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Example (an infinite system based on the Toeplitz algebra)

The Toeplitz algebra represented as operators on `2(N):
Let {εn} be the standard orthonormal basis of `2(N), and
let S : εn 7→ εn+1, be the usual unilateral shift on `2(N).
Define T to be the C*-algebra generated by S .

The Toeplitz algebra as the universal C*-algebra of an
isometry: There exists a unital C*-algebra generated by an isometry
V (i.e. V ∗V = 1) such that whenever W satisfies W ∗W = 1 there is
a C*-algebra homomorphism h : C ∗(V )→ C ∗(W ) such that
h(V ) = W . (Such V is a universal isometry, and it is unique up to
canonical isomorphism).

Coburn’s classical result can be interpreted as saying that the
canonical homomorphism mapping V 7→W is an isomorphism if and
only if WW ∗ 6= 1. In particular this happens when W = S .
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Example (an infinite system based on the Toeplitz algebra)

If V is a universal isometry so is e itV for t ∈ R, and the universal
property gives (a continuous group of) automorphisms σt of T
determined by what they do to S : σt(S) = e itS for t ∈ R.

(hw: prove this and also verify that {σt} is implemented by the
1-parameter unitary group t 7→ e itH on `2(N) with Hamiltonian
Hεn = nεn.)
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Example (an infinite system based on the Toeplitz algebra)

Using S∗S = 1 we may ‘Wick order’ the products on S and S∗ and
have all the S∗’s appear to the right; thus the set
{SmS∗n : m, n ∈ N} spans a dense *-subalgebra of T .

Notice that t 7→ σt is periodic, so it can be viewed as an action of the
circle T. Averaging over T gives a faithful conditional expectation Eσ
of T onto the fixed-point algebra T σ = span{SnS∗n : n ∈ N} of σ:

Eσ(SmS∗n) =
1

2π

∫
T

e i(m−n)tSmS∗ndt =

{
SmS∗m if m = n

0 if m 6= n.

Since SmS∗m SnS∗n = Smax(m,n)S∗max(m,n) this fixed point algebra is
commutative; its spectrum is N ∪ {∞}. One way to see this is to
prove directly that the map δn 7→ SnS∗n − Sn+1S∗n+1 extends to an
isomorphism of c = C (N ∪ {∞}) onto T σ (hw: do it!).
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Example (KMSβ states of the Toeplitz algebra for 0 < β <∞)

1 z 7→ σz(SmS∗n) = e i(m−n)zSmS∗n is entire so the spanning elements
are analytic.

2 By the KMSβ condition (twice): ϕ(SmS∗n) = e−(m−n)βϕ(SmS∗n)

3 ϕ is a KMSβ-state ⇐⇒

{
ϕ(SmS∗n) = 0 for m 6= n

ϕ(SnS∗n) = e−nβ for m = n.

4 Since T = span{SmS∗n}, there is at most one KMSβ state for each β.

5 Is there one for each β?
i.e. does the above condition determine a bona-fide state of T ?

Remark: We will see two techniques to deal with the recurring theme of
proving that a linear functional is a state.
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Example (Existence of KMSβ states for 0 < β <∞)

1) Spatially: Recall that the dynamics σ has a diagonal Hamiltonian
Hεn = nεn with respect to the standard basis of `2(N). The partition
function Tr(e−βH) =

∑
n e−nβ = 1

1−e−β is defined for every β > 0, and

thus ϕβ(T ) = (1− e−β) Tr(Te−βH) is a KMSβ state.

Exercise: Verify that ϕβ satisfies

{
ϕ(SmS∗n) = 0 for m 6= n

ϕ(SnS∗n) = e−nβ for m = n.

2) Via the conditional expectation onto T σ:
Recall the conditional expectation Eσ mapping T onto the fixed-point
algebra T σ = span{SnS∗n : n ∈ N} of σ, and recall that T σ is isomorphic
to C (N ∪ {∞}). Define a p.l.f. on C (N ∪ {∞}) by
Pβ(δn) := (1− e−β)e−nβ and then induce Pβ from T σ up to T via the
conditional expectation:

ϕβ(T ) = Pβ ◦ Eσ(T ).

Exercise: Verify that this is the same state as above.
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Example (KMSβ states of the Toeplitz algebra for β = 0)

Recall the exact sequence of C*-algebras 0→ K → T → C (T)→ 0
where K is the ideal of compact operators, obtained as the closed
linear span of the elements Sm(1− SS∗)S∗n.

From the KMS0 condition, ϕ(SS∗) = ϕ(S∗S) = 1 and hence
ϕ(Sm(1− SS∗)S∗n) = 0 (this requires the Cauchy -Schwarz
inequality), so a KMS0 state ϕ vanishes on K and must be a lifting
from a state of C (T).

States of C (T) correspond to probability measures on T, but because
of the extra assumption of σ-invariance, only (normalized) Lebesgue
measure will do. So there is exactly one KMS0 state of T ;
it is given by

ϕ(SmS∗n) =

{
0 for m 6= n

1 for m = n.
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Examples: Cuntz algebras and their Toeplitz extensions

The Toeplitz-Cuntz algebra T On is the universal unital C∗-algebra
generated by isometries S1, . . . ,Sn with mutually orthogonal ranges.

Let F+
n denote the free monoid on n generators, then T On is faithfully

represented on `2(F+
n ) via Sjδµ = δjµ, where µ is the word µ1µ2 · · ·µk

whose length k is denoted by |µ|, and jµ is simply concatenation.

The Cuntz algebra On is the quotient of T On by the ideal generated by
the projection 1− S1S∗1 − · · · − SnS∗n . It is universal for n isometries
satisfying

∑n
i=1 SiS

∗
i = 1.

The gauge action on T On (and on On) is the dynamics defined by

σt(Sj) = e itSj , j = 1, . . . , n.

The elements SµS∗ν = Sµ1 . . . Sµk S∗νl . . . S
∗
ν1 and the identity (which

corresponds to the empty word) span a dense *-subalgebra of T On, and
are σ-analytic because σt(SµS∗ν ) = e it(|µ|−|ν|)SµS∗ν .
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Examples: KMS states of Toeplitz-Cuntz algebras
Suppose ϕ is a KMSβ state of T On

if |µ| 6= |ν|, then ϕ(SµS∗ν ) = 0 by σ-invariance.

If µ and ν are finite words, then ϕ(SµS∗ν ) =

= ϕ(Sµ2 . . . Sµk S∗νk . . . S
∗
ν1σiβ(Sµ1)) = δµ1,ν1e−βϕ(Sµ2 . . . Sµk S∗νk . . . S

∗
ν2).

Repeating the process we see something stronger than σ-invariance:

ϕ(SµS∗ν ) =

{
e−|µ|β if µ = ν

0 if µ 6= ν.

span{SµS∗µ : µ ∈ F+
n } is a commutative C*-algebra with spectrum

Ωn = compactification of (finite) path space F+
n .

There is a canonical (dual) coaction of the free group Fn on T On,
and span{SµS∗µ : µ ∈ F+

n } ∼= C (Ωn) is its fixed point algebra.

The KMS state factors through the corresponding conditional
expectation E : T On → C (Ωn) determined by E : SµS∗ν 7→ δµ,νSµS∗µ,
and is thus more symmetric than one would expect from σ-invariance.
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Examples: KMS states of Toeplitz-Cuntz algebras

If a KMSβ state ϕ exists, it is uniquely determined by the values

ϕ(SµS∗ν ) =

{
e−|µ|β if µ = ν

0 if µ 6= ν.

Since 0 ≤ ϕ(1−
∑n

j=1 SjS
∗
j ) = 1− ne−β, we must have β ≥ log n,

and in the case of On we must have equality.

Do such states exist?

It is not difficult to construct the unique state ϕβ that satisfies the
above condition by inducing the probability measure supported on the
finite paths in Ωn given by Pβ(δµ) = (1− ne−β)e−β|µ| through the
conditional expectation E : T On → C (Ωn): ϕβ = Pβ ◦ E .

In the case of On a KMSβ state ϕ exists only for β = log n. It is induced
from a measure on Ωn supported on the boundary {1, 2, · · · n}∞ of Ωn.
The probability that gives rise to the unique KMSβ state is the product of
the uniform distribution pj = 1/n for j = 1, · · · , n.
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Summarizing, we have:

Theorem (Olesen-Pedersen, Evans)

For β = log n there exists a unique σ-KMSβ-state on On; there are no
KMSβ-states for β 6= log n.

For each β ≥ log n there exists a unique σ-KMSβ-state on T On;
there are no KMSβ-states for β < log n.

In the standard representation of T On on `2(F+
n ) the dynamics has a

diagonal Hamiltonian: Hεµ = |µ|εµ.
The partition function is Tr(e−βH) =

∑
µ∈F+

n
e−|µ|β = 1

1−ne−β

and is defined for every β > log n.
The state ϕβ is of type I for β > log n and of type III1/n for β = log n.

Remark: The KMSβ state of On was originally obtained as ϕ = τ ◦ Eσ
where τ is the unique tracial state on the fixed point algebra Oσn , which is
the UHF-algebra of type n∞, via the corresponding conditional expectation

Eσ : On → Oσn , Eσ(a) =
1

2π

∫ 2π

0
σt(a)dt.
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Examples: Cuntz-Krieger algebras
Let A be an n × n matrix of zeros and ones having no zero rows. The
Cuntz-Krieger algebra OA is the universal C*-algebra generated by partial
isometries sk for k = 1, 2, . . . n, (partial isometry means ss∗s = s) such
that

(CK1): 1 =
∑
j

sjs
∗
j and (CK2): s∗k sk =

∑
j

A(k , j)sjs
∗
j .

We define a time evolution σ on OA by σt(sj) = e itsj .

Theorem (Enomoto-Fujii-Watatani)

A KMSβ state on OA exists iff there exists a non negative vector v such
that Av = eβv.
If A is irreducible, this happens only for β = log rA, where rA = spectral
radius of A and the KMSβ state ϕβ is unique and determined by
v = {ϕβ(sjs

∗
j )}nj=1 = normalized Perron-Frobenius eigenvector

corresponding to the largest eigenvalue eβ of A.
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As is customary, when µ = µ1µ2 · · ·µn is a finite word in the symbols
{1, 2, . . . n} we write sµ for the product sµ1sµ2 · · · sµn .

hw project: prove the E-F-W theorem

here are the key steps.

1 Show that the elements sµs∗ν are analytic and have dense linear span.

2 Identify the vector v in the E-F-W theorem in terms of the values of a
state on convenient expressions in the sj , and use (CK2) to show that
the condition Av = eβv is necessary if the state is KMSβ.

3 Prove that the condition is also sufficient for KMSβ (this is a bit
harder).

4 When the matrix A is irreducible apply the Perron-Frobenius Theorem
to get the uniqueness result.
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We have seen several examples,

Finite quantum systems: Mn(C); σ(A) = e itHae−itH ;
Gibbs state ϕG (a) = 1

Tr(e−βH)
Tr(ae−βH) partition function Tr(e−βH)

Toeplitz system: C ∗(S), (S = shift); σt(S) = e it ; ϕβ induced from
geometric density (1− e−β)e−βn; partition function 1

1−e−β

Toeplitz-Cuntz system: T On = C ∗(S1,S2, · · · ,Sn |S∗kSj = δk,j1);
σt(Sj) = e itSj ; a KMSβ state exists for each β ≥ log n; ϕβ induced from
probability measure on rooted (n + 1)-tree with density (1− ne−β)e−β|µ|

(µ a path of length |µ|), partition function = 1
1−ne−β .

Toeplitz-Cuntz-Krieger system: (ok, we haven’t really seen this one,
only the [E-F-W] theorem for OA, but the T-C-K system is similar to the
T-C system except that one has a restricted tree of A–admissible paths,
[L. Exel, Comm. Math. Phys. 2003]);

Before introducing the systems form number theory, we need some basic
constructions from number theory.
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the p-adic integers Zp via Hensel series

Let p be a prime number. Every positive integer can be written in a
unique way as

n = a0 + a1p + a2p2 + · · ·+ akpk with aj ∈ {0, 1, 2, . . . , (p − 1)}.

If we now allow formal infinite sums, or Hensel series

z = a0 + a1p + a2p2 + · · ·+ akpk + · · · ,

and we define sums and products of sequences by mimicking what happens
with the finite sums (i.e. with carry-over to the right), then we obtain a
compact ring which is usually denoted Zp and called the p-adic integers.
This way of viewing the infinite product space

∏∞
0 {0, 1, 2, . . . , (p − 1)} is

very convenient because the series in powers of p remind us of how to add
and multiply. As indicated above, the positive integers correspond to finite
expansions. Exercise: Find the Hensel series of −1.
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Zp as a completion of N and as a projective limit

Zp can also be defined as the completion of N under the p-adic
absolute value, |n|p = p−k (where pk is the highest power of p that
divides n). To see this, it suffices to verify that N embeds
isometrically in Zp as the finite Hensel series, which are dense.

For each k consider the finite ring Z/pk of integers modulo pk . If
k ≤ j then reduction modulo pk determines surjective ring
homomorphisms hk,j of Z/pj to Z/pk , and produces a projective
system

· · ·Z/pk → Z/pk−1 → · · · → Z/p2 → Z/p → 0.

By definition (proj limj Z/pj) is the subset of
∏

j(Z/pj) consisting of
sequences {aj} such that hk,j(aj) = ak whenever k ≤ j . This gives
homomorphisms hk,∞ : (proj limj Z/pj)→ Z/pk such that when
k ≤ j hk,j ◦ hj ,∞ = hk,∞.
Exercise: show that the three definitions of Zp (Hensel series, p-adic
completion, projective limit) yield the same object.
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The dual group of Zp

Denote by 1
pk
Z/Z the group of rationals with denominator pk , taken

modulo Z.

If r ∈ 1
pk
Z/Z and z ∈ Z/pk , it makes sense to define a pairing

〈z , r〉 := exp 2πirz (?!) and the map r 7→ 〈·, r〉 gives a concrete
realization of the dual of the additive group Z/pk .

These pairings (for each k ∈ N) are compatible with the projective
system (Z/pk)k∈N and with the injective system ( 1

pk
Z/Z)k∈N.

The direct limit of the injective system is simply the group
Z[ 1p ]/Z =

⋃
k

1
pk
Z/Z of rationals with denominator a power of p,

taken modulo Z.
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The duality established between Z/pk and 1
pk
Z/Z gives a duality between

the respective limits (the dual of an inverse limit is the direct limit of
duals), and we conclude that

Zp is in duality with Z[ 1p ]/Z

through the pairing
〈z , r〉 = exp 2πirz

(Exercise: make sure this makes sense to you).

Specifically, the map z ∈ Zp 7→ 〈z , ·〉 = exp (2πi · z) gives an isomorphism
of compact groups

Zp
∼= (Z[ 1p ]/Z)̂ .
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The ring of integral adeles as an inverse limit.

When m|n let rm,n : Z/n→ Z/m be the ring homomorphism given by
reduction modulo m. The multiplicative order on N× is not total but it is
directed (given k and m take n = km to get an element that follows both
k and m). These connecting maps are coherent in the sense that if k |m|n,
then rk,m ◦ rm,n = rk,n, so

{Z/m : m ∈ N×}

is an inverse system of rings indexed by the multiplicatively ordered
semigroup N×. The inverse limit

Ẑ = lim←−
m

(Z/m)

is thus a compact (profinite) ring, called the ring of finite adeles.
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The multiplicative order in N× is not linear, but it is directed, and the
technical definition of inverse limit is the usual one: Ẑ consists of
sequences (an)n∈N× such that an ∈ Z/n for each n and am = rm,nan
whenever m|n.

This tells us how to add and multiply in Ẑ, and it also tells us that Z
embeds as a dense subring of Ẑ: for z ∈ Z choose an = z (mod n).

The inverse limit can also be characterized (up to canonical isomorphism)
by a universal property.
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The ring of integral adeles as a product.

Let n =
∏

p pvp(n) be the prime factorization of n ∈ N×.
The Chinese Remainder Theorem gives a decomposition

Z/n =
∏
p

Z/pvp(n)

As n tends multiplicatively to infinity, all the vp(n) go to infinity, and
taking limits on both sides gives

Ẑ =
∏
p

Zp.

Recall that Zp = (Z[ 1p ]/Z)̂ .

Exercise (due now): guess what the Pontryagin dual of Ẑ is. Or rather, to
keep the hats apart guess the group of which Ẑ is the dual.
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Using the pairing of the inverse system {Z/n : n ∈ N×} giving rise to Ẑ to
the directed system { 1nZ/Z : n ∈ N×} giving rise to Q/Z, one proves that

Ẑ = (Q/Z)̂

Sorry about this, but the ̂ on the left denotes the adeles, while the ()̂ on
the right indicates the Pontryagin dual, i.e. the continuous
homomorphisms (of Q/Z in this case) into the circle group.
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invertibles and zero divisors in Ẑ

The invertible elements of the ring Ẑ are the integral ideles:

Ẑ∗ = lim←−(Z/n)∗ =
∏
p

Z∗p.

Notice that z ∈ Zp is invertible if and only if its first Hensel
coefficient is nonzero (in which case long division is possible and gives
the inverse), so
(zp)p∈P ∈

∏
p∈P Zp is invertible iff (zp)0 6= 0 for all p (equivalently

zp /∈ pZp) for all p.

Ẑ has lots of zero divisors:
(zp)p∈P ∈

∏
p∈P Zp is a zero divisor iff zp = 0 for some p.
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