2 ≤ C ‖f0 − F‖2 e−λt.

Computations are the same as in the Maxwellian case except for the “first
estimate" and the “second estimate"
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Linearized fast diffusion case: first estimate

For p = 0, 1, 2, let w2
p := ω0 V p−q, where q = k + 1 − d/2, w2

0 := ρF

‖u‖2
i =

∫

Rd

|u|2 w2
i dx

Now g = (1 + â · a Π)
−1

f means

ρf = w2
0 u −

2

2k − d
∇x

(
w2

1 ∇xu
)

Hardy-Poincaré inequality [Blanchet, Bonforte, J.D., Grillo, Vázquez]

‖u‖2
0 ≤ Λ ‖∇xu‖2

1

under the condition
∫

Rd u w2
0 dx = 0 if β ≥ 1. As a consequence

〈A T Π f, f〉 ≥
Λ

1 + Λ
‖Π f‖2
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Linearized fast diffusion case: second estimate

Observe that ρf = w2
0 u − 2

2k−d ∇x

(
w2

1 ∇xu
)

multiplied by u gives

‖u‖2
0 + (q − 1)−1 ‖∇xu‖2

1 ≤ ‖Π f‖2

By the Hardy-Poincaré inequality (condition β < β0)

∫

Rd

V α+1−q− 1

β |u|2 dx −

( ∫

Rd V α+1−q− 1

β u dx
)2

∫

Rd V α+1−q− 1

β dx

≤
1

4 (β0 − 1)2

∫

Rd

V α+1−q |∇xu|2 dx

By multiplying ρf = w2
0 u − 2

2k−d ∇x

(
w2

1 ∇xu
)

by V α u with α := 1 − 1/β or
by V ∆u we find

‖∇2
xu‖2

2 ≤ C ‖Π f‖2
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Diffusion limits and hypocoercivity

The strategy of the method is to introduce at kinetic level the macroscopic
quantities that arise by taking the diffusion limit

kinetic equation diffusion equation functional inequality (macroscopic)

Vlasov + BGK / Fokker-Planck Fokker-Planck Poincaré (gaussian weight)

linearized Vlasov-BGK linearized porous media Hardy-Poincaré

nonlinear Vlasov-BGK porous media Gagliardo-Nirenberg

from kinetic to diffusive scales: parabolic scaling and diffusion limit

heuristics: convergence of the macroscopic part at kinetic level is
governed by the functional inequality at macroscopic level

interplay between diffusion limits and hypocoercivity is still work in
progress as well as the nonlinear case

Hypocoercivity for kinetic equations with linear relaxation terms – p.27/28



Concluding remarks

hypo-coercivity vs. hypoellipticity

diffusion limits, a motivation for the “fast diffusion case”

other collision kernels: scattering operators

other functional spaces

nonlinear kinetic models

hydrodynamical models

Reference
J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for kinetic
equations with linear relaxation terms, CRAS 347 (2009), pp. 511–516

Hypocoercivity for kinetic equations with linear relaxation terms – p.28/28


	Outline
	A very brief review of the literature
	A toy problem
	Plots for the toy problem
	dots compared to plots for the Boltzmann equation
	The kinetic equation
	Examples
	Some conventions. Cauchy problem
	Maxwellian case: Assumptions
	Maxwellian case: Main result
	The operators. A Lyapunov functional
	dots a Lyapunov functional (continued):
positivity, equivalence
	dots a Lyapunov functional (continued):
decay term
	Preliminary computations (1/2)
	Preliminary computations (1/2)
	Preliminary computations (2/2)
	Maxwellian case
	Second estimate (1/3)
	Second estimate (2/3)
	Second estimate (3/3)
	The Vlasov-Fokker-Planck equation
	Motivation: nonlinear diffusion as a diffusion limit
	Linearized fast diffusion case
	Linearized fast diffusion case: first estimate
	Linearized fast diffusion case: second estimate
	Diffusion limits and hypocoercivity
	Concluding remarks

