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The Hecke algebra of Bost and Connes
The inclusion of groups

P+
Z :=

(
1 Z
0 1

)
⊂
(

1 Q
0 Q∗+

)
=: P+

Q

is a Hecke pair (each double coset contains finitely many right cosets),
i.e. R(γ) := |P+

Z \(P+
Z γP+

Z )| is finite and hence
L(γ) := |(P+

Z γP+
Z )/P+

Z | = R(γ−1) is also finite .

Definition

The Hecke algebra HQ is the ∗-algebra generated by the linear span of the
characteristic functions of double cosets [γ] ∈ P+

Z \P
+
Q /P+

Z with

convolution: (f ∗ g)(γ) :=
∑

γ1∈P+
Z \P

+
Q

f (γγ−11 )g(γ1)

where the sum is over right-cosets γ1;

involution: f ∗(γ) := f (γ−1);

identity: 1 = [P+
Z ].

Note: We denote by [γ] the characteristic function of the double coset of γ.
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The regular representation of HQ on `2(P+
Z \P

+
Q ).

Definition

The Hecke C*-algebra CQ is the C ∗-algebra generated by the
left-convolution operators Lf with f ∈ HQ, defined via
Lf (ξ)(γ) = (f ∗ξ)(γ) =

∑
γ1∈P+

Z \P
+
Q

f (γγ−11 )ξ(γ1), for ξ ∈ `2(P+
Z \P

+
Q ).

There is a strongly continuous one-parameter unitary group t 7→ Ut on

`2(P+
Z \P

+
Q ) given by Ut(ξ)(γ) =

(
R(γ)/L(γ)

)it
ξ(γ).

Conjugation of double cosets by Ut yields Ut [γ]U∗t =
(
R(γ)/L(γ)

)it
[γ]

and induces a natural time evolution t 7→ σt on CQ.

Definition

The Bost-Connes C*-dynamical system (CQ, σ) consists of the
C*-algebra CQ with the dynamics σ, characterized on double cosets by

σt([γ]) =
(
R(γ)
L(γ)

)it
[γ] for t ∈ R.
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Double coset generators for CQ
The elements µn := 1

n1/2

[(
1 0
0 n

)]
with n ∈ N× and

e(r) :=
[(

1 r
0 1

)]
with r ∈ Q/Z

generate CQ as a C*-algebra and satisfy the relations

1 µ1 = 1, µ∗nµn = 1, and µmµn = µmn;

2 µ∗mµn = µnµ
∗
m if (m, n) = 1;

3 e(0) = 1, e(r)∗ = e(−r), and e(r)e(s) = e(r + s);

4 µne(r)µ∗n = 1
n

∑
[s:ns=r ] e(s), (since s ∈ Q/Z there are n summands.);

5 e(r)µn = µne(nr).

the set {µme(r)µ∗n : r ∈ Q/Z, m, n ∈ N×, (m, n) = 1} is linearly
independent and has dense linear span in CQ;

analogous statements hold for HQ, at the *-algebra level.
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The Bost Connes C*-algebra CQ by presentation

(Start here)
CQ = universal C*-algebra generated by elements µn for n ∈ N× and e(r)
for r ∈ Q/Z subject to the relations

1 µ1 = 1, µ∗nµn = 1, and µmµn = µmn;

2 µ∗mµn = µnµ
∗
m if (m, n) = 1;

3 e(0) = 1, e(r)∗ = e(−r), and e(r)e(s) = e(r + s);

4 µne(r)µ∗n = 1
n

∑
[s:ns=r ] e(s), (since s ∈ Q/Z there are n summands);

5 e(r)µn = µne(nr).

Moreover,

The set {µme(r)µ∗n : r ∈ Q/Z, m, n ∈ N×, (m, n) = 1} is linearly
independent and has dense linear span in CQ.

Note: Relations (2) and (5) from the original presentation, are key
properties, but are consequences of the other three.
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Interpreting the presentation of CQ

relations (1) and (2) say that {µn}n∈N× is a covariant semigroup of
isometries, generating a representation of C ∗(N×);

relation (3) says that r 7→ e(r) is a unitary representation of the
group Q/Z, generating a copy of C ∗(Q/Z);

relation (4) is a covariance relation: the r.h.s. defines a semigroup of
endomorphisms αn(e(r)) := 1

n

∑
[s:ns=r ] e(s), and the l.h.s.

implements it via conjugation with the semigroup of isometries

the canonical dual action of (Q∗+)̂ on C ∗(N×) respects relation (4)
hence extends to CQ and the dynamics σ is a natural 1-parameter
subgroup of this extension.

The natural action of AutQ/Z on C ∗(Q/Z) respects relation (4)
hence extends to CQ; moreover the extended action commutes with σ,
so AutQ/Z acts as symmetries of (CQ, σ).
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CQ as a semigroup crossed product (arithmetic version)

Theorem (L–Raeburn ’99)

(i) There is an action α of N× by endomorphisms of C ∗(Q/Z) such that

αn(e(r)) = 1
n

∑
[s:ns=r ] e(s) for n ∈ N× and r ∈ Q/Z;

(ii) the map γn : e(r) 7→ e(nr) defines an endomorphism of C ∗(Q/Z)
such that γn ◦ αn = id while αn ◦ γn = multiplication by αn(1);

(iii) there is a canonical isomorphism CQ ∼= C ∗(Q/Z) oα N×.

Idea of proof: One verifies directly that αn is a semigroup action and
then one recognizes the definition of semigroup crossed product in (a
subset of) the relations.

this reveals that relations (1) (3) (4) imply (2) and (5).
σ is quasi-periodic and its fixed point algebra is CσQ = C ∗(Q/Z).

AutQ/Z (a profinite group) has fixed point algebra CθQ = C ∗(N×).
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The Bost-Connes phase transition theorem

Theorem (Bost-Connes, ’95)

Define a dynamics σ on CQ by σt(µme(r)µ∗n) = (m/n)itµme(r)µ∗n.

1 For each 0 < β ≤ 1 there is a unique KMSβ state of (CQ, σ). It is an
injective type III1 factor state, invariant under the action of AutQ/Z.

2 For each 1 < β ≤ ∞ the extremal KMSβ states φβ,χ are parametrized
by the complex embeddings χ : Qcycl → C. These are type I factor
states, on which the action of AutQ/Z is free and transitive.

3 The partition function of the system is the Riemann zeta function
ζ(β) for each of the states in part (2).

We shall outline a proof along the following lines:

Realize CQ as a semigroup crossed product C (Ẑ) oN×.

Show that KMS states correspond 1-1 to scaling measures on C (Ẑ).

Construct the scaling measures explicitly.

Classify the states according to type.
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Bost-Connes system, adelic version.

Recall the adeles and the ideles

Ẑ := proj limn(Z/nZ) ∼=
∏

p Zp be the ring of integral adeles, and let

Ẑ∗ = proj limn(Z/nZ)∗ ∼=
∏

p Z∗p be its group of units, (the integral
ideles).

There is a duality pairing of Ẑ to Q/Z through which Ẑ∗ (acting on Ẑ
by multiplication) corresponds to Aut(Q/Z).

C ∗(Q/Z) ∼= C (Ẑ) and the endomorphisms of C (Ẑ) are given by

αn(f )(x) =

{
f (x/n) if x ∈ nẐ “division by n

0 otherwise. when possible in Ẑ”.
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Bost-Connes system, adelic version.

the Bost Connes C*-algebra CQ is isomorphic to

C (Ẑ) oα N×,

the dynamics σ is given by

σt(µmf µ∗n) = (m/n)itµmf µ∗n,

Note: the products µmf µ∗n are σ-analytic and span a dense subset.

the symmetries are now given by {θw : w ∈ Ẑ∗} :

θw (µmf µ∗n) = µm fw µ
∗
n where fw (x) := f (xw).

Note: Both endomorphisms and symmetries are by multiplication in Ẑ.
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Bost Connes system as full corner in C0(AQ,f ) oQ∗+

Localizing Ẑ at the positive integers N× one obtains the ring

AQ,f = (N×)−1Ẑ

of finite adeles, in which the elements of N× are invertibles and Ẑ is
the maximal compact open subring.

AQ,f has a factorization as a restricted product:

AQ,f ∼=
∏
p

(Qp,Zp)

there is a canonical (diagonal) embedding of Q∗+ in AQ,f so Q∗+ acts
by multiplication.
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Bost Connes system as full corner in C0(AQ,f ) oQ∗+

The action of Q∗+ by multiplication on C0(AQ,f ) determines a crossed
product C0(AQ,f ) oQ∗+.

the characteristic function 1Ẑ of the integral adeles is a full
projection in this crossed product and the associated full corner is
isomorphic to CQ:

C (Ẑ) oN× ∼= 1Ẑ(C0(AQ,f ) oQ∗+)1Ẑ,

(by definition, the projection p ∈ A is full if spanApA = A.)

the proof is by a dilation/extension theorem suitable for the
localization at N×.
Note: if you missed the definition of CQ or of C(Ẑ) o N×, you can use this corner

as definition.
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Fixed point algebras and conditional expectations

The group of symmetries {θw}w∈Ẑ∗ is compact. The dynamics {σt}t∈R is
not compact but it is quasi-periodic because the periods of the different
components are rationally independent, so the real line is wrapped densely
in the infinite torus, Q̂∗+, i.e. σR = α̂Q̂∗

+
, which is a compact group.

Hence the θ- and σ-averages are well defined and give conditional
expectations onto the respective fixed point algebras, forming a
commuting diagram:

C (Ẑ) oN× Eθ−−−−→ C ∗(N×)yEσ

yEσ

C (Ẑ)
Eθ−−−−→ BN×

↘Eθ,σ

where BN× := span{µnµ∗n : n ∈ N×} = span{1nẐ : n ∈ N×} ∼= C (Ẑ/Ẑ∗)

is a commutative C*-algebra with spectrum Ẑ/Ẑ∗ =
∏

p pN∪{∞}.
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KMS states are induced from scaling measures on Ẑ

Proposition (L, JFA 98)

The map ν 7→ ϕ := (ν)∗ ◦ Eσ is an affine isomorphism of the Borel
probability measures ν on Ẑ that satisfy the β-scaling condition

ν(nE ) = n−βν(E ), for E ⊂ Ẑ,
and the KMSβ states of (C (Ẑ) oN×, σ).
The inverse map is given by restriction.

Proof.

If ν is a β-scaling measure, then a calculation shows that the induced state
ϕ := (ν)∗ ◦ Eσ satisfies ϕ(µmf µ∗n µrgµ∗s ) = (m/n)−βϕ(µrgµ∗s µmf µ∗n);
since the analytic monomials have dense linear span, ϕ is KMSβ.

If ϕ is a KMSβ state, then ϕ = ϕ|C(Ẑ) ◦ Eσ by σ-invariance, and ϕ|C(Ẑ) is

the state of a probability ν on Ẑ which is β-scaling because
ϕ(αn(f )) = ϕ(µnf µ∗n) = n−βϕ(f µ∗nµn) by the KMSβ condition.
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Ground states and KMS∞ states

Definition

ϕ is a ground state of (A, σ), if the entire function z 7→ ϕ(bσz(a)) is
bounded on the upper half plane =z > 0 for a and b σ-analytic.
The KMS∞ states are the weak*- limits of KMSβ states as β →∞, and
are automatically ground states.

Claim (from Day 1: In the ground state condition it suffices to check
that z 7→ ϕ(bσz(a)) is bounded on the upper half plane for a and b in a
set of analytic elements with dense linear span.
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KMS∞ states of the BC-system
If ϕ is a ground state of the BC-system, then z 7→ (1/n)izϕ(µmf µ∗n) is
bounded for =z > 0, and so it has to vanish for n > 1 and (on taking
adjoints) also for m > 1. Hence ϕ comes from a probability measure ν on
Ẑ satisfying ν(pẐ) = ϕ(αp(1)) = ϕ(µpµ

∗
p) = 0 for each p ∈ P, that is,

each ground state is induced from a probability supported on⋂
p

(Ẑ \ pẐ) = Ẑ∗.

Conversely any probability measure ν supported on Ẑ∗ gives a ground
state.

From the formulas obtained (later) for KMSβ states, e.g. for extremal

ones, we will see that ϕβ,w (f ) =
∑

n∈N×
n−β

ζ(β) f (nw) → f (w) as β →∞,

so every ground state of (CQ, σ) is a KMS∞ state.

Key Observation: Evaluating extremal ground states ϕχ with χ ∈ Ẑ∗ at
the characters 〈r , ·〉 ∈ C (Ẑ) for r ∈ Q/Z, yields the roots of unity i.e.

ϕχ(〈r , ·〉) = 〈r , χ〉 = exp(2πirχ).
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Orbit representations of CQ.

Fix w ∈ Ẑ∗ and define operators on `2(N×):

Tmεn = εmn m ∈ N×

πw (f )εn = f (nw)εn f ∈ C (Ẑ)

Then {Tm : m ∈ N×} is a semigroup of isometries, πw is a representation
of C (Ẑ), and πw is faithful because the orbit N× · w is dense in C (Ẑ).

(πw ,T ) is a covariant pair: πw (αn(f )) = Tnπ(f )T ∗n , [hw verify this].
Hence they give a representation of the crossed product:

π × T : C (Ẑ) oα N× → B(`2(N×)),

such that πw × T (µn) = Tn and πw × T (f ) = π(f ).
As it turns out, πw × T is faithful, so you may think of any of these
representations (say the one for w = 1) as a concrete realization of CQ as
operators on a Hilbert space.
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Orbit representations of CQ.

Next define a unitary group on `2(N×) by

Utεn = nitεn

The associated Hamiltonian satisfies Hεn = log n εn, and is an
(unbounded) positive operator with 0 in its spectrum.

Ut = e itH implements the dynamics σt on C (Ẑ) oN× [Exercise:
Verify this directly from the definitions of T , πw , and U.]

Since Tr(e−βH) =
∑

n n−β = ζ(β), we may define a generalized Gibbs
state for β > 1:

ϕβ,w (X ) = ζ(β)−1 Tr(Xe−βH) (X ∈ CQ)

using the density operator ζ(β)−1e−βH .

ϕβ,w (X ) is KMSβ for σ. This can be verified directly or proving the
scaling property on functions.

These are states arising from the evaluation functionals on Ẑ∗, but it
is easy to average them and obtain one for each probability measure
on Ẑ∗.
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A symmetric KMSβ state for each β ∈ (0,∞)
If a KMSβ state ϕ is θ-invariant, then it factors through Eθ,σ and

hence is uniquely determined by ϕ(αn(1)) = ν(nẐ) = n−β, because
the span of these projections is dense in the range of Eθ,σ.

C (Ẑ)θ = C (Ẑ/Ẑ∗) ∼= C (
∏

p pN∪{∞}) has a product space for
spectrum, on which a concrete symmetric β-scaling measure is easy
to construct for each β ∈ (0,∞): first for each p ∈ P take the
probability measure

Pβ,p(pk) = (1− p−β)p−kβ on the set pN∪{∞},

then form the product measure Pβ :=
∏

p Pβ,p on
∏

p pN∪{∞}.
since ϕβ := (Pβ)∗ ◦ Eθ,σ is β-scaling, it is the unique symmetric
KMSβ state.
Using an explicit formula for the expectation Eθ we can compute ϕβ
on characters 〈r , ·〉 of Ẑ:

ϕβ(〈r , ·〉) = b−β
∏
p|b

1− pβ−1

1− p−1
r = a/b ∈ Q/Z in reduced form.
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Type III1 for the symmetric system (C ∗(N×), σ)

Proposition (Boca-Zaharescu ’00, Blackadar, JFA 77)

For each β ∈ (0, 1], the state ϕβ of C ∗(N×) is of type III1.

Sketch of the proof.
This follows Boca and Zaharescu’s with simplifications ‘borrowed’ from
Tzanev (unpubl.), [Jacob, J. Noncommut. Geom. 06] (for function fields),
and [Neshveyev, Proc. AMS 02].

Recall that C ∗(N×) ∼=
⊗

p C ∗(µp) where µp is a shift for each prime p
and C ∗(µp) is a copy of the Toeplitz C*-algebra of N. The state ϕβ
factorizes as ϕβ =

⊗
p ϕβ,p with ϕβ,p a type I factor state of C ∗(µp)

having eigenvalue list {(1− p−β)p−kβ}k∈N.
So πβ(C ∗(N×))” is an ITPFI∞, (infinite tensor product of type I∞ factors)
with eigenvalue lists depending on p ∈ P.
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To prove this ITPFI is type III1 using the Araki-Woods classification, it
suffices to produce, given any λ > 0, two sequences of prime numbers
{pn}p∈N and {qn}n∈N such that(pn

qn

)β → λ, and∑
n

1

pβn
=∞ (so that

∑
n

q−βn (1− p−βn )(1− q−βn ) =∞).

Changing λ to λ1/β, it suffices to find the sequences for β = 1. To
produce such sequences Blackadar and Boca-Zaharescu use the Prime
Number Theorem.

Recall the diagram

C (Ẑ) oN× Eθ−−−−→ C ∗(N×)yEσ

yEσ

C (Ẑ)
Eθ−−−−→ BN×

↘Eθ,σ

To prove that ϕβ ◦ Eθ (the state of the B-C algebra) is type III1,
Neshveyev proves what amounts to “permanence of III1 through a
conditional expectation of profinite index”.
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Partial zeta functions for subsets of primes

Let N×B be the set of numbers that factorize within B ⊂ P, and

let ζB(β) :=
∑

n∈N×
B

n−β =
∏

p∈B(1− p−β)−1.

Note that if B is finite, then ζB(β) <∞ for every β > 0.

The set WB of integral adeles that are not multiples of any p ∈ B,

WB :=
⋂
p∈B

(Ẑ \ pẐ) ∼=
∏
p∈B

Z∗p ×
∏
q/∈B

Zq,

is the support of the projection QB :=
∏

p∈B(1− αp(1)).

Suppose ϕ is a β-scaling probability measure on Ẑ. If (m, n) = 1, then
ϕ(mẐ ∩ nẐ) = ϕ(mnẐ) = (mn)−β = m−βn−β = ϕ(mẐ)ϕ(nẐ), hence

ϕ(WB) =
∏
p∈B

(1− ϕ(pẐ)) =
∏
p∈B

(1− p−β) = ζB(β)−1.
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Reconstruction from the conditional probability
If ζB(β) <∞, we define the conditional state ϕQB

(ϕ given QB) by

ϕQB
(·) := ζB(β)ϕ(QB · QB).

Lemma (L-Raeburn ’10, cf. Neshveyev ’02)

If ϕ is a KMSβ state of (CQ, σ) and B is a subset of P such that
ζB(β) <∞, then

ϕ(T ) =
∑
n∈N×

B

n−β

ζB(β)
ϕQB

(µ∗nTµn) for T ∈ CQ.

Proof.

The sets nWB for n ∈ N×B are mutually disjoint and

ϕ
(⋃

n∈N×
B

nWB

)
=
∑

n∈N×
B
ϕ(nWB) =

∑
n∈N×

B
n−βϕ(WB) = 1.

Then ϕ(E ) =
∑

n∈N×
B
ϕ(nWB ∩ E ) =

∑
n∈N×

B
n−βϕ(n−1E ∩WB).
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Symmetry-breaking for β ∈ (1,∞]

Proposition (L, JFA 98)

Supose β ∈ (1,∞) and for each probability measure ν on Ẑ∗ define a
probability Tβν on Ẑ by

Tβν(E ) := 1
ζ(β)

∑
n∈N× n−βν(n−1E ∩ Ẑ∗) for E ⊂ Ẑ.

Then the map ν 7→ (Tβν)∗ ◦ Eσ is an affine isomorphism of the

probability measures on Ẑ∗ onto the KMSβ states, in which the extremal

KMSβ states correspond to the unit point masses on Ẑ∗ (and the orbit
representations).

Proof.

Tβ is clearly affine, and since Tβν(E ) = (1/ζ(β))ν(E ) for E ⊂ Ẑ∗ the
map is injective; the β-scaling condition is built into the formula because
∪nnẐ∗ is a disjoint union with total mass 1, so we get KMSβ states.
To prove Tβ is surjective we need to reconstruct ϕ from ϕ|Ẑ∗ ...
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The map ν → Tβν is surjective

Since for β ∈ (1,∞) the full zeta-series converges, we may take B = P
and WB = Ẑ∗ in the Lemma to recover a β-scaling probability ϕ on Ẑ
from its conditioning to Ẑ∗.
Since the Lemma then says ϕ = Tβ ϕẐ∗ , this proves that Tβ is surjective.

The unit point mass at w ∈ Ẑ∗ gives an extremal KMSβ state

ϕβ,w (f ) =
∑
n∈N×

B

n−β

ζB(β)
f (nw).

This completes the proof of part (2) of the BC-theorem, i.e. the case
β ∈ (1,∞).

Another (harder) application of the Lemma, with B finite, shows that for
β ∈ (0, 1] any KMSβ state (or any β-scaling probability) is necessarily
symmetric, and hence equal to the state ϕβ constructed earlier as the
induced state from a product probability.
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