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The Hecke algebra of Bost and Connes
The inclusion of groups

1z 1 Q
(1) (3 Q) -n

is a Hecke pair (each double coset contains finitely many right cosets),
i.e. R(7) :=|PS\(Pf~yP})| is finite and hence

L(v) := [(PFyP})/PS| = R(y™1) is also finite .
Definition

The Hecke algebra Hg is the x-algebra generated by the linear span of the
characteristic functions of double cosets [y] € P;\Pg /Py with

o convolution:  (fxg)(7) = X, cpr\p: (171 E(M)
where the sum is over right-cosets ~v1;

@ involution: *(vy) :=f(y71);
o identity: 1=[P]].

Note: We denote by [v] the characteristic function of the double coset of ~.
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The regular representation of Hg on (*(P;\Pg).

Definition
The Hecke C*-algebra Cq is the C*-algebra generated by the
left-convolution operators Lf with f € Hg, defined via

Lr(€)(7) = (Fx&)(7) = Xeppipg Flm DE(m),  for & € P(PF\PY).

There is a strongly continuous one-parameter unitary group t — Uy on

C(PF\PY) given by Ux(€)(7) = (R(7)/L(7))"€(7). |
Conjugation of double cosets by U; yields U:[y]Uf = (R(’y)/L(fy))'t[Py]
and induces a natural time evolution t — o on Cq.

Definition
The Bost-Connes C*-dynamical system (Cg, o) consists of the
C*-algebra Cg with the dynamics o, characterized on double cosets by

o) = (52) 1) fortcr
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Double coset generators for Cq

The elements L = n11/2 [( 10 )] with n € N* and

n

e(r): [( )} with r € Q/Z

generate Cg as a C*-algebra and satisfy the relations

o

Q@ =1 pppa=1 and  pmpn = pmn;

Q fiptn = pnpty, if (myn)=1;

Q@ e0)=1, e(r)*=e(—r), and e(r)e(s)=e(r+s);

Q pne(r)y = £ Ypens—r €(5), (since s € Q/Z there are n summands.);
@ e(r)un = pne(nr).

o theset {ume(r)u}:re Q/Z, mne N*, (m,n) =1} s linearly
independent and has dense linear span in Cg;

@ analogous statements hold for Hg, at the *-algebra level.
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The Bost Connes C*-algebra Cp by presentation

(Start here)

Cg = universal C*-algebra generated by elements p, for n € N* and e(r)
for r € Q/Z subject to the relations

Q@ =1 pppn=1and  pimpin = fimn;

© pipmpn = pnpiy, if (m,n) =1,

@ e0)=1, e(r)*=e(-r), and e(r)e(s)=e(r+s);

Q une(r)pl = %Z[s:ns:r] e(s), (sinces € Q/Z there are n summands);

Q e(r)un = pne(nr).
Moreover,
o Theset {ume(r)u) :r e Q/Z, m;ne N*, (m,n) =1} is linearly
independent and has dense linear span in Cq.

Note: Relations (2) and (5) from the original presentation, are key
properties, but are consequences of the other three.
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Interpreting the presentation of Cg

e relations (1) and (2) say that {in},enx is a covariant semigroup of
isometries, generating a representation of C*(N*);

o relation (3) says that r — e(r) is a unitary representation of the
group Q/Z, generating a copy of C*(Q/Z);

e relation (4) is a covariance relation: the r.h.s. defines a semigroup of
endomorphisms «a,(e(r)) := %Z[s:ns:,] e(s), and the |.h.s.
implements it via conjugation with the semigroup of isometries

@ the canonical dual action of (Q% )" on C*(N*) respects relation (4)
hence extends to Cg and the dynamics o is a natural 1-parameter
subgroup of this extension.

@ The natural action of AutQ/Z on C*(Q/Z) respects relation (4)
hence extends to Cg; moreover the extended action commutes with o,
so Aut Q/Z acts as symmetries of (Cg, o).
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Cg as a semigroup crossed product (arithmetic version)
Theorem (L-Raeburn '99)

(i) There is an action o of N* by endomorphisms of C*(Q/Z) such that

an(e(r)) = + Xlsns=r (s) forn € N* and r € Q/Z;

(i) the map v, : e(r) — e(nr) defines an endomorphism of C*(Q/Z)
such that v, 0 oy =id  while «ap oy, = multiplication by a,(1);

(iii) there is a canonical isomorphism  Cg = C*(Q/Z) %o N*.

Idea of proof: One verifies directly that «, is a semigroup action and
then one recognizes the definition of semigroup crossed product in (a
subset of) the relations. O

o this reveals that relations (1) (3) (4) imply (2) and (5).
@ 0 is quasi-periodic and its fixed point algebra is Cg = C*(Q/Z).
e AutQ/Z (a profinite group) has fixed point algebra Cf@ = C*(N*).
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The Bost-Connes phase transition theorem
Theorem (Bost-Connes, '95)
Define a dynamics o on Cq by o¢(pime(r)u}) = (m/n) ume(r)uk.

Q@ For each 0 < B < 1 there is a unique KMSg state of (Cg, o). It is an
injective type Illy factor state, invariant under the action of Aut Q/Z.

@ Foreach1 < 3 < oo the extremal KMSg states ¢, are parametrized
by the complex embeddings x : Q< — C. These are type | factor
states, on which the action of Aut Q/Z is free and transitive.

© The partition function of the system is the Riemann zeta function
¢(B) for each of the states in part (2).

We shall outline a proof along the following lines:
o Realize Cg as a semigroup crossed product C(Z) x N*.
@ Show that KMS states correspond 1-1 to scaling measures on C(Z)
@ Construct the scaling measures explicitly.
o Classify the states according to type.
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Bost-Connes system, adelic version.

Recall the adeles and the ideles
o 7 := projlim, (Z/nZ) = [1,Zp be the ring of integral adeles, and let

o 7* = projlim (Z/nZ)* = [1,Zj, be its group of units, (the integral
ideles).

o There is a duality pairing of Z to Q/Z through which 7 (acting on 7
by multiplication) corresponds to Aut(Q/Z).

o C*(Q/Z)= C(Z) and the endomorphisms of C(Z) are given by

(F)(x) f(x/n) ifxenZ “division by n
@ x) = X
5 0 otherwise. when possible in Z7.”.
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Bost-Connes system, adelic version.

o the Bost Connes C*-algebra Cq is isomorphic to
C(7Z) xq N*,
@ the dynamics o is given by
oe(imf 1n) = (m/n)"* prmf 5,

Note: the products pm,f i}, are o-analytic and span a dense subset.

o the symmetries are now given by {f,, : w € Z*} :

Ow(pmf i) = pim fw iy, where  f,(x) := f(xw).

Note: Both endomorphisms and symmetries are by multiplication in 7.
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Bost Connes system as full corner in Co(Agr) x Q%

@ Localizing 7 at the positive integers N* one obtains the ring
AQJ = (NX)_li

of finite adeles, in which the elements of N* are invertibles and Z is
the maximal compact open subring.

@ Ag r has a factorization as a restricted product:

Agr = | (Qp, Zp)
p

o there is a canonical (diagonal) embedding of Q% in Agr so Q% acts
by multiplication.
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Bost Connes system as full corner in Co(Agr) x Q%

@ The action of Q% by multiplication on Co(Aq,r) determines a crossed
product Co(Ag,r) x Q7.

@ the characteristic function 1, of the integral adeles is a full
projection in this crossed product and the associated full corner is
isomorphic to Cq:

C(Z) x N* 2 1,(Co(Agr) ¥ Q)15,
(by definition, the projection p € A is full if sSpanApA = A.)

@ the proof is by a dilation/extension theorem suitable for the
localization at N*.
Note: if you missed the definition of Cg or of C(Z) x N, you can use this corner

as definition.
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Fixed point algebras and conditional expectations

The group of symmetries {0}, 4. is compact. The dynamics {o+}¢er is
not compact but it is quasi-periodic because the periods of the different
components are rationally independent, so the real line is wrapped densely
in the infinite torus, @+, i.e. O = a@* , which is a compact group.

Hence the #- and o-averages are well deflned and give conditional
expectations onto the respective fixed point algebras, forming a

commuting diagram:
C(Z) » NX —E5 ¢c*(N¥)

E, N e,
| |

C(Z) i) BNX

where By :=span{pnpy, : n € N} =span{l _» :nc N*} = C(Z)7*)

is a commutative C*-algebra with spectrum  Z/7* = I, phteo},
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Za

KMS states are induced from scaling measures on Z

Proposition (L, JFA 98)

The map v +— ¢ :=(v).oE, is an affine isomorphism of the Borel

probability measures v on 7 that satisfy the (3-scaling condition
v(nE) = n=Pu(E), for EC Z,

and the KMSg states of (C(Z) x N*, o).

The inverse map is given by restriction.

Proof.
If v is a B-scaling measure, then a calculation shows that the induced state

p 1= (V) 0 E, satisfies  o(umf iy prgpis) = (m/n) =P o(urgis pmf 1if);
since the analytic monomials have dense linear span, ¢ is KMSg.

If ¢ is a KMSg state, then ¢ = goyc(z) o E, by o-invariance, and ¢’c(2) is

the state of a probability v on Z which is S-scaling because
(an(F)) = p(unfut) = n~Bp(fuku,) by the KMSg condition. O

v
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Ground states and KMS, states

Definition

¢ is a ground state of (A, o), if the entire function z +— p(bo,(a)) is
bounded on the upper half plane &z > 0 for a and b o-analytic.

The KMS,, states are the weak*- limits of KMSg states as 5 — oo, and
are automatically ground states.

Claim (from Day 1: In the ground state condition it suffices to check
that z — ¢(bo,(a)) is bounded on the upper half plane for a and b in a
set of analytic elements with dense linear span.
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KMS,, states of the BC-system
If © is a ground state of the BC-system, then z — (1/n)2p(pumfut) is
bounded for Sz > 0, and so it has to vanish for n > 1 and (on taking
adjoints) also for m > 1. Hence ¢ comes from a probability measure v on
Z satisfying v(pZ) = p(ap(1)) = ¢(pppy) = 0 for each p € P, that is,
each ground state is induced from a probability supported on
((Z\ pZ) =7~
P
Conversely any probability measure v supported on 7* gives a ground
state.
From the formulas obtained (later) for KMSg states, e.g. for extremal
. -8
ones, we will see that g, (f) = > cnx %f(nw) — f(w) as  — oo,
so every ground state of (Cg, o) is a KMS state.

Key Observation: Evaluating extremal ground states ¢, with x € 7* at
the characters (r,-) € C(Z) for r € Q/Z, yields the roots of unity i.e.

oy ((r,)) = (r,x) = exp(2miry).
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Orbit representations of Cqp.

Fix w € Z* and define operators on £2(N*):
TmEn = Emn m € N

mw(f)en = f(nw)e, fe C(Z)

Then {T,, : m € N*} is a semigroup of isometries, 7, is a representation
of C(Z), and m, is faithful because the orbit N* - w is dense in C(Z).

(7w, T) is a covariant pair: m,(an(f)) = Tam(f) T, [hw verify this].
Hence they give a representation of the crossed product:
7 x T: C(Z) xq N = B(?(NX)),

such that m,, X T(up) = T, and 7, x T(f) = n(f).

As it turns out, m,, x T is faithful, so you may think of any of these
representations (say the one for w = 1) as a concrete realization of Cg as
operators on a Hilbert space.
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Orbit representations of Cqp.
@ Next define a unitary group on £?(N*) by
Uiep, = n'te,

The associated Hamiltonian satisfies He, = log n €,, and is an
(unbounded) positive operator with 0 in its spectrum.

o U; = e™ implements the dynamics o, on C(Z) x N* [Exercise:
Verify this directly from the definitions of T, 7, and U.]

o Since Tr(e™#H) =3 n=# = ((B), we may define a generalized Gibbs
state for 8 > 1:

ew(X) =C(B) T Tr(Xe PH) (X €Cq)

using the density operator ¢(3) " te #H.

e 3 w(X) is KMSg for 0. This can be verified directly or proving the
scaling property on functions.

@ These are states arising from the evaluation functionals on 7*, but it
is easy to average them and obtain one for each probability measure
on Z*.
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A symmetric KMSg state for each /5 € (0, 00)

e If a KMSg state ¢ is f-invariant, then it factors through Ey , and
hence is uniquely determined by o(a,(1)) = v(nZ) = n~?, because
the span of these projections is dense in the range of £y .

o C(2)! =C(2)7*) = (11, pNU1%0}) has a product space for
spectrum, on which a concrete symmetric 3-scaling measure is easy
to construct for each 5 € (0, 00): first for each p € P take the
probability measure

Ps,p(p*) = (1 — p~")p~# on the set p'"1>J,
then form the product measure Py :=[], P on [], phuteo}
@ since @3 = (Pg)+« 0 Ep 5 is B-scaling, it is the unique symmetric
KMSg state.
@ Using an explicit formula for the expectation Ey we can compute g

on characters (r, -) of Z:

1—pf-1t
oa((r,)) =b7" H 1_72_1 r=a/be Q/Z in reduced form.
plb
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Type lll; for the symmetric system (C*(N*), o)

Proposition (Boca-Zaharescu '00, Blackadar, JFA 77)
For each B € (0,1], the state pg of C*(N*) is of type Il}. }

Sketch of the proof.

This follows Boca and Zaharescu's with simplifications ‘borrowed’ from
Tzanev (unpubl.), [Jacob, J. Noncommut. Geom. 06] (for function fields),
and [Neshveyev, Proc. AMS 02].

Recall that C*(N*) = ), C*(up) where i, is a shift for each prime p
and C*(up) is a copy of the Toeplitz C*-algebra of N. The state @3
factorizes as p5 = @, ¥s,p With @g 5, a type | factor state of C* (1)
having eigenvalue list {(1 — p~%)p~ %%} xen.

So mg(C*(N*))" is an ITPFl, (infinite tensor product of type |, factors)
with eigenvalue lists depending on p € P.
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To prove this ITPFI is type Ill; using the Araki-Woods classification, it
suffices to produce, given any A > 0, two sequences of prime numbers
{pPn}pen and {qn}nen such that

° (';”)ﬂ—m and
oziﬁ:oo sothath (1 - g, P) = o).
n Pn

Changing A to AY/# it suffices to find the sequences for 5 = 1. To
produce such sequences Blackadar and Boca-Zaharescu use the Prime
Number Theorem.

C(2) » N* —Fy cx(NX)
Recall the diagram lE" N lE"

C(Z) ’EOO—) BNX

To prove that g o Ey (the state of the B-C algebra) is type Illy,
Neshveyev proves what amounts to “permanence of Ill; through a
conditional expectation of profinite index”.
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Partial zeta functions for subsets of primes

o Let Nj be the set of numbers that factorize within B C P, and

o let Cg(f) = D peny n % =Tlep(l—p 7).
Note that if B is finite, then {g(83) < oo for every 8 > 0.

@ The set Wg of integral adeles that are not multiples of any p € B,

We = (1(Z\ pZ) = ] Z; x [ Za»

peB peB q¢B

is the support of the projection Qg := [[,cg(1 — ap(1)).

Suppose ¢ is a (3-scaling probability measure on 7. If (m,n) =1, then
o(mZ N nZ) = p(mnZ) = (mn)=" = mPn=F = o(mZ)p(nZ), hence

¢We) = [T = e(p2) = [ (1= p™) = Go(9) "

peB peB
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Reconstruction from the conditional probability
If (g(B) < oo, we define the conditional state ¢, (¢ given Qg) b

Pz () = C8(B)p(@B - QB).
Lemma (L-Raeburn '10, cf. Neshveyev '02)

If ¢ is a KMSg state of (Cg, o) and B is a subset of P such that
(B(B) < oo, then

nTun) for T €C
nZNXC ﬁ)wos(ﬂ 1in) for 0.

Proof.
The sets nWpg for n € N are mutually disjoint and

(p<Un€N§ nWB) = ZneNfg< SO(HWB) = ZneN; n_B@(WB) =1L
Then  ¢(E) = ZneNg o(nWgNE)= ZneNg nPo(ntENWg). O
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Symmetry-breaking for 5 € (1, o0]
Proposition (L, JFA 98)
Supose 8 € (1,00) and for each probability measure v on 7* define a
probability Tgv on Z by

Tov(E) := glgy Lnenx " (T ENZ*) for EC 2.
Then the map v +— (Tgv)« o E, is an affine isomorphism of the

probability measures on 7* onto the KMSg states, in which the extremal

KMSg states correspond to the unit point masses on 7 (and the orbit
representations).

Proof.

Ty is clearly affine, and since Tsv(E) = (1/¢(B))v(E) for E C Z* the
map is injective; the (-scaling condition is built into the formula because
UpnZ* is a disjoint union with total mass 1, so we get KMSg states.

To prove Tjg is surjective we need to reconstruct ¢ from |y, ... O

v
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The map v — Tgv is surjective

Since for 3 € (1,00) the full zeta-series converges, we may take B = P
and Wi = Z* in the Lemma to recover a [-scaling probability ¢ on 7
from its conditioning to 7*.

Since the Lemma then says ¢ = Tg 5., this proves that Ty is surjective.
The unit point mass at w € 7 gives an extremal KMSg state

n—B
ppw(f) = Z mf(nw)'

nGN;

This completes the proof of part (2) of the BC-theorem, i.e. the case
B € (1,00). O

Another (harder) application of the Lemma, with B finite, shows that for
B € (0,1] any KMSg state (or any [-scaling probability) is necessarily
symmetric, and hence equal to the state ¢z constructed earlier as the
induced state from a product probability.
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