C*-Dynamical Systems from Number Theory Part 3: The Bost-Connes phase transition

Marcelo Laca

University of Victoria

June 2010

M. Laca (University of Victoria)

June 2010 1 / 25

(4) (5) (4) (5)

The Hecke algebra of Bost and Connes

The inclusion of groups

$$P^+_{\mathbb{Z}} := \left(egin{array}{cc} 1 & \mathbb{Z} \\ 0 & 1 \end{array}
ight) \subset \left(egin{array}{cc} 1 & \mathbb{Q} \\ 0 & \mathbb{Q}^*_+ \end{array}
ight) =: P^+_{\mathbb{Q}}$$

is a **Hecke pair** (each double coset contains finitely many right cosets), i.e. $R(\gamma) := |P_{\mathbb{Z}}^+ \setminus (P_{\mathbb{Z}}^+ \gamma P_{\mathbb{Z}}^+)|$ is finite and hence $L(\gamma) := |(P_{\mathbb{Z}}^+ \gamma P_{\mathbb{Z}}^+)/P_{\mathbb{Z}}^+| = R(\gamma^{-1})$ is also finite.

Definition

The Hecke algebra $\mathcal{H}_{\mathbb{Q}}$ is the *-algebra generated by the linear span of the characteristic functions of double cosets $[\gamma] \in P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+ / P_{\mathbb{Z}}^+$ with

- convolution: $(f * g)(\gamma) := \sum_{\gamma_1 \in P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+} f(\gamma \gamma_1^{-1}) g(\gamma_1)$ where the sum is over right-cosets γ_1 ;
- involution: $f^*(\gamma) := \overline{f(\gamma^{-1})};$
- identity: $1 = [P_{\mathbb{Z}}^+].$

Note: We denote by $[\gamma]$ the characteristic function of the double coset of γ .

The regular representation of $\mathcal{H}_{\mathbb{Q}}$ on $\ell^2(P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+)$.

Definition

The **Hecke C*-algebra** $C_{\mathbb{Q}}$ is the C^* -algebra generated by the left-convolution operators L_f with $f \in \mathcal{H}_{\mathbb{Q}}$, defined via $L_f(\xi)(\gamma) = (f * \xi)(\gamma) = \sum_{\gamma_1 \in P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+} f(\gamma \gamma_1^{-1})\xi(\gamma_1), \text{ for } \xi \in \ell^2(P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+).$

There is a strongly continuous one-parameter unitary group $t \mapsto U_t$ on $\ell^2(P_{\mathbb{Z}}^+ \setminus P_{\mathbb{Q}}^+)$ given by $U_t(\xi)(\gamma) = (R(\gamma)/L(\gamma))^{it}\xi(\gamma)$. Conjugation of double cosets by U_t yields $U_t[\gamma]U_t^* = (R(\gamma)/L(\gamma))^{it}[\gamma]$ and induces a natural time evolution $t \mapsto \sigma_t$ on $\mathcal{C}_{\mathbb{Q}}$.

Definition

The **Bost-Connes C*-dynamical system** $(\mathcal{C}_{\mathbb{Q}}, \sigma)$ consists of the C*-algebra $\mathcal{C}_{\mathbb{Q}}$ with the dynamics σ , characterized on double cosets by $\sigma_t([\gamma]) = \left(\frac{R(\gamma)}{L(\gamma)}\right)^{it} [\gamma]$ for $t \in \mathbb{R}$.

Double coset generators for $\mathcal{C}_{\mathbb{Q}}$

The elements
$$\mu_n := \frac{1}{n^{1/2}} \left[\begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix} \right]$$
 with $n \in \mathbb{N}^{\times}$ and
 $e(r) := \left[\begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} \right]$ with $r \in \mathbb{Q}/\mathbb{Z}$
generate $C_{\mathbb{Q}}$ as a C*-algebra and satisfy the relations
a $\mu_1 = 1$, $\mu_n^* \mu_n = 1$, and $\mu_m \mu_n = \mu_{mn}$;
a $\mu_m^* \mu_n = \mu_n \mu_m^*$ if $(m, n) = 1$;
b $e(0) = 1$, $e(r)^* = e(-r)$, and $e(r)e(s) = e(r+s)$;
a $\mu_n e(r) \mu_n^* = \frac{1}{n} \sum_{[s:ns=r]} e(s)$, (since $s \in \mathbb{Q}/\mathbb{Z}$ there are n summands.);
b $e(r) \mu_n = \mu_n e(nr)$.

- the set $\{\mu_m e(r)\mu_n^* : r \in \mathbb{Q}/\mathbb{Z}, m, n \in \mathbb{N}^{\times}, (m, n) = 1\}$ is linearly independent and has dense linear span in $\mathcal{C}_{\mathbb{Q}}$;
- \bullet analogous statements hold for $\mathcal{H}_{\mathbb{Q}}\text{,}$ at the *-algebra level.

- 4 @ > - 4 @ > - 4 @ >

The Bost Connes C*-algebra $\mathcal{C}_\mathbb{Q}$ $\$ by presentation

(Start here)

 $C_{\mathbb{Q}} =$ universal C*-algebra generated by elements μ_n for $n \in \mathbb{N}^{\times}$ and e(r) for $r \in \mathbb{Q}/\mathbb{Z}$ subject to the relations

•
$$\mu_1 = 1, \quad \mu_n^* \mu_n = 1, \quad \text{and} \quad \mu_m \mu_n = \mu_{mn};$$
• $\mu_m^* \mu_n = \mu_n \mu_m^* \quad \text{if} \quad (m, n) = 1;$
• $e(0) = 1, \quad e(r)^* = e(-r), \quad \text{and} \quad e(r)e(s) = e(r+s);$
• $\mu_n e(r)\mu_n^* = \frac{1}{n} \sum_{[s:ns=r]} e(s), \quad (since \ s \in \mathbb{Q}/\mathbb{Z} \ there \ are \ n \ summands);$
• $e(r)\mu_n = \mu_n e(nr).$

Moreover,

• The set $\{\mu_m e(r)\mu_n^* : r \in \mathbb{Q}/\mathbb{Z}, m, n \in \mathbb{N}^{\times}, (m, n) = 1\}$ is linearly independent and has dense linear span in $\mathcal{C}_{\mathbb{Q}}$.

Note: Relations (2) and (5) from the original presentation, are key properties, but are consequences of the other three.

Interpreting the presentation of $\mathcal{C}_{\mathbb{Q}}$

- relations (1) and (2) say that {μ_n}_{n∈ℕ×} is a covariant semigroup of isometries, generating a representation of C^{*}(ℕ×);
- relation (3) says that r → e(r) is a unitary representation of the group Q/Z, generating a copy of C*(Q/Z);
- relation (4) is a covariance relation: the r.h.s. defines a semigroup of endomorphisms α_n(e(r)) := ¹/_n ∑_[s:ns=r] e(s), and the l.h.s. implements it via conjugation with the semigroup of isometries
- the canonical dual action of (Q^{*}₊)[^] on C^{*}(N[×]) respects relation (4) hence extends to C_Q and the dynamics σ is a natural 1-parameter subgroup of this extension.
- The natural action of Aut Q/Z on C^{*}(Q/Z) respects relation (4) hence extends to C_Q; moreover the extended action commutes with σ, so Aut Q/Z acts as symmetries of (C_Q, σ).

イロト 不得 トイヨト イヨト 二日

$C_{\mathbb{Q}}$ as a semigroup crossed product (arithmetic version) Theorem (L-Raeburn '99)

(i) There is an action α of \mathbb{N}^{\times} by endomorphisms of $C^*(\mathbb{Q}/\mathbb{Z})$ such that

$$lpha_n(e(r)) = rac{1}{n} \sum_{[s:ns=r]} e(s)$$
 for $n \in \mathbb{N}^ imes$ and $r \in \mathbb{Q}/\mathbb{Z};$

(ii) the map γ_n : e(r) → e(nr) defines an endomorphism of C*(Q/Z) such that γ_n ∘ α_n = id while α_n ∘ γ_n = multiplication by α_n(1);
(iii) there is a canonical isomorphism C_Q ≅ C*(Q/Z) ⋊_α N[×].

Idea of proof: One verifies directly that α_n is a semigroup action and then one recognizes the definition of semigroup crossed product in (a subset of) the relations.

- this reveals that relations (1) (3) (4) imply (2) and (5).
- σ is quasi-periodic and its fixed point algebra is $\mathcal{C}^{\sigma}_{\mathbb{Q}} = \mathcal{C}^*(\mathbb{Q}/\mathbb{Z}).$
- Aut \mathbb{Q}/\mathbb{Z} (a profinite group) has fixed point algebra $\mathcal{C}^{\theta}_{\mathbb{Q}} = \mathcal{C}^{*}(\mathbb{N}^{\times})$.

The Bost-Connes phase transition theorem

Theorem (Bost-Connes, '95)

Define a dynamics σ on $C_{\mathbb{Q}}$ by $\sigma_t(\mu_m e(r)\mu_n^*) = (m/n)^{it}\mu_m e(r)\mu_n^*$.

- For each 0 < β ≤ 1 there is a unique KMS_β state of (C_Q, σ). It is an injective type III₁ factor state, invariant under the action of Aut Q/Z.
- Protect 1 < β ≤ ∞ the extremal KMS_β states φ_{β,χ} are parametrized by the complex embeddings χ : Q^{cycl} → C. These are type I factor states, on which the action of Aut Q/Z is free and transitive.
- The partition function of the system is the Riemann zeta function ζ(β) for each of the states in part (2).

We shall outline a proof along the following lines:

- Realize $\mathcal{C}_{\mathbb{Q}}$ as a semigroup crossed product $C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times}$.
- Show that KMS states correspond 1-1 to scaling measures on $C(\hat{\mathbb{Z}})$.
- Construct the scaling measures explicitly.
- Classify the states according to type.

▲□> ▲圖> ▲園> ▲園>

Bost-Connes system, adelic version.

Recall the adeles and the ideles

- $\hat{\mathbb{Z}} := \text{proj} \lim_{n} (\mathbb{Z}/n\mathbb{Z}) \cong \prod_{p} \mathbb{Z}_{p}$ be the ring of integral adeles, and let
- $\hat{\mathbb{Z}}^* = \operatorname{proj} \lim_n (\mathbb{Z}/n\mathbb{Z})^* \cong \prod_p \mathbb{Z}_p^*$ be its group of units, (the integral ideles).
- There is a duality pairing of ² ⊥ to Q/Z through which ²/2* (acting on ²/2 by multiplication) corresponds to Aut(Q/Z).

• $C^*(\mathbb{Q}/\mathbb{Z}) \cong C(\hat{\mathbb{Z}})$ and the endomorphisms of $C(\hat{\mathbb{Z}})$ are given by $\alpha_n(f)(x) = \begin{cases} f(x/n) & \text{if } x \in n\hat{\mathbb{Z}} & \text{``division by } n \\ 0 & \text{otherwise.} & when possible in \hat{\mathbb{Z}}''. \end{cases}$

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Bost-Connes system, adelic version.

 \bullet the Bost Connes C*-algebra $\mathcal{C}_{\mathbb{Q}}$ is isomorphic to

 $\mathcal{C}(\hat{\mathbb{Z}}) \rtimes_{\alpha} \mathbb{N}^{\times},$

• the dynamics σ is given by

$$\sigma_t(\mu_m f \mu_n^*) = (m/n)^{it} \mu_m f \mu_n^*,$$

Note: the products $\mu_m f \mu_n^*$ are σ -analytic and span a dense subset.

• the symmetries are now given by $\{ heta_w: w\in \hat{\mathbb{Z}}^*\}$:

$$\theta_w(\mu_m f \mu_n^*) = \mu_m f_w \mu_n^*$$
 where $f_w(x) := f(xw)$.

Note: Both endomorphisms and symmetries are by multiplication in $\hat{\mathbb{Z}}$.

< 同 ト く ヨ ト く ヨ ト

Bost Connes system as full corner in $C_0(\mathbb{A}_{\mathbb{Q},f}) \rtimes \mathbb{Q}^*_+$

 \bullet Localizing $\hat{\mathbb{Z}}$ at the positive integers \mathbb{N}^{\times} one obtains the ring

$$\mathbb{A}_{\mathbb{Q},f} = (\mathbb{N}^{ imes})^{-1} \hat{\mathbb{Z}}$$

of finite adeles, in which the elements of \mathbb{N}^{\times} are invertibles and $\hat{\mathbb{Z}}$ is the maximal compact open subring.

• $\mathbb{A}_{\mathbb{Q},f}$ has a factorization as a restricted product:

$$\mathbb{A}_{\mathbb{Q},f} \cong \prod_{p} (\mathbb{Q}_{p}, \mathbb{Z}_{p})$$

 there is a canonical (diagonal) embedding of Q^{*}₊ in A_{Q,f} so Q^{*}₊ acts by multiplication.

くほと くほと くほと

Bost Connes system as full corner in $C_0(\mathbb{A}_{\mathbb{Q},f}) \rtimes \mathbb{Q}^*_+$

- The action of Q^{*}₊ by multiplication on C₀(A_{Q,f}) determines a crossed product C₀(A_{Q,f}) ⋊ Q^{*}₊.
- the characteristic function $1 \mathbb{1}_{\hat{\mathbb{Z}}}$ of the integral adeles is a full projection in this crossed product and the associated full corner is isomorphic to $\mathcal{C}_{\mathbb{Q}}$:

$$C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times} \cong \mathbb{1}_{\hat{\mathbb{Z}}}(C_0(\mathbb{A}_{\mathbb{Q},f}) \rtimes \mathbb{Q}^*_+)\mathbb{1}_{\hat{\mathbb{Z}}},$$

(by definition, the projection $p \in A$ is full if $\overline{\text{span}}ApA = A$.)

the proof is by a dilation/extension theorem suitable for the localization at N[×].
 Note: if you missed the definition of C_Q or of C(2) × N[×], you can use this corner as definition.

イロト 不得 トイヨト イヨト 二日

Fixed point algebras and conditional expectations

The group of symmetries $\{\theta_w\}_{w\in\widehat{\mathbb{Z}}^*}$ is compact. The dynamics $\{\sigma_t\}_{t\in\mathbb{R}}$ is not compact but it is quasi-periodic because the periods of the different components are rationally independent, so the real line is wrapped densely in the infinite torus, $\widehat{\mathbb{Q}^*_+}$, i.e. $\overline{\sigma_{\mathbb{R}}} = \hat{\alpha}_{\widehat{\mathbb{Q}^*_+}}$, which is a compact group. Hence the θ - and σ -averages are well defined and give conditional expectations onto the respective fixed point algebras, forming a commuting diagram:

$$C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times} \xrightarrow{E_{\theta}} C^{*}(\mathbb{N}^{\times})$$

$$\downarrow^{E_{\sigma}} \qquad \searrow^{E_{\theta,\sigma}} \qquad \downarrow^{E_{\sigma}}$$

$$C(\hat{\mathbb{Z}}) \xrightarrow{E_{\theta}} B_{\mathbb{N}^{\times}}$$

where $B_{\mathbb{N}^{\times}} := \overline{\operatorname{span}} \{ \mu_n \mu_n^* : n \in \mathbb{N}^{\times} \} = \overline{\operatorname{span}} \{ \mathbb{1}_{n\hat{\mathbb{Z}}} : n \in \mathbb{N}^{\times} \} \cong C(\hat{\mathbb{Z}}/\hat{\mathbb{Z}}^*)$ is a commutative C*-algebra with spectrum $\hat{\mathbb{Z}}/\hat{\mathbb{Z}}^* = \prod_p p^{\mathbb{N} \cup \{\infty\}}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

KMS states are induced from scaling measures on $\hat{\mathbb{Z}}$

Proposition (L, JFA 98)

The map $\nu \mapsto \varphi := (\nu)_* \circ E_{\sigma}$ is an affine isomorphism of the Borel probability measures ν on $\hat{\mathbb{Z}}$ that satisfy the β -scaling condition $\nu(nE) = n^{-\beta}\nu(E), \quad \text{for } E \subset \hat{\mathbb{Z}},$ and the KMS $_{\beta}$ states of $(C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times}, \sigma)$. The inverse map is given by restriction.

Proof.

If ν is a β -scaling measure, then a calculation shows that the induced state $\varphi := (\nu)_* \circ E_\sigma$ satisfies $\varphi(\mu_m f \mu_n^* \mu_r g \mu_s^*) = (m/n)^{-\beta} \varphi(\mu_r g \mu_s^* \mu_m f \mu_n^*)$; since the analytic monomials have dense linear span, φ is KMS $_\beta$. If φ is a KMS $_\beta$ state, then $\varphi = \varphi|_{C(\hat{\mathbb{Z}})} \circ E_\sigma$ by σ -invariance, and $\varphi|_{C(\hat{\mathbb{Z}})}$ is the state of a probability ν on $\hat{\mathbb{Z}}$ which is β -scaling because $\varphi(\alpha_n(f)) = \varphi(\mu_n f \mu_n^*) = n^{-\beta} \varphi(f \mu_n^* \mu_n)$ by the KMS $_\beta$ condition.

イロト 不得 トイヨト イヨト 二日

Ground states and KMS_∞ states

Definition

 φ is a **ground state** of (\mathcal{A}, σ) , if the entire function $z \mapsto \varphi(b\sigma_z(a))$ is bounded on the upper half plane $\Im z > 0$ for a and $b \sigma$ -analytic. The **KMS**_{∞} **states** are the weak*- limits of KMS_{β} states as $\beta \to \infty$, and are automatically ground states.

Claim (from Day 1: In the ground state condition it suffices to check that $z \mapsto \varphi(b\sigma_z(a))$ is bounded on the upper half plane for *a* and *b* in a set of analytic elements with dense linear span.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

KMS_∞ states of the BC-system

If φ is a ground state of the BC-system, then $z \mapsto (1/n)^{iz} \varphi(\mu_m f \mu_n^*)$ is bounded for $\Im z > 0$, and so it has to vanish for n > 1 and (on taking adjoints) also for m > 1. Hence φ comes from a probability measure ν on $\hat{\mathbb{Z}}$ satisfying $\nu(p\hat{\mathbb{Z}}) = \varphi(\alpha_p(1)) = \varphi(\mu_p \mu_p^*) = 0$ for each $p \in \mathcal{P}$, that is, each ground state is induced from a probability supported on

$$igcap_p(\hat{\mathbb{Z}}\setminus p\hat{\mathbb{Z}})=\hat{\mathbb{Z}}^*.$$

Conversely any probability measure ν supported on $\hat{\mathbb{Z}}^*$ gives a ground state.

From the formulas obtained (later) for KMS_{β} states, e.g. for extremal ones, we will see that $\varphi_{\beta,w}(f) = \sum_{n \in \mathbb{N}^{\times}} \frac{n^{-\beta}}{\zeta(\beta)} f(nw) \rightarrow f(w)$ as $\beta \rightarrow \infty$, so every ground state of $(\mathcal{C}_{\mathbb{Q}}, \sigma)$ is a KMS_{∞} state.

Key Observation: Evaluating extremal ground states φ_{χ} with $\chi \in \hat{\mathbb{Z}}^*$ at the characters $\langle r, \cdot \rangle \in C(\hat{\mathbb{Z}})$ for $r \in \mathbb{Q}/\mathbb{Z}$, yields the roots of unity i.e.

$$\varphi_{\chi}(\langle r, \cdot \rangle) = \langle r, \chi \rangle = \exp(2\pi i r \chi).$$

Orbit representations of $C_{\mathbb{Q}}$.

Fix $w \in \hat{\mathbb{Z}}^*$ and define operators on $\ell^2(\mathbb{N}^{\times})$:

$$T_m \varepsilon_n = \varepsilon_{mn} \qquad m \in \mathbb{N}^{\times}$$

$$\pi_w(f)\varepsilon_n = f(nw)\varepsilon_n \qquad f \in C(\widehat{\mathbb{Z}})$$

Then $\{T_m : m \in \mathbb{N}^{\times}\}$ is a semigroup of isometries, π_w is a representation of $C(\hat{\mathbb{Z}})$, and π_w is faithful because the orbit $\mathbb{N}^{\times} \cdot w$ is dense in $C(\hat{\mathbb{Z}})$.

 (π_w, T) is a covariant pair: $\pi_w(\alpha_n(f)) = T_n\pi(f)T_n^*$, [hw verify this]. Hence they give a representation of the crossed product:

$$\pi \times \mathcal{T} : \mathcal{C}(\hat{\mathbb{Z}}) \rtimes_{\alpha} \mathbb{N}^{\times} \to \mathcal{B}(\ell^{2}(\mathbb{N}^{\times})),$$

such that $\pi_w \times T(\mu_n) = T_n$ and $\pi_w \times T(f) = \pi(f)$.

As it turns out, $\pi_w \times T$ is faithful, so you may think of any of these representations (say the one for w = 1) as a concrete realization of $C_{\mathbb{Q}}$ as operators on a Hilbert space.

イロト 不得下 イヨト イヨト 二日

Orbit representations of $\mathcal{C}_{\mathbb{Q}}$.

• Next define a unitary group on $\ell^2(\mathbb{N}^\times)$ by

$$U_t \varepsilon_n = n^{it} \varepsilon_n$$

The associated Hamiltonian satisfies $H\varepsilon_n = \log n \varepsilon_n$, and is an (unbounded) positive operator with 0 in its spectrum.

- $U_t = e^{itH}$ implements the dynamics σ_t on $C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times}$ [Exercise: Verify this directly from the definitions of T, π_w , and U.]
- Since $\text{Tr}(e^{-\beta H}) = \sum_{n} n^{-\beta} = \zeta(\beta)$, we may define a generalized Gibbs state for $\beta > 1$:

$$arphi_{eta,w}(X) = \zeta(eta)^{-1} \operatorname{Tr}(Xe^{-eta H}) \qquad (X \in \mathcal{C}_{\mathbb{Q}})$$

using the density operator $\zeta(\beta)^{-1}e^{-\beta H}$.

- φ_{β,w}(X) is KMS_β for σ. This can be verified directly or proving the scaling property on functions.
- These are states arising from the evaluation functionals on ²/_∞^{*}, but it is easy to average them and obtain one for each probability measure on ²/_∞^{*}.

A symmetric KMS_{β} state for each $\beta \in (0,\infty)$

- If a KMS_{β} state φ is θ -invariant, then it factors through $E_{\theta,\sigma}$ and hence is **uniquely determined by** $\varphi(\alpha_n(1)) = \nu(n\hat{\mathbb{Z}}) = n^{-\beta}$, because the span of these projections is dense in the range of $E_{\theta,\sigma}$.
- C(Î)^θ = C(Î/Î*) ≅ C(∏_p p^{ℕ∪{∞}}) has a product space for spectrum, on which a concrete symmetric β-scaling measure is easy to construct for each β ∈ (0,∞): first for each p ∈ P take the probability measure

$$\mathcal{P}_{eta, p}(p^k) = (1-p^{-eta})p^{-keta}$$
 on the set $p^{\mathbb{N}\cup\{\infty\}},$

then form the product measure $P_{\beta} := \prod_{p} P_{\beta,p}$ on $\prod_{p} p^{\mathbb{N} \cup \{\infty\}}$.

- since $\varphi_{\beta} := (P_{\beta})_* \circ E_{\theta,\sigma}$ is β -scaling, it is the unique symmetric KMS_{β} state.
- Using an explicit formula for the expectation E_θ we can compute φ_β on characters ⟨r, ·⟩ of ²/_⊥:

$$\varphi_{\beta}(\langle r, \cdot \rangle) = b^{-\beta} \prod_{p|b} \frac{1-p^{\beta-1}}{1-p^{-1}} \qquad r = a/b \in \mathbb{Q}/\mathbb{Z} \text{ in reduced form.}$$

Type III₁ for the symmetric system $(C^*(\mathbb{N}^{\times}), \sigma)$

Proposition (Boca-Zaharescu '00, Blackadar, JFA 77)

For each $\beta \in (0,1]$, the state φ_{β} of $C^*(\mathbb{N}^{\times})$ is of type III_1 .

Sketch of the proof.

This follows Boca and Zaharescu's with simplifications 'borrowed' from Tzanev (unpubl.), [Jacob, J. Noncommut. Geom. 06] (for function fields), and [Neshveyev, Proc. AMS 02].

Recall that $C^*(\mathbb{N}^{\times}) \cong \bigotimes_p C^*(\mu_p)$ where μ_p is a shift for each prime pand $C^*(\mu_p)$ is a copy of the Toeplitz C*-algebra of \mathbb{N} . The state φ_β factorizes as $\varphi_\beta = \bigotimes_p \varphi_{\beta,p}$ with $\varphi_{\beta,p}$ a type I factor state of $C^*(\mu_p)$ having eigenvalue list $\{(1 - p^{-\beta})p^{-k\beta}\}_{k \in \mathbb{N}}$. So $\pi_\beta(C^*(\mathbb{N}^{\times}))$ " is an ITPFI $_\infty$, (infinite tensor product of type I $_\infty$ factors) with eigenvalue lists depending on $p \in \mathcal{P}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

To prove this ITPFI is type III₁ using the Araki-Woods classification, it suffices to produce, given any $\lambda > 0$, two sequences of prime numbers $\{p_n\}_{p \in \mathbb{N}}$ and $\{q_n\}_{n \in \mathbb{N}}$ such that

•
$$\left(\frac{p_n}{q_n}\right)^{\beta} \to \lambda$$
, and
• $\sum_n \frac{1}{p_n^{\beta}} = \infty$ (so that $\sum_n q_n^{-\beta}(1-p_n^{-\beta})(1-q_n^{-\beta}) = \infty$).

Changing λ to $\lambda^{1/\beta}$, it suffices to find the sequences for $\beta = 1$. To produce such sequences Blackadar and Boca-Zaharescu use the Prime Number Theorem.

$$\begin{array}{ccc} C(\hat{\mathbb{Z}}) \rtimes \mathbb{N}^{\times} & \stackrel{E_{\theta}}{\longrightarrow} & C^{*}(\mathbb{N}^{\times}) \\ \end{array}$$
Recall the diagram
$$\begin{array}{ccc} & & \downarrow_{E_{\sigma}} & & \downarrow_{E_{\sigma}} \\ & & C(\hat{\mathbb{Z}}) & \stackrel{E_{\theta}}{\longrightarrow} & B_{\mathbb{N}^{\times}} \end{array}$$

To prove that $\varphi_{\beta} \circ E_{\theta}$ (the state of the B-C algebra) is type III₁, Neshveyev proves what amounts to "permanence of III₁ through a conditional expectation of profinite index".

Partial zeta functions for subsets of primes

- Let \mathbb{N}_B^{\times} be the set of numbers that factorize within $B \subset \mathcal{P}$, and
- let $\zeta_B(\beta) := \sum_{n \in \mathbb{N}_B^{\times}} n^{-\beta} = \prod_{p \in B} (1 p^{-\beta})^{-1}$. Note that if B is finite, then $\zeta_B(\beta) < \infty$ for every $\beta > 0$.
- The set W_B of integral adeles that are not multiples of any $p \in B$,

$$W_B := igcap_{p\in B} (\hat{\mathbb{Z}}\setminus p\hat{\mathbb{Z}}) \cong \prod_{p\in B} \mathbb{Z}_p^* imes \prod_{q\notin B} \mathbb{Z}_q,$$

is the support of the projection $Q_B := \prod_{p \in B} (1 - \alpha_p(1)).$

Suppose φ is a β -scaling probability measure on $\hat{\mathbb{Z}}$. If (m, n) = 1, then $\varphi(m\hat{\mathbb{Z}} \cap n\hat{\mathbb{Z}}) = \varphi(mn\hat{\mathbb{Z}}) = (mn)^{-\beta} = m^{-\beta}n^{-\beta} = \varphi(m\hat{\mathbb{Z}})\varphi(n\hat{\mathbb{Z}})$, hence

$$\varphi(W_B) = \prod_{p \in B} (1 - \varphi(p\hat{\mathbb{Z}})) = \prod_{p \in B} (1 - p^{-\beta}) = \zeta_B(\beta)^{-1}.$$

(日) (周) (三) (三)

Reconstruction from the conditional probability If $\zeta_B(\beta) < \infty$, we define the conditional state φ_{Q_B} (φ given Q_B) by $\varphi_{Q_B}(\cdot) := \zeta_B(\beta)\varphi(Q_B \cdot Q_B).$

Lemma (L-Raeburn '10, cf. Neshveyev '02)

If φ is a KMS_{β} state of ($C_{\mathbb{Q}}, \sigma$) and B is a subset of \mathcal{P} such that $\zeta_B(\beta) < \infty$, then

$$\varphi(T) = \sum_{n \in \mathbb{N}_B^{\times}} \frac{n^{-\beta}}{\zeta_B(\beta)} \varphi_{Q_B}(\mu_n^* T \mu_n) \text{ for } T \in \mathcal{C}_{\mathbb{Q}}.$$

Proof.

The sets nW_B for $n \in \mathbb{N}_B^{\times}$ are mutually disjoint and $\varphi\left(\bigcup_{n\in\mathbb{N}_B^{\times}} nW_B\right) = \sum_{n\in\mathbb{N}_B^{\times}} \varphi(nW_B) = \sum_{n\in\mathbb{N}_B^{\times}} n^{-\beta}\varphi(W_B) = 1.$ Then $\varphi(E) = \sum_{n\in\mathbb{N}_B^{\times}} \varphi(nW_B \cap E) = \sum_{n\in\mathbb{N}_B^{\times}} n^{-\beta}\varphi(n^{-1}E \cap W_B).$

Symmetry-breaking for $\beta \in (1,\infty]$

Proposition (L, JFA 98)

Supose $\beta \in (1,\infty)$ and for each probability measure ν on $\hat{\mathbb{Z}}^*$ define a probability $T_{\beta}\nu$ on $\hat{\mathbb{Z}}$ by

$$T_{\beta}\nu(E) := rac{1}{\zeta(eta)} \sum_{n \in \mathbb{N}^{\times}} n^{-eta} \nu(n^{-1}E \cap \hat{\mathbb{Z}}^*) \quad \text{for } E \subset \hat{\mathbb{Z}}.$$

Then the map $\nu \mapsto (T_{\beta}\nu)_* \circ E_{\sigma}$ is an affine isomorphism of the probability measures on $\hat{\mathbb{Z}}^*$ onto the KMS_{β} states, in which the extremal KMS_{β} states correspond to the unit point masses on $\hat{\mathbb{Z}}^*$ (and the orbit representations).

Proof.

 T_{β} is clearly affine, and since $T_{\beta}\nu(E) = (1/\zeta(\beta))\nu(E)$ for $E \subset \hat{\mathbb{Z}}^*$ the map is injective; the β -scaling condition is built into the formula because $\cup_n n \hat{\mathbb{Z}}^*$ is a disjoint union with total mass 1, so we get KMS $_{\beta}$ states. To prove T_{β} is surjective we need to reconstruct φ from $\varphi|_{\hat{\mathbb{Z}}^*}...$

The map $\nu \rightarrow T_{\beta} \nu$ is surjective

Since for $\beta \in (1, \infty)$ the full zeta-series converges, we may take $B = \mathcal{P}$ and $W_B = \hat{\mathbb{Z}}^*$ in the Lemma to recover a β -scaling probability φ on $\hat{\mathbb{Z}}$ from its conditioning to $\hat{\mathbb{Z}}^*$.

Since the Lemma then says $\varphi = T_{\beta} \varphi_{\hat{\mathbb{Z}}^*}$, this proves that T_{β} is surjective. The unit point mass at $w \in \hat{\mathbb{Z}}^*$ gives an extremal KMS_{β} state

$$\varphi_{\beta,w}(f) = \sum_{n \in \mathbb{N}_B^{\times}} \frac{n^{-\beta}}{\zeta_B(\beta)} f(nw).$$

This completes the proof of part (2) of the BC-theorem, i.e. the case $\beta \in (1, \infty)$.

Another (harder) application of the Lemma, with *B* finite, shows that for $\beta \in (0, 1]$ any KMS_{β} state (or any β -scaling probability) is necessarily symmetric, and hence equal to the state φ_{β} constructed earlier as the induced state from a product probability.

イロト 不得下 イヨト イヨト 二日