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The Random Obstacle Model

1l [Wf(x,u,w)=c>00nR"\Q,
; @ —————— on "obstacles" Qi:f(x,u,w) <0
= strength random (exponential r.v.)

"driving" force F > 0

u(x,t,w) = Au(x,t,w)+f(x,uX,t,w),w)+F onR"
u(x,0) = 0

Quenched Edwards-Wilkinson Model (QEW)
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The Random Obstacle Model

du(x,t,w) = Au(x,t,w)+f(x,u(x,t,w),w) +F onR"
u(x,0) = 0

Questions: Pinning/De-pinning: Is it true that
¢ 0 < F < F, : nonnegative stationary solution exists
oF >F,: no nonnegative stationary solution exists?
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The Random Obstacle Model

vy, Tw) = eAv(y,r,w)+f(ety,e vy, 7,w),w) +F
v(x,0) = 0

Questions: Pinning/De-pinning: Is it true that

¢ 0 < F < F, : nonnegative stationary solution exists

oF >F,: no nonnegative stationary solution exists?
"effective velocity" on scale 7 = e~ 1t, y = e 1x.
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Introduction

Forced Mean Curvature Flow as Gradient Flow

Zoom in on scale of heterogeneities: (X = JE.)
Liapunov functional (formal):

Area(T) + / F)dX  [V(Y)]

RHINE

“volume’
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Introduction

Forced Mean Curvature Flow as Gradient Flow

Zoom in on scale of heterogeneities: (X = JE.)
Liapunov functional (formal):

Area(T) + / F)dX  [V(Y)]

RHINE

“volume’

Gradient flow:

Vx = rx +f(X), X e Z(t) cR™L  [Y = —V/(Y)]

| —

-

I\ N

Ei g N Kkx mean curvature of interface and

NN \ \s\ Vyx normal velocity at point X.
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Pinning and De-Pinning: Semilinear Approximation

Forced mean curvature flow: Vx = kx +f(X) + F

- oy Tu()
(x,u(xt) X

If surface is graph (x,u(x,t)) thenu(x,t) : R" x R, — R solves

ou = 1/1+ |Vul?div VU +1/1+ |[Vuff(x,u).
1+ |Vul?
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Introduction

Pinning and De-Pinning: Semilinear Approximation

Forced mean curvature flow: Vx = kx +f(X) + F

- oy Tu()
(x,u(xt) X

If surface is graph (x,u(x,t)) thenu(x,t) : R" x R, — R solves

Au =1/1+ |Vul?div (\/Lz) + /1 + |Vul?f(x,u).
1+ |Vu|

gradient small , then (heuristic) approximation: semilinear PDE

u = Au +f(x,u) + F, F > 0 : external driving force.
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Some remarks on periodic forcing

o

u = Au +f(x,u) +F, F > 0: external driving force.

f(-,-) : R" x R — Ris 1-periodic in both variables,
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Some remarks on periodic forcing

o

u = Au +f(x,u) +F, F > 0: external driving force.

f(-,-) : R" x R — Ris 1-periodic in both variables,

2]
Vy = rx +f(X)+F, X € X(t) c R"?

F constant external “driving field, f(-,-) : R"*! — R is 1-periodic.
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Periodic Forcing

Pinning and De-Pinning: Semilinear Case

If surface is graph (x,u(x,t)) and gradient small , then approximation:
u(x,t) : R" x Ry — R periodic in x, solves semilinear PDE

u = Au +f(x,u) + F, F > 0 : external driving force.

f(-,-) is 1-periodic in both variables, bounded, smooth, mean zero,
“generic,” and f changes its sign!
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Pinning/De-Pinning

u = Au+f(x,u)+F

Theorem

f(-,-) is 1-periodic in both variables, bounded, smooth, mean zero,
generic.
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Pinning/De-Pinning

u = Au+f(x,u)+F

Theorem

f(-,-) is 1-periodic in both variables, bounded, smooth, mean zero,
generic.

@ There ex. F, > 0 such that for any 0 < F < F, there exists a
periodic stationary solution  (pinning state) ug :
Aug +f(-,ug)+F =0.
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u = Au+f(x,u)+F

Theorem

f(-,-) is 1-periodic in both variables, bounded, smooth, mean zero,
generic.

@ There ex. F, > 0 such that for any 0 < F < F, there exists a
periodic stationary solution  (pinning state) ug :
Aug +f(-,ug)+F =0.

@ For F > F,, there exist pulsating wave solutions  Ug(X,t) with
velocity Vg :
Ue(t +1/VE) = Ue(-,t) + 1.
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Pinning/De-Pinning

u = Au+f(x,u)+F

Theorem

f(-,-) is 1-periodic in both variables, bounded, smooth, mean zero,
generic.

@ There ex. F, > 0 such that for any 0 < F < F, there exists a
periodic stationary solution  (pinning state) ug :
Aug +f(-,ug)+F =0.

@ For F > F,, there exist pulsating wave solutions  Ug(X,t) with
velocity Vg :
Ue(t +1/VE) = Ue(-,t) + 1.

Ve = Af[(F —F.)4 ]2 + o([F — F.[2)
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Pinning/De-Pinning
N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109
u = Au+f(x,u)+F

Theorem

f(-,-) is 1-periodic in both variables, bounded, smooth, mean zero,
generic.

@ There ex. F, > 0 such that for any 0 < F < F, there exists a
periodic stationary solution  (pinning state) ug :
Aug +f(-,ug)+F =0.

@ For F > F,, there exist pulsating wave solutions  Ug(X,t) with
velocity Vg :
Ue(t +1/VE) = Ue(-,t) + 1.

Ve = Af[(F —F.)4 ]2 + o([F — F.[2)
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Forced Mean Curvature: Graph

Graph moving over arbitrary plane by mean curvature in unbounded
domain:

du = /14 |Vul’div (vu)—i—\/l—i—Vuzf(x,u).

1+4|Vup?

fa T

/S\l/

|
/

VX
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Forced Mean Curvature: Graph

Graph moving over arbitrary plane by mean curvature in unbounded
domain:

du = /14 |Vuldiv (\/Lz)—l—\/l—FVuzf((’)y(x,u)).
1+ |Vu|

] Y,
[ I~ T 7 I~

T T A X
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Pulsating Wave

¢ Bounds in frame moving with velocity c(v), continuous in v
e There ex. ¢, s.t. forany z = (x',r) € R"! with O, (x’,r) € Z"+1

ut,x) =ux —x;t+7)—r, r=c,7.
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Pulsating Wave

~7_/ “i =

¢ Bounds in frame moving with velocity c(v), continuous in v
e There ex. ¢, s.t. forany z = (x',r) € R"! with O, (x’,r) € Z"+1

ut,x) =ux —x;t+7)—r, r=c,7.

N. Dirr, G. Karali, N.K. Yip , Pulsating Wave for Mean Curvature Flow in
Inhomogeneous Medium, EJAM 19 (2008) , 661-699.
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Pulsating Wave

“iA

¢ Bounds in frame moving with velocity c(v), continuous in v
e There ex. ¢, s.t. forany z = (x',r) € R"! with O, (x’,r) € Z"+1

ut,x) =ux —x;t+7)—r, r=c,7.

N. Dirr, G. Karali, N.K. Yip , Pulsating Wave for Mean Curvature Flow in
Inhomogeneous Medium, EJAM 19 (2008) , 661-699.
Assumption: Forcing small in C*
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Pulsating Wave

¢ Bounds in frame moving with velocity c(v), continuous in v
e There ex. ¢, s.t. forany z = (x',r) € R"! with O, (x’,r) € Z"+1
ut,x) =ux —x;t+7)—r, r=c,7.

N. Dirr, G. Karali, N.K. Yip , Pulsating Wave for Mean Curvature Flow in
Inhomogeneous Medium, EJAM 19 (2008) , 661-699.
Assumption: Forcing small in C*

Z/self-intersect=£
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Related Results: MCF in heterogeneous media

e L. Caffarelli, R. De la Llave

e B. Craciun, K. Bhattacharya

e PL. Lions, P.E. Souganidis

e P. Cardaliaguet, P.L. Lions, P.E. Souganidis

e K. Bhattacharya, P. Dondl
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Random Environment
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Heuristics
Random Environment

Forcing f(x, u,w) (or (f(X,w)) random with short correlations.
@ Fluctuations

/(f(X) — Ef(X))dX ~ VVN(0,0)
\%

= Interfaces not "flat"

Nicolas Dirr  (University of Bath ) Interfaces in random environment 11/18



Heuristics
Random Environment

Forcing f(x, u,w) (or (f(X,w)) random with short correlations.
@ Fluctuations

/(f(X) — Ef(X))dX ~ VVN(0,0)
\%

= Interfaces not "flat"

@ Rare events (e.g. large obstacles, "tail of distribution") matter, not
just average
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Results for Random Obstacle Model
Random Obstacle Model: Precise Setting

du(x,t,w) = Au(x,t,w)+f(x,uX,t,w),w)+F onR"
u(x,0) = 0

F > 0, (driving force), ¢ mollifier of 1[_575]n+1(x, u),
f(x,u) = Z(M)EZ“X(%%) (B(l) — 4j(w) o(x —i,u =)

independent identically distributed exponential random variables.
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u(x,0) = 0

F > 0, (driving force), ¢ mollifier of 1[_575]n+1(x, u),
f(x,u) = Z(M)EZ“X(%%) (B(l) — 4j(w) o(x —i,u =)

(4 (w))(i,j)eZ"x(Z—f—%) are a family of
independent identically distributed exponential random variables.
There exists \g > 0 such that P{/(i,j)(w) > r} = Age™" forr >0
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Results for Random Obstacle Model
Nonnegative Stationary Solutions for Random
Obstacle Model

0 = Au(x,w) + f(x,u(x,w),w) + F onR"
u(x)>0

(*)

Nicolas Dirr  (University of Bath ) Interfaces in random environment 13/18



Results for Random Obstacle Model
Nonnegative Stationary Solutions for Random
Obstacle Model

0 = Au(x,w) + f(x,u(x,w),w) + F onR"
u(x)>0
Barrier for/limit of

(%)

au(x,t,w) = Au(x,t,w)+f(x,uX,t,w),w)+F onR"
u(x,0) = 0

Nicolas Dirr  (University of Bath ) Interfaces in random environment 13/18



Random Environment: Model and Results Results for Random Obstacle Model

Nonnegative Stationary Solutions for Random
Obstacle Model

0 = Au(x,w) + f(x,u(x,w),w) + F onR"
u(x)>0 )
Theorem (N.D., J. Coville, S. Luckhaus)
Let n = 1 and u solve (x) on [N, N] with u(—=N) = u(N) = 0. Then
there exist Fg > 0, C and K such that for F > Fg
P (u(x) > KN —K|[x|) >1—Ce~¢

KN
-N 0 'N
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Random Environment: Model and Results Results for Random Obstacle Model

Nonnegative Stationary Solutions for Random
Obstacle Model

0= Au(x,w) + f(x,u(X,w),w) + F onR" )
*
u(x)>0
Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (x) on [-N, N] with u(—N) = u(N) = 0. Then
there exist Fo > 0, C and K such that for F > Fg

P(u(x) > KN —K|x|) >1—Ce ¢

Corollary (n = 1)

There is almost surely no global nonegative stationary solution of (x).
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Results for Random Obstacle Model
Nonnegative Stationary Solutions for Random
Obstacle Model

0= Au(x,w) + f(x,u(X,w),w) + F onR"
u(x)>0
Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (x) on [-N, N] with u(—N) = u(N) = 0. Then
there exist Fo > 0, C and K such that for F > Fg
P(u(x) > KN —K|x|) > 1—Ce ¢

(*)

Corollary (n = 1)
There is almost surely no global nonegative stationary solution of (x).

Theorem (N.D., P. Dondl, M. Scheutzow)

Letn =1,2. There ex. 0 < F; such that for 0 < F < F1, () has almost
surely a solution with E[u(x,w)] = ¢ < oo for all x € R".

v
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Non-Existence
Non-Existence

]P’{w: u(x,w)) > KN —ny\} >1-Ce ¢
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Non-Existence
Non-Existence

]P’{w: u(x,w)) > KN —ny\} >1-Ce ¢

@ Coarse-graining: As uxx = —F between obstacles, path
determined by values on 9 (R \ (Z + [6,0])) = V° : Z — §Z
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Non-Existence
Non-Existence
]P’{w L u(X,w)) > KN — K|x\} >1-Ce ¢

@ Coarse-graining: As uxx = —F between obstacles, path
determined by values on 9 (R \ (Z + [6,0])) = V° : Z — §Z

@ Estimate discrete Laplacian against obstacle:
Ad (I) +F < CEi,[V‘S(i)[(w)
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Non-Existence
Non-Existence

IP’{w L u(x,w)) > KN — K|x|} >1_Ce ¢
@ Coarse-graining: As uyx = —F between obstacles, path
determined by values on 9 (R \ (Z + [-6,0])) = V° : Z — 67
@ Estimate discrete Laplacian against obstacle:
Ad (I) +F < C£i7[95(i)[(w)
Problem: Path may pass several obstacles above same integer

\
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Non-Existence
Non-Existence

]P’{w L u(X,w)) > KN — K|x\} >1-Ce ¢
@ Coarse-graining: As uxx = —F between obstacles, path
determined by values on 9 (R \ (Z + [-6,0])) = V° : Z — §Z

@ Estimate discrete Laplacian against obstacle:

Aqg(i) + F < C4 gogiy(w)

Problem: Path may pass several obstacles above same integer
@ Auxiliary random measure on paths:

P(u(w) compatible withv?(i)) < CZ {Z—le—c Zi(Ad(i)+F)+}
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Non-Existence
Non-Existence

IP’{w L u(x,w)) > KN — K|x\} >1_Ce ¢
@ Coarse-graining: As uyx = —F between obstacles, path
determined by values on 9 (R \ (Z + [-6,0])) = V° : Z — 67
@ Estimate discrete Laplacian against obstacle:
Aqg(i) +F < Cl oy (w)
Problem: Path may pass several obstacles above same integer
@ Auxiliary random measure on paths:
P(u(w) compatible withv®(i)) < CZ {Z—le‘C Zi(Ad(i)+F)+}
@ Conclusion: Path crosses KN — K |x| = Y"i(Aq(i) + F) = O(N)

-N 0 2 \_\\ 'N
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Existence
Existence

0= Au(x,w) + f(x,u(X,w),w) + F onR" )
*
u(x)>0

Theorem (N.D., P. Dondl, M. Scheutzow)

Letn =1,2. There ex. 0 < F; such that for 0 < F < Fy, () has almost
surely a solution with E[u(x,w)] = ¢ < oo for all x € R".
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Existence
Existence: Construction

@ Discretization: Fix threshold R, call a box open if it contains
obstacle /;; > R.

00
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@ Discretization: Fix threshold R, call a box open if it contains
obstacle /;; > R.

00

S S

@ Suppose: There exists Lipschitz graph w > 1 which is contained
in the open set.
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Existence
Existence: Construction

@ Discretization: Fix threshold R, call a box open if it contains
obstacle /;; > R.

00

S S
u

@ Suppose: There exists Lipschitz graph w > 1 which is contained
in the open set.

@ From w construct function v > 0 with Lipschitz-constant C(F)
which solves Av = —F outside strong obstacles.
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Existence
Existence: Construction

@ Discretization: Fix threshold R, call a box open if it contains
obstacle ¢ j > R.

00

S S

@ Suppose: There exists Lipschitz graph w > 1 which is contained
in the open set.

@ From w construct function v > 0 with Lipschitz-constant C(F)
which solves Av = —F outside strong obstacles.

@ Inside strong obstacles: Paraboloids.
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= S
Lipschitz Graph Percolation

Lemma

There exists a po > 0 such that if closed sites are i.i.d. with

P(z closed < po, then a nonnegative discrete 1-Lipschitz graph
w : Z" — N exists with (z,w(z)) closed for all z € Z".
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= S
Lipschitz Graph Percolation

Lemma

There exists a pp > 0 such that if closed sites are i.i.d. with
P(z closed < po, then a nonnegative discrete 1-Lipschitz graph
w : Z" — N exists with (z,w(z)) closed for all z € Z".
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Lipschitz Graph Percolation

Lemma

There exists a pp > 0 such that if closed sites are i.i.d. with
P(z closed < po, then a nonnegative discrete 1-Lipschitz graph
w : Z" — N exists with (z,w(z)) closed for all z € Z".
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= S
Lipschitz Graph Percolation

Lemma

There exists a po > 0 such that if closed sites are i.i.d. with
P(z closed < po, then a nonnegative discrete 1-Lipschitz graph
w : Z" — N exists with (z,w(z)) closed for all z € Z".

Branching process on z (height of cone): Offspring distribution £(z),
new height z + £(z).

E(Ze“zg(z)) <1 forsomey >0 = dies out
Z€Z
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Thank you for your attention!

Nicolas Dirr ~ (University of Bath ) Interfaces in random environment



	Introduction
	Periodic Forcing
	Random Environment: Model and Results
	Heuristics
	Results for Random Obstacle Model

	Sketch of the Proof
	Non-Existence
	Existence


