Interfaces in random environment

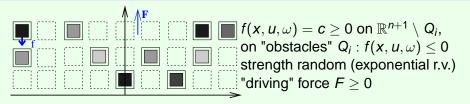
Nicolas Dirr

Department of Mathematical Sciences University of Bath N.Dirr@bath.ac.uk

Vancouver, July 20, 2009

・ロン ・雪 と ・ ヨ と

The Random Obstacle Model



$$\partial_t u(\mathbf{x}, t, \omega) = \Delta u(\mathbf{x}, t, \omega) + f(\mathbf{x}, u(\mathbf{x}, t, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(\mathbf{x}, 0) = 0$

Quenched Edwards-Wilkinson Model (QEW) Questions:

Pinning/De-pinning: Is it true that

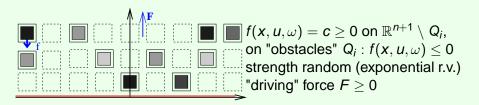
• $0 < F < F_*$: nonnegative stationary solution exists

• $F > F_*$: **no** nonnegative stationary solution exists?

"effective velocity" on scale $\tau = \epsilon^{-1}t, \ y = \epsilon^{-1}x$.

イロト イポト イヨト イヨト

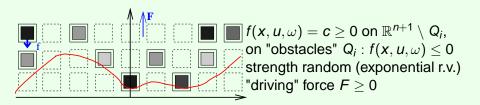
The Random Obstacle Model



$$\partial_t u(\mathbf{x}, t, \omega) = \Delta u(\mathbf{x}, t, \omega) + f(\mathbf{x}, u(\mathbf{x}, t, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(\mathbf{x}, 0) = 0$

Questions: Pinning/De-pinning: Is it true that • $0 < F < F_*$: nonnegative stationary solution exists • $F > F_*$: no nonnegative stationary solution exists? "effective velocity" on scale $\tau = e^{-1}t$, $y = e^{-1}x$.

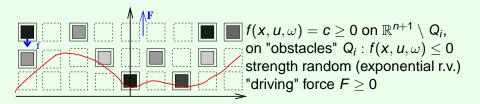
The Random Obstacle Model



$$\partial_t u(\mathbf{x}, t, \omega) = \Delta u(\mathbf{x}, t, \omega) + f(\mathbf{x}, u(\mathbf{x}, t, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(\mathbf{x}, 0) = 0$

Questions: Pinning/De-pinning: Is it true that • $0 < F < F_*$: nonnegative stationary solution exists • $F > F_*$: no nonnegative stationary solution exists? "effective velocity" on scale $\tau = e^{-1}t$, $y = e^{-1}x$.

The Random Obstacle Model



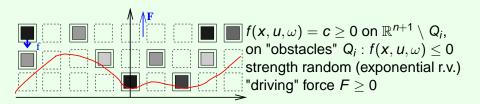
$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

Questions: Pinning/De-pinning: Is it true that

- $0 < F < F_*$: nonnegative stationary solution exists
- *F* > *F*_{*} : **no** nonnegative stationary solution exists?

"effective velocity" on scale $\tau = \epsilon^{-1}t$, $y = \epsilon^{-1}x$.

The Random Obstacle Model

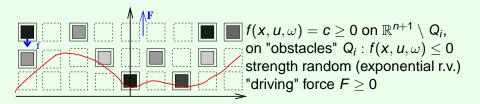


$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

Questions: Pinning/De-pinning: Is it true that

• $0 < F < F_*$: nonnegative stationary solution exists • $F > F_*$: **no** nonnegative stationary solution exists? "effective velocity" on scale $\tau = e^{-1}t$, $v = e^{-1}x$.

The Random Obstacle Model



$$\partial_{\tau} v(y,\tau,\omega) = \epsilon \Delta v(y,\tau,\omega) + f(\epsilon^{-1}y,\epsilon^{-1}v(y,\tau,\omega),\omega) + F$$

$$v(x,0) = 0$$

Questions: Pinning/De-pinning: Is it true that

• $0 < F < F_*$: nonnegative stationary solution exists • $F > F_*$: **no** nonnegative stationary solution exists? "effective velocity" on scale $\tau = e^{-1}t$, $y = e^{-1}x$.

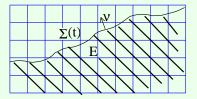
Forced Mean Curvature Flow as Gradient Flow

Zoom in on scale of heterogeneities: ($\Sigma = \partial E$.) Liapunov functional (formal):

Area(
$$\Sigma$$
) + $\underbrace{\int_{\mathbb{R}^{n+1}\cap E} f(X) dX}_{\text{"volume"}}$ [V(Y)]

Gradient flow:

$$V_X = \kappa_X + f(X), \ X \in \Sigma(t) \subset \mathbb{R}^{n+1}$$
 $[\dot{Y} = -V'(Y)]$



 κ_X mean curvature of interface and V_X normal velocity at point *X*.

・ロット (日本) (日本) (日本)

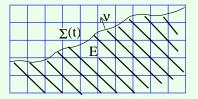
Forced Mean Curvature Flow as Gradient Flow

Zoom in on scale of heterogeneities: ($\Sigma = \partial E$.) Liapunov functional (formal):

Area(
$$\Sigma$$
) + $\underbrace{\int_{\mathbb{R}^{n+1}\cap E} f(X) dX}_{\text{"volume"}}$ [V(Y)]

Gradient flow:

$$V_X = \kappa_X + f(X), \ X \in \Sigma(t) \subset \mathbb{R}^{n+1}$$
 $[\dot{Y} = -V'(Y)]$



 κ_X mean curvature of interface and V_X normal velocity at point *X*.

Pinning and De-Pinning: Semilinear Approximation

Forced mean curvature flow: $V_x = \kappa_x + f(x) + F$

$$\begin{array}{c|c} u & & \\ &$$

If surface is graph (x, u(x, t)) then $u(x, t) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ solves

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2} f(x, u).$$

gradient small, then (heuristic) approximation: semilinear PDE

 $u_t = \Delta u + f(x, u) + F$, $F \ge 0$: external driving force.

Pinning and De-Pinning: Semilinear Approximation

Forced mean curvature flow: $V_x = \kappa_x + f(x) + F$

$$\begin{array}{c|c} u \\ \hline & & \\ (x,u(x,t)) \\ \hline & & \\ \end{array} \\ \begin{array}{c} y \\ f(x,u(x)) \\ \hline & \\ \end{array} \\ \end{array}$$

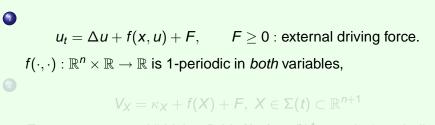
If surface is graph (x, u(x, t)) then $u(x, t) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ solves

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2} f(x, u).$$

gradient small, then (heuristic) approximation: semilinear PDE

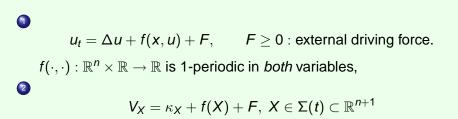
 $u_t = \Delta u + f(x, u) + F$, $F \ge 0$: external driving force.

Some remarks on periodic forcing



F constant external "driving field, $f(\cdot, \cdot) : \mathbb{R}^{n+1} \to \mathbb{R}$ is 1-periodic.

Some remarks on periodic forcing



F constant external "driving field, $f(\cdot, \cdot) : \mathbb{R}^{n+1} \to \mathbb{R}$ is 1-periodic.

Pinning and De-Pinning: Semilinear Case

$$V_{\boldsymbol{x}} = \kappa_{\boldsymbol{x}} + f(\boldsymbol{x}) + \boldsymbol{F}$$

If surface is graph (x, u(x, t)) and gradient small, then approximation: $u(x, t) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ periodic in x, solves semilinear PDE

 $u_t = \Delta u + f(x, u) + F$, $F \ge 0$: external driving force.

 $f(\cdot, \cdot)$ is 1-periodic in *both* variables, bounded, smooth, mean zero, "generic," and *f* changes its sign!

N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109

$$u_t = \Delta u + f(x, u) + F$$

Theorem

 $f(\cdot, \cdot)$ is 1-periodic in both variables, bounded, smooth, mean zero, generic.

- There ex. F_{*} > 0 such that for any 0 ≤ F ≤ F_{*} there exists a periodic stationary solution (pinning state) u_F : ∆u_F + f(·, u_F) + F = 0.
- For F > F_{*}, there exist pulsating wave solutions U_F(x, t) with velocity V_F:
 U_F(·, t + 1/V_F) = U_F(·, t) + 1.

$V_F = A_f[(F - F_*)_+]^{\frac{1}{2}} + o(|F - F_*|^{\frac{1}{2}})$

・ロット (日本) (日本) (日本)

N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109

 $u_t = \Delta u + f(\mathbf{x}, u) + F$

Theorem

 $f(\cdot, \cdot)$ is 1-periodic in both variables, bounded, smooth, mean zero, generic.

 There ex. F_{*} > 0 such that for any 0 ≤ F ≤ F_{*} there exists a periodic stationary solution (pinning state) u_F : Δu_F + f(·, u_F) + F = 0.

For F > F_{*}, there exist pulsating wave solutions U_F(x, t) with velocity V_F:
 U_F(·, t + 1/V_F) = U_F(·, t) + 1.

$$V_F = A_f[(F - F_*)_+]^{\frac{1}{2}} + o(|F - F_*|^{\frac{1}{2}})$$

N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109

 $u_t = \Delta u + f(\mathbf{x}, u) + F$

Theorem

 $f(\cdot, \cdot)$ is 1-periodic in both variables, bounded, smooth, mean zero, generic.

- There ex. F_{*} > 0 such that for any 0 ≤ F ≤ F_{*} there exists a periodic stationary solution (pinning state) u_F : Δu_F + f(·, u_F) + F = 0.
- For F > F_{*}, there exist pulsating wave solutions U_F(x, t) with velocity V_F:
 U_F(·, t + 1/V_F) = U_F(·, t) + 1.

$$V_F = A_f[(F - F_*)_+]^{\frac{1}{2}} + o(|F - F_*|^{\frac{1}{2}})$$

N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109

 $u_t = \Delta u + f(\mathbf{x}, u) + F$

Theorem

 $f(\cdot, \cdot)$ is 1-periodic in both variables, bounded, smooth, mean zero, generic.

- There ex. F_{*} > 0 such that for any 0 ≤ F ≤ F_{*} there exists a periodic stationary solution (pinning state) u_F : Δu_F + f(·, u_F) + F = 0.
- For F > F_{*}, there exist pulsating wave solutions U_F(x, t) with velocity V_F : U_F(·, t + 1/V_F) = U_F(·, t) + 1.

$$V_F = A_f[(F - F_*)_+]^{\frac{1}{2}} + o(|F - F_*|^{\frac{1}{2}})$$

N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109

 $u_t = \Delta u + f(\mathbf{x}, u) + F$

Theorem

 $f(\cdot, \cdot)$ is 1-periodic in both variables, bounded, smooth, mean zero, generic.

- There ex. F_{*} > 0 such that for any 0 ≤ F ≤ F_{*} there exists a periodic stationary solution (pinning state) u_F : Δu_F + f(·, u_F) + F = 0.
- For F > F_{*}, there exist pulsating wave solutions U_F(x, t) with velocity V_F : U_F(·, t + 1/V_F) = U_F(·, t) + 1.

$$V_F = A_f[(F - F_*)_+]^{\frac{1}{2}} + o(|F - F_*|^{\frac{1}{2}})$$

Forced Mean Curvature: Graph

Graph moving over **arbitrary plane** by mean curvature in unbounded domain:

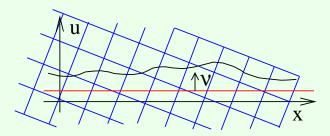
$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2} f(\mathbf{x}, u).$$

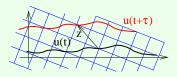
イロト イポト イヨト イヨト

Forced Mean Curvature: Graph

Graph moving over **arbitrary plane** by mean curvature in unbounded domain:

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2} f(\mathcal{O}_{\nu}(\mathbf{x}, \mathbf{u})).$$



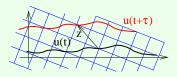


- Bounds in frame moving with velocity $c(\nu)$, continuous in ν
- There ex. c_{ν} s.t. for any $\mathbf{z} = (\mathbf{x}', \mathbf{r}) \in \mathbb{R}^{n+1}$ with $\mathcal{O}_{\nu}(\mathbf{x}', \mathbf{r}) \in \mathbb{Z}^{n+1}$

$$u(t, \mathbf{x}) = u(\mathbf{x} - \mathbf{x}', t + \tau) - r, \quad r = c_{\nu}\tau.$$

N. Dirr, **G. Karali**, **N.K. Yip**, Pulsating Wave for Mean Curvature Flow in Inhomogeneous Medium, EJAM 19 (2008) , 661-699. **Assumption:** Forcing small in *C*¹

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A



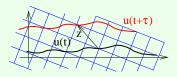
- Bounds in frame moving with velocity $c(\nu)$, continuous in ν
- There ex. c_{ν} s.t. for any $\mathbf{z} = (x', r) \in \mathbb{R}^{n+1}$ with $\mathcal{O}_{\nu}(x', r) \in \mathbb{Z}^{n+1}$

$$u(t, \mathbf{x}) = u(\mathbf{x} - \mathbf{x}', t + \tau) - r, \quad r = c_{\nu}\tau.$$

N. Dirr, G. Karali, N.K. Yip, Pulsating Wave for Mean Curvature Flow in Inhomogeneous Medium, EJAM 19 (2008) , 661-699.

Assumption: Forcing small in C

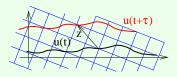
イロト イポト イヨト イヨト



- Bounds in frame moving with velocity $c(\nu)$, continuous in ν
- There ex. c_{ν} s.t. for any $\mathbf{z} = (x', r) \in \mathbb{R}^{n+1}$ with $\mathcal{O}_{\nu}(x', r) \in \mathbb{Z}^{n+1}$

$$u(t, \mathbf{x}) = u(\mathbf{x} - \mathbf{x}', t + \tau) - r, \quad r = c_{\nu}\tau.$$

N. Dirr, **G. Karali**, **N.K. Yip**, Pulsating Wave for Mean Curvature Flow in Inhomogeneous Medium, EJAM 19 (2008) , 661-699. Assumption: Forcing small in *C*¹

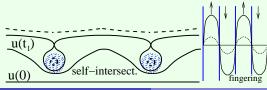


- Bounds in frame moving with velocity $c(\nu)$, continuous in ν
- There ex. c_{ν} s.t. for any $\mathbf{z} = (x', r) \in \mathbb{R}^{n+1}$ with $\mathcal{O}_{\nu}(x', r) \in \mathbb{Z}^{n+1}$

$$u(t, \mathbf{x}) = u(\mathbf{x} - \mathbf{x}', t + \tau) - r, \quad r = c_{\nu}\tau.$$

N. Dirr, G. Karali, N.K. Yip, Pulsating Wave for Mean Curvature Flow in Inhomogeneous Medium, EJAM 19 (2008) , 661-699.

Assumption: Forcing small in C¹



(a)

Related Results: MCF in heterogeneous media

- L. Caffarelli, R. De la Llave
- B. Craciun, K. Bhattacharya
- P.L. Lions, P.E. Souganidis
- P. Cardaliaguet, P.L. Lions, P.E. Souganidis
- K. Bhattacharya, P. Dondl

э

Random Environment

Forcing $f(x, u, \omega)$ (or $(f(X, \omega))$ random with short correlations. • Fluctuations

$$\int_V (f(X) - \mathbb{E}f(X)) dX \sim \sqrt{V} N(0, \sigma)$$

 \Rightarrow Interfaces not "flat"

 Rare events (e.g. large obstacles, "tail of distribution") matter, not just average

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Random Environment

Forcing $f(x, u, \omega)$ (or $(f(X, \omega))$ random with short correlations. • Fluctuations

$$\int_V (f(X) - \mathbb{E}f(X)) dX \sim \sqrt{V} N(0, \sigma)$$

\Rightarrow Interfaces not "flat"

 Rare events (e.g. large obstacles, "tail of distribution") matter, not just average

3

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Random Environment

Forcing $f(x, u, \omega)$ (or $(f(X, \omega))$ random with short correlations. • Fluctuations

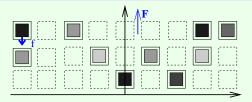
$$\int_V (f(X) - \mathbb{E}f(X)) dX \sim \sqrt{V} N(0, \sigma)$$

 \Rightarrow Interfaces not "flat"

 Rare events (e.g. large obstacles, "tail of distribution") matter, not just average

ヘロマ ヘロマ ヘロマ

Random Obstacle Model: Precise Setting



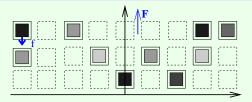
$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

 $F \ge 0$, (driving force), ϕ mollifier of $1_{[-\delta,\delta]^{n+1}}(x, u)$,

$$f(\mathbf{x}, \mathbf{u}) = \sum_{(i,j) \in \mathbb{Z}^n \times (\mathbb{Z} + \frac{1}{2})} \left(\mathbb{E}(\ell_{ij}) - \ell_{i,j}(\omega) \right) \phi(\mathbf{x} - i, \mathbf{u} - j)$$

 $(\ell_{i,j}(\omega))_{(i,j)\in\mathbb{Z}^n\times(\mathbb{Z}+\frac{1}{2})}$ are a family of independent identically distributed exponential random variables. There exists $\lambda_0 > 0$ such that $\mathbb{P}\{\ell(i,j)(\omega) > r\} = \lambda_0 e^{-\lambda_0 r}$ for $r \ge 0$

Random Obstacle Model: Precise Setting



$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

 $F \ge 0$, (driving force), ϕ mollifier of $1_{[-\delta,\delta]^{n+1}}(x, u)$,

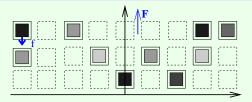
$$f(x, u) = \sum_{(i,j)\in\mathbb{Z}^n\times(\mathbb{Z}+\frac{1}{2})} \left(\mathbb{E}(\ell_{ij}) - \ell_{i,j}(\omega)\right) \phi(x - i, u - j)$$

$$i,j(\omega))_{(i,j)\in\mathbb{Z}^n\times(\mathbb{Z}+\frac{1}{2})} \text{ are a family of}$$

dependent identically distributed exponential random variables.
here exists $\lambda_0 > 0$ such that $\mathbb{P}\{\ell(i,j)(\omega) > r\} = \lambda_0 e^{-\lambda_0 r}$ for $r \ge 0$

(ℓ in Ti

Random Obstacle Model: Precise Setting



$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

 $F \ge 0$, (driving force), ϕ mollifier of $1_{[-\delta,\delta]^{n+1}}(x, u)$,

$$f(x, u) = \sum_{(i,j)\in\mathbb{Z}^n\times(\mathbb{Z}+\frac{1}{2})} \left(\mathbb{E}(\ell_{ij}) - \ell_{i,j}(\omega)\right) \phi(x - i, u - j)$$

$$(j,j(\omega))_{(i,j)\in\mathbb{Z}^n\times(\mathbb{Z}+\frac{1}{2})} \text{ are a family of dependent identically distributed exponential random variables.}$$

here exists $\lambda_0 > 0$ such that $\mathbb{P}\{\ell(i,j)(\omega) > r\} = \lambda_0 e^{-\lambda_0 r}$ for $r \ge 0$

(ℓ_i inc Th

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F \quad ext{on } \mathbb{R}^n$$

 $u(x) \ge 0$ (*)

Let n = 1 and u solve (*) on [-N, N] with u(-N) = u(N) = 0. Then there exist $F_0 > 0$, C and K such that for $F > F_0$ $\mathbb{P}(u(x) \ge KN - K|x|) \ge 1 - Ce^{-\frac{R}{2}}$

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F \quad ext{on } \mathbb{R}^n$$

 $u(x) \ge 0$ (*)

Barrier for/limit of

ι

$$\partial_t u(\mathbf{x}, t, \omega) = \Delta u(\mathbf{x}, t, \omega) + f(\mathbf{x}, u(\mathbf{x}, t, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(\mathbf{x}, 0) = 0$

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) on [-N, N] with u(-N) = u(N) = 0. Then there exist $F_0 > 0$, C and K such that for $F > F_0$ $\mathbb{P}(u(x) \ge KN - K|x|) \ge 1 - Ce^{-\frac{N}{C}}$

Corollary (n = 1)

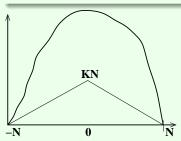
There is almost surely no global nonegative stationary solution of (*).

$$0 = \Delta u(x, \omega) + f(x, u(x, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) on [-N, N] with u(-N) = u(N) = 0. Then there exist $F_0 > 0$, C and K such that for $F > F_0$

$$\mathbb{P}\left(u(x) \geq KN - K|x|\right) \geq 1 - Ce^{-rac{N}{C}}$$



(日)

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F \quad ext{on } \mathbb{R}^n$$

 $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) on [-N, N] with u(-N) = u(N) = 0. Then there exist $F_0 > 0$, C and K such that for $F > F_0$ $\mathbb{P}(u(x) \ge KN - K|x|) \ge 1 - Ce^{-\frac{N}{C}}$

Corollary (n = 1)

ι

There is almost surely no global nonegative stationary solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

Nonnegative Stationary Solutions for Random Obstacle Model

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F \quad ext{on } \mathbb{R}^n$$

 $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) on [-N, N] with u(-N) = u(N) = 0. Then there exist $F_0 > 0$, C and K such that for $F > F_0$ $\mathbb{P}(u(x) \ge KN - K|x|) \ge 1 - Ce^{-\frac{N}{C}}$

Corollary (n = 1)

ι

There is almost surely no global nonegative stationary solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

$$\mathbb{P}\Big\{\omega: u(x,\omega)) \geq KN - K|x|\Big\} \geq 1 - Ce^{-rac{N}{C}}$$

- Coarse-graining: As u_{xx} = −F between obstacles, path determined by values on ∂ (ℝ \ (ℤ + [−δ,δ])) ⇒ v̄^δ : ℤ → δℤ
- Estimate discrete Laplacian against obstacle:
 Δ_d(i) + F ≤ Cℓ_{i,[v^δ(i)]}(ω)

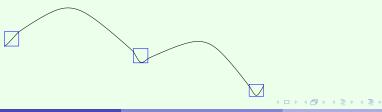
 $P(u(\omega) \text{ compatible with } V(t)) \leq CZ \left\{ 2^{-1}e^{-2\Sigma(A_0(t)+D_0)} \right\}$

э

・ロト ・ 四ト ・ ヨト ・ ヨト ・

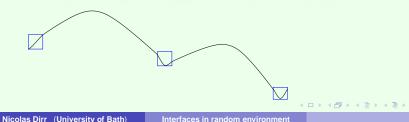
$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{K} \mathcal{N} - \mathcal{K} |x|\Big\} \geq 1 - \mathcal{C} e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: As $u_{xx} = -F$ between obstacles, path determined by values on $\partial (\mathbb{R} \setminus (\mathbb{Z} + [-\delta, \delta])) \Rightarrow \bar{v}^{\delta} : \mathbb{Z} \to \delta \mathbb{Z}$
- Estimate discrete Laplacian against obstacle:



$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{K} \mathcal{N} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C} e^{-rac{\mathcal{N}}{\mathcal{C}}}$$

- Coarse-graining: As $u_{xx} = -F$ between obstacles, path determined by values on $\partial (\mathbb{R} \setminus (\mathbb{Z} + [-\delta, \delta])) \Rightarrow \bar{v}^{\delta} : \mathbb{Z} \to \delta \mathbb{Z}$
- Estimate discrete Laplacian against obstacle: $\Delta_d(i) + F \leq C\ell_{i, [\bar{v}^{\delta}(i)]}(\omega)$



Non-Existence

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{K} \mathcal{N} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C} e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: As $u_{xx} = -F$ between obstacles, path determined by values on $\partial (\mathbb{R} \setminus (\mathbb{Z} + [-\delta, \delta])) \Rightarrow \overline{v}^{\delta} : \mathbb{Z} \to \delta \mathbb{Z}$
- Estimate discrete Laplacian against obstacle: $\Delta_d(i) + F \leq C\ell_{i, [\bar{\nu}^{\delta}(i)]}(\omega)$ Problem: Path may pass several obstacles above same integer

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{K} \mathcal{N} - \mathcal{K} |x|\Big\} \geq 1 - \mathcal{C} e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: As u_{xx} = -F between obstacles, path determined by values on ∂ (ℝ \ (ℤ + [-δ, δ])) ⇒ v̄^δ : ℤ → δℤ
- Estimate discrete Laplacian against obstacle:
 Δ_d(i) + F ≤ Cℓ_{i,[ν̄^δ(i)]}(ω)
 Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths: $\mathbb{P}(u(\omega) \text{ compatible with } \bar{v}^{\delta}(i)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_{d}(i) + F)_{+}} \right\}$
- Conclusion: Path crosses $KN K|x| \Rightarrow \sum_i (\Delta_d(i) + F) = O(N)$

3

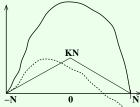
・ロット (日本) (日本) (日本)

Non-Existence

$$\mathbb{P}\Big\{\omega: \ u(m{x},\omega)) \geq K\!N - K|m{x}|\Big\} \geq 1 - Ce^{-rac{N}{C}}$$

- Coarse-graining: As $u_{xx} = -F$ between obstacles, path determined by values on $\partial (\mathbb{R} \setminus (\mathbb{Z} + [-\delta, \delta])) \Rightarrow \overline{v}^{\delta} : \mathbb{Z} \to \delta \mathbb{Z}$
- Estimate discrete Laplacian against obstacle: $\Delta_d(i) + F \leq C\ell_{i, [\bar{v}^{\delta}(i)]}(\omega)$ Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths: $\mathbb{P}(u(\omega) \text{ compatible with } \bar{v}^{\delta}(i)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_d(i) + F)_+} \right\}$

• Conclusion: Path crosses $KN - K|x| \Rightarrow \sum_{i} (\Delta_d(i) + F) = O(N)$



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

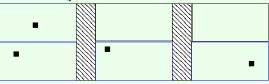
Existence

$$egin{aligned} 0 &= \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F \quad ext{on } \mathbb{R}^n \ u(x) &\geq 0 \end{aligned}$$
 (*)

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

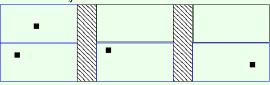
Discretization: Fix threshold *R*, call a box open if it contains obstacle ℓ_{i,j} > *R*.



- Suppose: There exists Lipschitz graph *w* ≥ 1 which is contained in the open set.
- From *w* construct function $v \ge 0$ with Lipschitz-constant C(F) which solves $\Delta v = -F$ outside strong obstacles.
- Inside strong obstacles: Paraboloids.

(a)

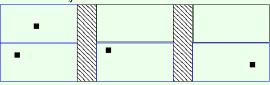
Discretization: Fix threshold *R*, call a box open if it contains obstacle ℓ_{i,j} > *R*.



- Suppose: There exists Lipschitz graph *w* ≥ 1 which is contained in the open set.
- From *w* construct function $v \ge 0$ with Lipschitz-constant C(F) which solves $\Delta v = -F$ outside strong obstacles.
- Inside strong obstacles: Paraboloids.

(a)

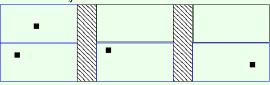
Discretization: Fix threshold *R*, call a box open if it contains obstacle ℓ_{i,j} > *R*.



- Suppose: There exists Lipschitz graph *w* ≥ 1 which is contained in the open set.
- From *w* construct function *v* ≥ 0 with Lipschitz-constant *C*(*F*) which solves Δ*v* = −*F* outside strong obstacles.
- Inside strong obstacles: Paraboloids.

イロト イポト イヨト イヨト

Discretization: Fix threshold *R*, call a box open if it contains obstacle ℓ_{i,j} > *R*.



- Suppose: There exists Lipschitz graph *w* ≥ 1 which is contained in the open set.
- From *w* construct function *v* ≥ 0 with Lipschitz-constant *C*(*F*) which solves Δ*v* = −*F* outside strong obstacles.
- Inside strong obstacles: Paraboloids.

(日)

Lemma

There exists a $p_0 > 0$ such that if closed sites are i.i.d. with $\mathbb{P}(z \text{ closed}) < p_0$, then a nonnegative discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ exists with (z, w(z)) closed for all $z \in \mathbb{Z}^n$.

Branching process on z (height of cone): Offspring distribution $\xi(z)$, new height $z + \xi(z)$.

 $\mathbb{E}\Big(\sum e^{\mu z}\xi(z)\Big) < 1$ for some $\mu > 0 \Rightarrow$ dies out

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Existence

Lipschitz Graph Percolation

Lemma

There exists a $p_0 > 0$ such that if closed sites are i.i.d. with $\mathbb{P}(z \text{ closed}) < p_0$, then a nonnegative discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ exists with (z, w(z)) closed for all $z \in \mathbb{Z}^n$.

Branching process on z (height of cone): Offspring distribution $\xi(z)$,

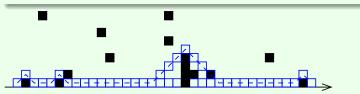
イロト イヨト イモト イモト

Existence

Lipschitz Graph Percolation

Lemma

There exists a $p_0 > 0$ such that if closed sites are i.i.d. with $\mathbb{P}(z \text{ closed}) < p_0$, then a nonnegative discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ exists with (z, w(z)) closed for all $z \in \mathbb{Z}^n$.



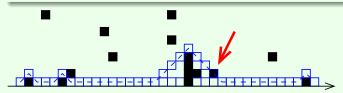
Branching process on z (height of cone): Offspring distribution $\xi(z)$.

Nicolas Dirr (University of Bath)

< □ > < □ > < □ > < □ > < □ >

Lemma

There exists a $p_0 > 0$ such that if closed sites are i.i.d. with $\mathbb{P}(z \text{ closed}) < p_0$, then a nonnegative discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ exists with (z, w(z)) closed for all $z \in \mathbb{Z}^n$.



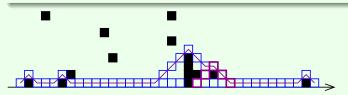
Branching process on *z* (height of cone): Offspring distribution $\xi(z)$, new height $z + \xi(z)$.

 $\mathbb{E}\Big(\sum_{z\in\mathbb{Z}}e^{\mu z}\xi(z)\Big)<1\quad\text{for some }\mu>0\ \Rightarrow\ \text{dies out}$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Lemma

There exists a $p_0 > 0$ such that if closed sites are i.i.d. with $\mathbb{P}(z \text{ closed}) < p_0$, then a nonnegative discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ exists with (z, w(z)) closed for all $z \in \mathbb{Z}^n$.

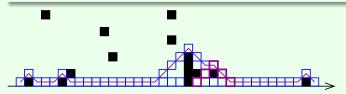


Branching process on *z* (height of cone): Offspring distribution $\xi(z)$, new height $z + \xi(z)$.

$$\mathbb{E}\Big(\sum_{z\in\mathbb{Z}}e^{\mu z}\xi(z)\Big)<1$$
 for some $\mu>0$ \Rightarrow dies out

Lemma

There exists a $p_0 > 0$ such that if closed sites are i.i.d. with $\mathbb{P}(z \text{ closed}) < p_0$, then a nonnegative discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ exists with (z, w(z)) closed for all $z \in \mathbb{Z}^n$.



Branching process on *z* (height of cone): Offspring distribution $\xi(z)$, new height $z + \xi(z)$.

$$\mathbb{E}\Big(\sum_{\boldsymbol{z}\in\mathbb{Z}}\boldsymbol{e}^{\mu\boldsymbol{z}}\xi(\boldsymbol{z})\Big)<1\quad\text{for some }\mu>0\;\Rightarrow\;\text{dies out}$$

Thank you for your attention!

臣