
Interfaces in random environment

Nicolas Dirr

Department of Mathematical Sciences
University of Bath
N.Dirr@bath.ac.uk

Vancouver, July 20, 2009

Nicolas Dirr (University of Bath ) Interfaces in random environment 1 / 18



Introduction

The Random Obstacle Model
F

f
f (x , u, ω) = c ≥ 0 on R

n+1 \ Qi ,
on "obstacles" Qi : f (x , u, ω) ≤ 0
strength random (exponential r.v.)
"driving" force F ≥ 0

∂tu(x , t , ω) = ∆u(x , t , ω) + f (x , u(x , t , ω), ω) + F on R
n

u(x , 0) = 0

Quenched Edwards-Wilkinson Model (QEW) Questions:
Pinning/De-pinning: Is it true that
• 0 < F < F∗ : nonnegative stationary solution exists
• F > F∗ : no nonnegative stationary solution exists?
"effective velocity" on scale τ = ǫ−1t , y = ǫ−1x .
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Introduction

Forced Mean Curvature Flow as Gradient Flow

Zoom in on scale of heterogeneities: (Σ = ∂E .)
Liapunov functional (formal):

Area(Σ) +

∫

Rn+1∩E
f (X )dX

︸ ︷︷ ︸

“volume′′

[V (Y )]

Gradient flow:

VX = κX + f (X ), X ∈ Σ(t) ⊂ R
n+1 [Ẏ = −V ′(Y )]

(t)Σ
ν

E κX mean curvature of interface and
VX normal velocity at point X .
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Introduction

Pinning and De-Pinning: Semilinear Approximation

Forced mean curvature flow: Vx = κx + f (x) + F

x
ν f(x,u(x))

(x,u(x,t))

u

If surface is graph (x , u(x , t)) then u(x , t) : R
n × R+ → R solves

∂tu =

√

1 + |∇u|2 div




∇u

√

1 + |∇u|2



 +

√

1 + |∇u|2 f (x , u).

gradient small , then (heuristic) approximation: semilinear PDE

ut = ∆u + f (x , u) + F , F ≥ 0 : external driving force.

Nicolas Dirr (University of Bath ) Interfaces in random environment 4 / 18



Introduction

Pinning and De-Pinning: Semilinear Approximation

Forced mean curvature flow: Vx = κx + f (x) + F

x
ν f(x,u(x))

(x,u(x,t))

u

If surface is graph (x , u(x , t)) then u(x , t) : R
n × R+ → R solves

∂tu =

√

1 + |∇u|2div




∇u

√

1 + |∇u|2



 +

√

1 + |∇u|2f (x , u).

gradient small , then (heuristic) approximation: semilinear PDE

ut = ∆u + f (x , u) + F , F ≥ 0 : external driving force.

Nicolas Dirr (University of Bath ) Interfaces in random environment 4 / 18



Periodic Forcing

Some remarks on periodic forcing

1

ut = ∆u + f (x , u) + F , F ≥ 0 : external driving force.

f (·, ·) : R
n × R → R is 1-periodic in both variables,

2

VX = κX + f (X ) + F , X ∈ Σ(t) ⊂ R
n+1

F constant external “driving field, f (·, ·) : R
n+1 → R is 1-periodic.
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Periodic Forcing

Pinning and De-Pinning: Semilinear Case

Vx = κx + f (x) + F

If surface is graph (x , u(x , t)) and gradient small , then approximation:
u(x , t) : R

n × R+ → R periodic in x , solves semilinear PDE

ut = ∆u + f (x , u) + F , F ≥ 0 : external driving force.

f (·, ·) is 1-periodic in both variables, bounded, smooth, mean zero,
“generic,” and f changes its sign!
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Periodic Forcing

Pinning/De-Pinning

N. Dirr, N.K. Yip, Interfaces and Free Boundaries 8 (2006), 79-109

ut = ∆u + f (x , u) + F

Theorem

f (·, ·) is 1-periodic in both variables, bounded, smooth, mean zero,
generic.

There ex. F∗ > 0 such that for any 0 ≤ F ≤ F∗ there exists a
periodic stationary solution (pinning state) uF :
∆uF + f (·, uF ) + F = 0.

For F > F∗, there exist pulsating wave solutions UF (x , t) with
velocity VF :
UF (·, t + 1/VF ) = UF (·, t) + 1.

VF = Af [(F − F∗)+]
1
2 + o(|F − F∗|

1
2 )
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Periodic Forcing

Forced Mean Curvature: Graph

Graph moving over arbitrary plane by mean curvature in unbounded
domain:

∂tu =

√

1 + |∇u|2div




∇u

√

1 + |∇u|2



 +

√

1 + |∇u|2f (x , u).

u
ν

x
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


∇u

√
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√
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Periodic Forcing

Pulsating Wave

u(t+  )τ

u(t)
z

• Bounds in frame moving with velocity c(ν), continuous in ν
• There ex. cν s.t. for any z = (x ′, r) ∈ R

n+1 with Oν(x ′, r) ∈ Z
n+1

u(t , x) = u(x − x ′, t + τ) − r , r = cντ.

N. Dirr, G. Karali, N.K. Yip , Pulsating Wave for Mean Curvature Flow in
Inhomogeneous Medium, EJAM 19 (2008) , 661-699.
Assumption: Forcing small in C1
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N. Dirr, G. Karali, N.K. Yip , Pulsating Wave for Mean Curvature Flow in
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Assumption: Forcing small in C1

u(0) self−intersect.

u(t )1

fingering
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Periodic Forcing

Related Results: MCF in heterogeneous media

• L. Caffarelli, R. De la Llave

• B. Craciun, K. Bhattacharya

• P.L. Lions, P.E. Souganidis

• P. Cardaliaguet, P.L. Lions, P.E. Souganidis

• K. Bhattacharya, P. Dondl
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Random Environment: Model and Results Heuristics

Random Environment

Forcing f (x , u, ω) (or (f (X , ω)) random with short correlations.

Fluctuations
∫

V
(f (X ) − Ef (X ))dX ∼

√
VN(0, σ)

⇒ Interfaces not "flat"

Rare events (e.g. large obstacles, "tail of distribution") matter, not
just average
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Random Environment: Model and Results Results for Random Obstacle Model

Random Obstacle Model: Precise Setting
F

f

∂tu(x , t , ω) = ∆u(x , t , ω) + f (x , u(x , t , ω), ω) + F on R
n

u(x , 0) = 0

F ≥ 0, (driving force), φ mollifier of 1[−δ,δ]n+1(x , u),

f (x , u) =
∑

(i ,j)∈Zn×(Z+ 1
2 )

(
E(ℓij) − ℓi ,j(ω)

)
φ(x − i , u − j)

(ℓi ,j(ω))(i ,j)∈Zn×(Z+ 1
2 ) are a family of

independent identically distributed exponential random variables.
There exists λ0 > 0 such that P{ℓ(i , j)(ω) > r} = λ0e−λ0r for r ≥ 0
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Random Environment: Model and Results Results for Random Obstacle Model

Nonnegative Stationary Solutions for Random
Obstacle Model

0 = ∆u(x , ω) + f (x , u(x , ω), ω) + F on R
n

u(x) ≥ 0
(∗)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (∗) on [−N, N] with u(−N) = u(N) = 0. Then
there exist F0 > 0, C and K such that for F > F0

P (u(x) ≥ KN − K |x |) ≥ 1 − Ce−
N
C

Corollary (n = 1)

There is almost surely no global nonegative stationary solution of (∗).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. 0 < F1 such that for 0 < F < F1, (∗) has almost
surely a solution with E[u(x , ω)] = c < ∞ for all x ∈ R

n.
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Sketch of the Proof Non-Existence

Non-Existence

P

{

ω : u(x , ω)) ≥ KN − K |x |
}

≥ 1 − Ce−
N
C

Coarse-graining: As uxx = −F between obstacles, path
determined by values on ∂ (R \ (Z + [−δ, δ])) ⇒ v̄δ : Z → δZ

Estimate discrete Laplacian against obstacle:
∆d(i) + F ≤ Cℓi ,[v̄δ(i)[(ω)
Problem: Path may pass several obstacles above same integer

Auxiliary random measure on paths:

P(u(ω) compatible withv̄δ(i)) ≤ CZ
{

Z−1e−C
P

i(∆d (i)+F )+

}

Conclusion: Path crosses KN − K |x | ⇒
∑

i(∆d (i) + F ) = O(N)
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Estimate discrete Laplacian against obstacle:
∆d(i) + F ≤ Cℓi ,[v̄δ(i)[(ω)
Problem: Path may pass several obstacles above same integer

Auxiliary random measure on paths:

P(u(ω) compatible withv̄δ(i)) ≤ CZ
{

Z−1e−C
P

i(∆d (i)+F )+

}

Conclusion: Path crosses KN − K |x | ⇒ ∑

i(∆d (i) + F ) = O(N)
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Sketch of the Proof Existence

Existence

0 = ∆u(x , ω) + f (x , u(x , ω), ω) + F on R
n

u(x) ≥ 0
(∗)

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. 0 < F1 such that for 0 < F < F1, (∗) has almost
surely a solution with E[u(x , ω)] = c < ∞ for all x ∈ R

n.
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Sketch of the Proof Existence

Existence: Construction

Discretization: Fix threshold R, call a box open if it contains
obstacle ℓi ,j > R.

Suppose: There exists Lipschitz graph w ≥ 1 which is contained
in the open set.

From w construct function v ≥ 0 with Lipschitz-constant C(F )
which solves ∆v = −F outside strong obstacles.

Inside strong obstacles: Paraboloids.
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Sketch of the Proof Existence

Lipschitz Graph Percolation

Lemma

There exists a p0 > 0 such that if closed sites are i.i.d. with
P(z closed) < p0, then a nonnegative discrete 1-Lipschitz graph
w : Z

n → N exists with (z, w(z)) closed for all z ∈ Z
n.

Branching process on z (height of cone): Offspring distribution ξ(z),
new height z + ξ(z).

E

(∑

z∈Z

eµzξ(z)
)

< 1 for someµ > 0 ⇒ dies out
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Thank you for your attention!
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