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Algebraic number fields

An algebraic number field K is a finite algebraic extension of Q.

O = ring of algebraic integers.
= zeros of monic polynomials with integer coefficients.

O∗ = units of O = integers whose inverses (in K ) are also integers.

JK = fractional ideals in K , i.e. nonzero finitely-generated
O-submodules a of K ; JK is an abelian group under
ab := {

∑
aibi : ai ∈ a, bi ∈ b}.

Unique factorization fails in general for algebraic numbers, but holds
for ideals: JK is free abelian generated by prime ideals.

Dedekind zeta function of K :

ζK (β) :=
∑
a⊂O

N−βa =
∏
p∈PK

(1− N−βp )−1,

where Na := |O/a| is the absolute norm of the ideal a ⊂ O, and the
Euler product is over the prime ideals PK ; it converges for <β > 1
and diverges for <β ≤ 1
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Abstract class field theory (à la Artin and Tate)

Aim: to describe G(K ab/K ) in terms of the arithmetic properties of K .
Given a number field K and an absolute value v on K , let Kv be the
corresponding completion. For nonarchimedean v , let Ov ⊂ Kv be the
completion of the algebraic integers O in K , and let K ∗v and O∗v be the
corresponding groups of invertible elements in those rings. Define the
group of ideles to be the restricted product

A∗K :=
∏

v infinite

K ∗v ×
∏

v finite

(K ∗v ;O∗v )

with no restriction at the infinite (or archimedean) places.
There is a group homomorphism (known as the Artin map) of the idele
class group A∗K/K ∗ onto G(K ab/K ) with kernel the connected component
of the identity.
Example: for K = Q we have A∗Q = R∗ ×

∏
p(Q∗p;Z∗p) because the finite

absolute values are the p-adic ones | · |p, giving Q ↪→ Qp, and the only
infinite one gives Q ↪→ R.
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Hilbert’s 12th problem

For K = Q, the Kronecker-Weber Theorem states that

Qab = Qcycl := Q[{exp(2iπr) : r ∈ Q/Z}]
that is, one only has to adjoin the roots of unity to Q in order to obtain
Qab. The corresponding Galois group Gab is isomorphic to AutQ/Z ∼= Ẑ∗.

Problem (H12)

For any algebraic number field K , obtain a generalization of the
Kronecker-Weber theorem giving the concrete embeddings

K ab ↪→ C

in terms of specific values of trascendental functions that generate K ab.

For K = Q[
√
−d ] (d > 0) an imaginary quadratic field, the theory of

complex multiplication gives the values of modular functions one has to
adjoin to K in order to obtain K ab.
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Problem A: (Connes-Marcolli-Ramachandran ’05)∗

Given an algebraic number field K , construct a C*-dynamical system
(A, σ) such that

(i) the partition function is the Dedekind zeta function of K ;

(ii) the Galois group G(K ab/K ) acts as symmetries of the system;

(iii) for each inverse temperature 0 < β ≤ 1 there is a unique KMSβ-state;

(iv) for each 1 < β ≤ ∞ the action of G(K ab/K ) on the extremal
KMSβ-states is free and transitive;

(v) there is a K -subalgebra A0 of A such that the extremal KMS∞-states
are fabulous in the sense that their values on elements of A0 are
algebraic numbers that generate the maximal abelian extension K ab

of K ; and

(vi) the Galois action of G(K ab/K ) on these values corresponds to the
symmetry action induced on the extremal KMS∞-states.

∗(slightly reformulated here)
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Ingredients

Partition function Tr exp(−βH) with H = Hamiltonian (of a state).

Dedekind zeta function ζK (β) :=
∑
a∈J+

K

|O/a|−β,

with O = {algebraic integers in K} and J+
K = {nonzero ideals in O}.

K ab = maximal abelian extension of K (a subfield of C of infinite
degree; the object of class field theory).

Symmetries = a group of automorphisms of A that commute with σ.

KMS (twisted trace) condition at inverse temperature β.

KMS∞ states are ground states obtained as limits of KMSβ states as
β →∞.

The extremal KMS∞ states ϕ should be equivariant:

ϕ(αχ−1(a)) = χ(ϕ(a)) a ∈ A0, χ ∈ G(K ab/K )

where the l.h.s. is from the symmetry action on A0 while the r.h.s. is
from the Galois action on K ab.
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K = Q (Bost-Connes, Selecta Math ’95)

C*-algebra = Hecke C*-algebra CQ ∼= C (Ẑ) oN×;

Dynamics σ = naturally arising from QoQ∗+ → Q∗+ ↪→ R∗+;

Symmetry group = Aut(Q/Z) ∼= Ẑ∗ acting on C ∗(Q/Z) ∼= C (Ẑ);

Extremal KMS∞ states ↔ unit point masses on Ẑ∗;
Arithmetic Q-subalgebra A0 = Q[Q/Z] oN× ∼=, (viewed as a
subalgebra of CQ);

ϕ(A0) = Q[roots of unity] for every extremal KMS∞ state ϕ.

The canonical action of Aut(Q/Z) on C ∗(Q/Z) (or of Ẑ∗ on C (Ẑ)) as
symmetries of the dynamical system corresponds to the action of
G(Qcycl/Q) ∼= Aut(Q/Z) on the values of KMS∞ states on A0.

Since Qcycl = Qab by the Kronecker-Weber theorem this raises the
tantalizing possibility of a connection between quantum dynamical systems
and explicit class field theory.
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A Hecke algebra construction for algebraic number fields

Theorem (L-van Frankenhuijsen ’06)

1 For any number field K, the Hecke C*-algebra CK := C ∗(PK ,PO) is

isomorphic to a semigroup crossed product C (Ô)O
∗ o (O×/O∗), on

which the absolute norm N : O× → (1,∞) induces a dynamics σ
analogous to the Bost-Connes system for CQ = C ∗(P+

Q ,P
+
Z ).

2 For totally imaginary fields K of class number hK = 1 the KMS state
structure, the symmetries and the partition function of the resulting
system (CK , σ) are as desired (for these fields, the system is
isomorphic to the one in [L-L-N] and [H-P], and is related to the ones
in [Harari-Leichtnam Selecta Math ’97]).

3 the ‘obvious’ choice of A0 = Hecke *-algebra over K does not
produce enough values ϕ(a0) with ϕ extremal KMS∞ and ao ∈ A0 to
generate K ab (only the cyclotomic extension is generated); moreover
the symmetry action of G(K ab/K ) ∼= Ô∗/O∗ does not match the
Galois action on values of KMS∞ states.
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K = Q[
√
−d ]

(Connes-Marcolli-Ramachandran, Selecta Math ’05)

Solution: A := groupoid C*-algebra of the commensurability
equivalence relation of 1-dimensional K -lattices modulo C∗, with the
natural dynamics from absolute norm on K .
To make KMS computations easier, it is convenient to realize A as the
semigroup crossed product C (Y ) o J+

K , with J+
K = the semigroup of

integral ideals acting by multiplication on

Y ∼= G(K ab/K )×Ô∗ Ô.

Arithmetic subalgebra A0: 1-dimensional K -lattices embed in
2-dimensional Q-lattices of the GL2 system of Connes-Marcolli. This,
together with results about modular functions on elliptic curves is used to
extract A0 from the arithmetic algebra of the GL2-system.

No similar results are known outside Q and imaginary quadratic fields.
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A system for arbitrary K : the space X
We construct a direct generalization for general number fields of the
Connes Marcolli, Ramachandran system for Q[

√
−d ], which is also

isomorphic to a particular case of a very general construction for Shimura
varieties from [Ha and Paugam, IMRP 05].

Let AK ,f =
∏

v<∞(Kv ;Ov ) be the finite adeles over K . A finite idele
j ∈ AK ,f

∗ acts on
G(K ab/K )× AK ,f ,

via the Artin map s : AK
∗ → G(K ab/K ) on the first component and via

multiplication on the second one:

j(γ,m) = (γs(j)−1, jm)

We balance this product over the compact group of finite integral ideles
Ô∗ :=

∏
v<∞O∗v (i.e. we take the quotient modulo the sub-action of Ô∗):

X := G ×Ô∗ AK ,f .
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A system for arbitrary K : C*-algebra and dynamics
The action of the finite ideles drops to an action of the fractional ideals
JK ∼= AK ,f

∗/Ô∗ on the balanced product

X := G ×Ô∗ AK ,f .

Finally, we restrict the 2nd component to be a finite integral adele:

Y := G ×Ô∗ Ô

and form the restricted groupoid

JK � Y = {(g , x) : g ∈ JK , x ∈ Y , gx ∈ Y }.

This restricted groupoid has a C*-algebra A: C ∗r (JK � Y ), which
turns out to be isomorphic to the semigroup crossed product C (Y ) o J+

K
of C (Y ) by an endomorphic action of the integral ideals J+

K .

The usual norm N : JK → Q∗+ ↪→ R∗+ gives rise to a dynamics σ
determined by σt(Fug ) = N it

g Fug , where F ∈ C (Y ) and g ∈ J+
K .
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Theorem (L-Larsen-Neshveyev, JNT 08)

For any number field K , the system (A, σ) with
A = C ∗r (JK � Y ) ∼= C (Y ) o J+

K , Y := G ×Ô∗ Ô, and σt(Fug ) = N it
g Fug

for F ∈ C (Y ), g ∈ J+
K , and t ∈ R, satisfies:

1 the partition function is ζK (β) =
∑

a∈J+
K

N(a)−β, the Dedekind

zeta-function;

2 G := G(K ab/K ) acts as symmetries of (A, σ) via

αχ(F )(γ,m) = F (χ−1γ,m) χ ∈ G;

3 there is a unique KMSβ-state for each 0 < β ≤ 1, and none for β < 0;

4 for each 1 < β ≤ ∞ the extremal KMSβ-states are indexed by
w ∈ Y0 := G ×Ô∗ Ô∗ ∼= G, and are given by the Radon measures

ϕβ,w (F ) =
1

ζK (β)

∑
a∈J+

K

N(a)−βF (aw) for F ∈ C (Y ),

where ϕ∞,w (F ) = F (w).
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Arithmetic subalgebra and fabulous states

The system (C (G ×Ô∗ Ô) o J+
K , σ) satisfies the first four properties

required in Problem A, essentially because they have been built into it, but
the construction does not take into account the last two properties
involving the fabulous KMS∞ states and the arithmetic subalgebra.

These last two conditions are unlikely to be easily verified because any
advance in this direction has potential implications in explicit class field
theory, although ultimately this will depend on the explicit formulas, for
the fabulous states ϕβ,w , and for the arithmetic elements f ∈ A0.

So it is not surprising that only the systems for K = Q [B-C, Selecta Math
95] and K = Q[

√
−d ] [C-M-R Selecta Math ’05] have been fully

understood.
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Towards K -lattices
To get a system with ‘arithmetic content’ another approach is needed that
does not use G = G(K ab/K ) explicitly but yields the same

A = C ∗r (JK � (G ×Ô∗ Ô)) and σt(Fug ) = N it
g Fug .

A purely arithmetic construction based on K alone is motivated by

Definition (Connes-Marcolli ’06)

An n-dimensional Q-lattice is a pair (L, ϕ), where L ⊂ Rn is a lattice and
ϕ : Qn/Zn → QL/L is a homomorphism.

Definition (Connes-Marcolli-Ramachandran ’05)

A 1-dimensional K -lattice is a pair (Λ, φ) in which Λ is a f. g.
O-submodule of C such that Λ⊗O K ∼= K and φ : K/O → K Λ/Λ is a
module map.

(in both cases the notion of commensurabilty leads to a convolution
product and a C*-algebra.)
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K -lattices modulo commensurability

Let K∞ be the product of all the completions of K at infinite places, so

K∞ :=
∏

v infinite

Kv ,

which is isomorphic to R[K : Q] as an additive topological group. By an
n-dimensional O-lattice we mean a lattice L in Kn

∞ such that OL = L.

Definition

An n-dimensional K -lattice is a pair (L, ϕ), where L ⊂ Kn
∞ is an

n-dimensional O-lattice and ϕ : Kn/On → KL/L is an O-module map.

Definition

Two n-dimensional K -lattices (L1, ϕ1) and (L2, ϕ2) are commensurable if
the lattices L1 and L2 are commensurable and ϕ1 = ϕ2 modulo L1 + L2.

Let RK ,n be the equivalence relation of commensurability of
n-dimensional K -lattices.
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Proposition (L-Larsen-Neshveyev, JNT 08)

The quotient of the equivalence relation RK ,1 of commensurability of
1-dimensional K -lattices by the scaling action of (K ∗∞)◦, the connected
component of the identity in K ∗∞, is a groupoid isomorphic to

(A∗K ,f /Ô∗) � ((A∗K/K ∗(K ∗∞)◦)×Ô∗ Ô). (1)

Recall now that the original construction of our system (A, σ) was based
on the groupoid

JK � (G ×Ô∗ Ô) (2)

and that
JK ∼= A∗K ,f /Ô∗

However, by class field theory, we know that

G ∼= A∗K/K ∗(K ∗∞)◦,

while the second component in the groupoid from (1) does not involve a
closure.
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A topological quotient is needed for K -lattices

The groupoids in (1) and (2) are almost the same, but there is the nuance
that in using G := G(K ab/K ) for our topological restricted groupoid
JK � Y we were effectively taking the quotient of A∗K by the closure of
K ∗(K ∗∞)◦.

In terms of equivalence of K -lattices this means that given a K -lattice
(L, ϕ) we would have to identify not only all K -lattices (kL, kϕ) with
k ∈ (K ∗∞)◦, but also all K -lattices of the form (kL, kψ), where ψ is a limit
point of the maps uϕ with u ∈ O∗ ∩ (K ∗∞)◦ in the topology of pointwise
convergence.

For K = Q or K = an imaginary quadratic field, O∗ is finite so this
nuance does not arise.
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