C*-dynamical systems from number theory Day 2: C*- dynamical systems and KMS states: More examples *p*-adic numbers, adeles, ideles and all that

Marcelo Laca

University of Victoria

June 2010

(3)

Example (an infinite system based on the Toeplitz algebra)

- The Toeplitz algebra represented as operators on ℓ²(N): Let {ε_n} be the standard orthonormal basis of ℓ²(N), and let S : ε_n → ε_{n+1}, be the usual unilateral shift on ℓ²(N). Define T to be the C*-algebra generated by S.
- The Toeplitz algebra as the universal C*-algebra of an isometry: There exists a unital C*-algebra generated by an isometry V (i.e. V*V = 1) such that whenever W satisfies W*W = 1 there is a C*-algebra homomorphism h : C*(V) → C*(W) such that h(V) = W. (Such V is a universal isometry, and it is unique up to canonical isomorphism).
- Coburn's classical result can be interpreted as saying that the canonical homomorphism mapping V → W is an isomorphism if and only if WW* ≠ 1. In particular this happens when W = S.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Example (an infinite system based on the Toeplitz algebra)

- If V is a universal isometry so is $e^{it}V$ for $t \in \mathbb{R}$, and the universal property gives (a continuous group of) automorphisms σ_t of \mathcal{T} determined by what they do to S: $\sigma_t(S) = e^{it}S$ for $t \in \mathbb{R}$.
- (hw: prove this and also verify that $\{\sigma_t\}$ is implemented by the 1-parameter unitary group $t \mapsto e^{itH}$ on $\ell^2(\mathbb{N})$ with Hamiltonian $H\varepsilon_n = n\varepsilon_n$.)

Example (an infinite system based on the Toeplitz algebra)

- Using $S^*S = 1$ we may 'Wick order' the products on S and S^* and have all the S^* 's appear to the right; thus the set $\{S^mS^{*n}: m, n \in \mathbb{N}\}$ spans a dense *-subalgebra of \mathcal{T} .
- Notice that t → σt is periodic, so it can be viewed as an action of the circle T. Averaging over T gives a faithful conditional expectation E_σ of T onto the fixed-point algebra T^σ = span{SⁿS^{*n} : n ∈ N} of σ:

$$\mathsf{E}_{\sigma}(S^{m}S^{*n}) = \frac{1}{2\pi} \int_{\mathbb{T}} e^{i(m-n)t} S^{m}S^{*n} dt = \begin{cases} S^{m}S^{*m} & \text{if } m = n \\ 0 & \text{if } m \neq n. \end{cases}$$

• Since $S^m S^{*m} S^n S^{*n} = S^{\max(m,n)} S^{*\max(m,n)}$ this fixed point algebra is commutative; its spectrum is $\mathbb{N} \cup \{\infty\}$. One way to see this is to prove directly that the map $\delta_n \mapsto S^n S^{*n} - S^{n+1} S^{*n+1}$ extends to an isomorphism of $c = C(\mathbb{N} \cup \{\infty\})$ onto \mathcal{T}^{σ} (hw: do it!).

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Example (KMS $_{\beta}$ states of the Toeplitz algebra for $0 < \beta < \infty$)

- $z \mapsto \sigma_z(S^m S^{*n}) = e^{i(m-n)z} S^m S^{*n}$ is entire so the spanning elements are analytic.
- **2** By the KMS_{β} condition (twice): $\varphi(S^m S^{*n}) = e^{-(m-n)\beta}\varphi(S^m S^{*n})$
- Since $\mathcal{T} = \overline{\text{span}} \{S^m S^{*n}\}$, there is at most one KMS_{β} state for each β .
- Is there one for each β?
 i.e. does the above condition determine a bona-fide state of *T*?

Remark: We will see two techniques to deal with the recurring theme of proving that a linear functional is a state.

Example (Existence of KMS $_{\beta}$ states for $0 < \beta < \infty$)

1) Spatially: Recall that the dynamics σ has a diagonal Hamiltonian $H\varepsilon_n = n\varepsilon_n$ with respect to the standard basis of $\ell^2(\mathbb{N})$. The partition function $\operatorname{Tr}(e^{-\beta H}) = \sum_n e^{-n\beta} = \frac{1}{1-e^{-\beta}}$ is defined for every $\beta > 0$, and thus $\varphi_{\beta}(T) = (1 - e^{-\beta}) \operatorname{Tr}(Te^{-\beta H})$ is a KMS $_{\beta}$ state. Exercise: Verify that φ_{β} satisfies $\begin{cases} \varphi(S^m S^{*n}) = 0 & \text{for } m \neq n \\ \varphi(S^n S^{*n}) = e^{-n\beta} & \text{for } m = n. \end{cases}$

2) Via the conditional expectation onto \mathcal{T}^{σ} : Recall the conditional expectation E_{σ} mapping \mathcal{T} onto the fixed-point algebra $\mathcal{T}^{\sigma} = \overline{\operatorname{span}} \{S^n S^{*n} : n \in \mathbb{N}\}$ of σ , and recall that \mathcal{T}^{σ} is isomorphic to $C(\mathbb{N} \cup \{\infty\})$. Define a p.l.f. on $C(\mathbb{N} \cup \{\infty\})$ by $P_{\beta}(\delta_n) := (1 - e^{-\beta})e^{-n\beta}$ and then induce P_{β} from \mathcal{T}^{σ} up to \mathcal{T} via the conditional expectation:

$$\varphi_{\beta}(T) = P_{\beta} \circ E_{\sigma}(T).$$

Exercise: Verify that this is the same state as above.

Example (KMS $_{\beta}$ states of the Toeplitz algebra for $\beta = 0$)

- Recall the exact sequence of C*-algebras 0 → K → T → C(T) → 0 where K is the ideal of compact operators, obtained as the closed linear span of the elements S^m(1 − SS*)S^{*n}.
- From the KMS₀ condition, φ(SS*) = φ(S*S) = 1 and hence φ(S^m(1 − SS*)S*ⁿ) = 0 (this requires the Cauchy -Schwarz inequality), so a KMS₀ state φ vanishes on K and must be a lifting from a state of C(T).
- States of C(T) correspond to probability measures on T, but because of the extra assumption of σ-invariance, only (normalized) Lebesgue measure will do. So there is exactly one KMS₀ state of T; it is given by

$$\varphi(S^m S^{*n}) = \begin{cases} 0 & \text{for } m \neq n \\ 1 & \text{for } m = n. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples: Cuntz algebras and their Toeplitz extensions

The **Toeplitz-Cuntz algebra** \mathcal{TO}_n is the universal unital C*-algebra generated by isometries S_1, \ldots, S_n with mutually orthogonal ranges. Let \mathbf{F}_n^+ denote the free monoid on *n* generators, then \mathcal{TO}_n is faithfully represented on $\ell^2(\mathbf{F}_n^+)$ via $S_i\delta_\mu = \delta_{i\mu}$, where μ is the word $\mu_1\mu_2\cdots\mu_k$

whose length k is denoted by $|\mu|$, and $j\mu$ is simply concatenation.

The Cuntz algebra \mathcal{O}_n is the quotient of \mathcal{TO}_n by the ideal generated by the projection $1 - S_1 S_1^* - \cdots - S_n S_n^*$. It is universal for *n* isometries satisfying $\sum_{i=1}^n S_i S_i^* = 1$.

The gauge action on TO_n (and on O_n) is the dynamics defined by

$$\sigma_t(S_j) = e^{it}S_j, \quad j = 1, \ldots, n.$$

The elements $S_{\mu}S_{\nu}^* = S_{\mu_1} \dots S_{\mu_k}S_{\nu_l}^* \dots S_{\nu_1}^*$ and the identity (which corresponds to the empty word) span a dense *-subalgebra of \mathcal{TO}_n , and are σ -analytic because $\sigma_t(S_{\mu}S_{\nu}^*) = e^{it(|\mu| - |\nu|)}S_{\mu}S_{\nu}^*$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Examples: KMS states of Toeplitz-Cuntz algebras Suppose φ is a KMS_{β} state of TO_n

- if $|\mu| \neq |\nu|$, then $\varphi(S_{\mu}S_{\nu}^{*}) = 0$ by σ -invariance.
- If μ and ν are finite words, then $\varphi(S_{\mu}S_{\nu}^{*}) =$

$$=\varphi(S_{\mu_2}\ldots S_{\mu_k}S^*_{\nu_k}\ldots S^*_{\nu_1}\sigma_{i\beta}(S_{\mu_1}))=\delta_{\mu_1,\nu_1}e^{-\beta}\varphi(S_{\mu_2}\ldots S_{\mu_k}S^*_{\nu_k}\ldots S^*_{\nu_2}).$$

Repeating the process we see something stronger than σ -invariance:

•
$$\varphi(S_{\mu}S_{\nu}^{*}) = \begin{cases} e^{-|\mu|\beta} & \text{if } \mu = \nu \\ 0 & \text{if } \mu \neq \nu. \end{cases}$$

- $\overline{\text{span}}\{S_{\mu}S_{\mu}^{*}: \mu \in \mathbf{F}_{n}^{+}\}\$ is a commutative C*-algebra with spectrum $\Omega_{n} = \text{compactification of (finite) path space } \mathbf{F}_{n}^{+}.$
- There is a canonical (dual) coaction of the free group \mathbf{F}_n on \mathcal{TO}_n , and $\overline{\text{span}}\{S_{\mu}S_{\mu}^*: \mu \in \mathbf{F}_n^+\} \cong C(\Omega_n)$ is its fixed point algebra.
- The KMS state factors through the corresponding conditional expectation $E : \mathcal{TO}_n \to C(\Omega_n)$ determined by $E : S_\mu S_\nu^* \mapsto \delta_{\mu,\nu} S_\mu S_\mu^*$, and is thus more symmetric than one would expect from σ -invariance.

Examples: KMS states of Toeplitz-Cuntz algebras

• If a KMS_{β} state φ exists, it is uniquely determined by the values

$$\varphi(S_{\mu}S_{\nu}^{*}) = \begin{cases} e^{-|\mu|\beta} & \text{if } \mu = \nu \\ 0 & \text{if } \mu \neq \nu. \end{cases}$$

• Since $0 \le \varphi(1 - \sum_{j=1}^{n} S_j S_j^*) = 1 - ne^{-\beta}$, we must have $\beta \ge \log n$, and in the case of \mathcal{O}_n we must have equality.

Do such states exist?

• It is not difficult to construct the unique state φ_{β} that satisfies the above condition by inducing the probability measure supported on the finite paths in Ω_n given by $P_{\beta}(\delta_{\mu}) = (1 - ne^{-\beta})e^{-\beta|\mu|}$ through the conditional expectation $E : \mathcal{TO}_n \to C(\Omega_n)$: $\varphi_{\beta} = P_{\beta} \circ E$.

In the case of \mathcal{O}_n a KMS $_\beta$ state φ exists only for $\beta = \log n$. It is induced from a measure on Ω_n supported on the boundary $\{1, 2, \dots n\}^\infty$ of Ω_n . The probability that gives rise to the unique KMS_β state is the product of the uniform distribution $p_j = 1/n$ for $j = 1, \dots, n$.

Summarizing, we have:

Theorem (Olesen-Pedersen, Evans)

- For β = log n there exists a unique σ-KMS_β-state on O_n; there are no KMS_β-states for β ≠ log n.
- For each β ≥ log n there exists a unique σ-KMS_β-state on TO_n; there are no KMS_β-states for β < log n.
- In the standard representation of *TO_n* on ℓ²(**F**⁺_n) the dynamics has a diagonal Hamiltonian: *H*ε_μ = |μ|ε_μ.
- The partition function is $Tr(e^{-\beta H}) = \sum_{\mu \in \mathbf{F}_n^+} e^{-|\mu|\beta} = \frac{1}{1 ne^{-\beta}}$ and is defined for every $\beta > \log n$.
- The state φ_{β} is of type I for $\beta > \log n$ and of type $III_{1/n}$ for $\beta = \log n$.

Remark: The KMS_{β} state of \mathcal{O}_n was originally obtained as $\varphi = \tau \circ E_{\sigma}$ where τ is the unique tracial state on the fixed point algebra \mathcal{O}_n^{σ} , which is the UHF-algebra of type n^{∞} , via the corresponding conditional expectation

$$E_{\sigma}: \mathcal{O}_n \to \mathcal{O}_n^{\sigma}, \quad E_{\sigma}(a) = \frac{1}{2\pi} \int_0^{2\pi} \sigma_t(a) dt.$$

Examples: Cuntz-Krieger algebras

Let A be an $n \times n$ matrix of zeros and ones having no zero rows. The Cuntz-Krieger algebra \mathcal{O}_A is the universal C*-algebra generated by partial isometries s_k for k = 1, 2, ..., n, (partial isometry means $ss^*s = s$) such that

(CK1):
$$1 = \sum_{j} s_{j}s_{j}^{*}$$
 and (CK2): $s_{k}^{*}s_{k} = \sum_{j} A(k,j)s_{j}s_{j}^{*}$.

We define a time evolution σ on \mathcal{O}_A by $\sigma_t(s_j) = e^{it}s_j$.

Theorem (Enomoto-Fujii-Watatani)

A KMS_{β} state on \mathcal{O}_A exists iff there exists a non negative vector v such that $Av = e^{\beta}v$. If A is irreducible, this happens only for $\beta = \log r_A$, where $r_A =$ spectral radius of A and the KMS_{β} state φ_{β} is unique and determined by $v = \{\varphi_{\beta}(s_j s_j^*)\}_{j=1}^n =$ normalized Perron-Frobenius eigenvector corresponding to the largest eigenvalue e^{β} of A. As is customary, when $\mu = \mu_1 \mu_2 \cdots \mu_n$ is a finite word in the symbols $\{1, 2, \dots, n\}$ we write s_{μ} for the product $s_{\mu_1} s_{\mu_2} \cdots s_{\mu_n}$.

hw project: prove the E-F-W theorem

here are the key steps.

- **()** Show that the elements $s_{\mu}s_{\nu}^{*}$ are analytic and have dense linear span.
- Identify the vector v in the E-F-W theorem in terms of the values of a state on convenient expressions in the s_j, and use (CK2) to show that the condition Av = e^βv is necessary if the state is KMS_β.
- Prove that the condition is also sufficient for KMS_β (this is a bit harder).
- When the matrix A is irreducible apply the Perron-Frobenius Theorem to get the uniqueness result.

イロト イポト イヨト イヨト

We have seen several examples,

Finite quantum systems: $M_n(\mathbb{C})$; $\sigma(A) = e^{itH}ae^{-itH}$; Gibbs state $\varphi_G(a) = \frac{1}{\text{Tr}(e^{-\beta H})} \text{Tr}(ae^{-\beta H})$ partition function $\text{Tr}(e^{-\beta H})$

Toeplitz system: $C^*(S)$, (S = shift); $\sigma_t(S) = e^{it}$; φ_β induced from geometric density $(1 - e^{-\beta})e^{-\beta n}$; partition function $\frac{1}{1 - e^{-\beta}}$

Toeplitz-Cuntz system: $\mathcal{TO}_n = C^*(S_1, S_2, \cdots, S_n | S_k^*S_j = \delta_{k,j}1);$ $\sigma_t(S_j) = e^{it}S_j$; a KMS $_\beta$ state exists for each $\beta \ge \log n$; φ_β induced from probability measure on rooted (n+1)-tree with density $(1 - ne^{-\beta})e^{-\beta|\mu|}$ $(\mu \text{ a path of length } |\mu|)$, partition function $= \frac{1}{1 - ne^{-\beta}}.$

Toeplitz-Cuntz-Krieger system: (ok, we haven't really seen this one, only the [E-F-W] theorem for \mathcal{O}_A , but the T-C-K system is similar to the T-C system except that one has a restricted tree of *A*-admissible paths, [L. Exel, Comm. Math. Phys. 2003]);

Before introducing the systems form number theory, we need some basic constructions from number theory.

the *p*-adic integers \mathbb{Z}_p via Hensel series

Let p be a prime number. Every positive integer can be written in a unique way as

$$n = a_0 + a_1 p + a_2 p^2 + \dots + a_k p^k$$
 with $a_j \in \{0, 1, 2, \dots, (p-1)\}$.

If we now allow formal infinite sums, or Hensel series

$$z = a_0 + a_1p + a_2p^2 + \dots + a_kp^k + \dots$$

and we define sums and products of sequences by mimicking what happens with the finite sums (i.e. with carry-over to the right), then we obtain a compact ring which is usually denoted \mathbb{Z}_p and called the *p*-adic integers. This way of viewing the infinite product space $\prod_0^{\infty} \{0, 1, 2, \dots, (p-1)\}$ is very convenient because the series in powers of *p* remind us of how to add and multiply. As indicated above, the positive integers correspond to finite expansions. *Exercise: Find the Hensel series of* -1.

\mathbb{Z}_p as a completion of \mathbb{N} and as a projective limit

- Z_p can also be defined as the completion of N under the p-adic absolute value, |n|_p = p^{-k} (where p^k is the highest power of p that divides n). To see this, it suffices to verify that N embeds isometrically in Z_p as the finite Hensel series, which are dense.
- For each k consider the finite ring Z/p^k of integers modulo p^k. If k ≤ j then reduction modulo p^k determines surjective ring homomorphisms h_{k,j} of Z/p^j to Z/p^k, and produces a projective system

$$\cdots \mathbb{Z}/p^k \to \mathbb{Z}/p^{k-1} \to \cdots \to \mathbb{Z}/p^2 \to \mathbb{Z}/p \to 0.$$

By definition $(\text{proj} \lim_{j} \mathbb{Z}/p^{j})$ is the subset of $\prod_{j} (\mathbb{Z}/p^{j})$ consisting of sequences $\{a_{j}\}$ such that $h_{k,j}(a_{j}) = a_{k}$ whenever $k \leq j$. This gives homomorphisms $h_{k,\infty}$: $(\text{proj} \lim_{j} \mathbb{Z}/p^{j}) \to \mathbb{Z}/p^{k}$ such that when $k \leq j$ $h_{k,j} \circ h_{j,\infty} = h_{k,\infty}$.

Exercise: show that the three definitions of \mathbb{Z}_p (Hensel series, p-adic completion, projective limit) yield the same object.

The dual group of \mathbb{Z}_p

- Denote by
 ¹/_{p^k} Z/Z the group of rationals with denominator p^k, taken modulo Z.
- If $r \in \frac{1}{p^k} \mathbb{Z}/\mathbb{Z}$ and $z \in \mathbb{Z}/p^k$, it makes sense to define a pairing $\langle z, r \rangle := \exp 2\pi i r z$ (?!) and the map $r \mapsto \langle \cdot, r \rangle$ gives a concrete realization of the dual of the additive group \mathbb{Z}/p^k .
- These pairings (for each k ∈ N) are compatible with the projective system (Z/p^k)_{k∈N} and with the injective system (¹/_{p^k}Z/Z)_{k∈N}.
- The direct limit of the injective system is simply the group $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z} = \bigcup_k \frac{1}{p^k} \mathbb{Z}/\mathbb{Z}$ of rationals with denominator a power of p, taken modulo \mathbb{Z} .

The duality established between \mathbb{Z}/p^k and $\frac{1}{p^k}\mathbb{Z}/\mathbb{Z}$ gives a duality between the respective limits (the dual of an inverse limit is the direct limit of duals), and we conclude that

$$\mathbb{Z}_p$$
 is in duality with $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$

through the pairing

$$\langle z, r \rangle = \exp 2\pi i r z$$

(Exercise: make sure this makes sense to you).

Specifically, the map $z \in \mathbb{Z}_p \mapsto \langle z, \cdot \rangle = \exp(2\pi i \cdot z)$ gives an isomorphism of compact groups

$$\mathbb{Z}_p\cong (\mathbb{Z}[rac{1}{p}]/\mathbb{Z})^{\hat{}}.$$

The ring of integral adeles as an inverse limit.

When m|n let $r_{m,n} : \mathbb{Z}/n \to \mathbb{Z}/m$ be the ring homomorphism given by reduction modulo m. The multiplicative order on \mathbb{N}^{\times} is not total but it is directed (given k and m take n = km to get an element that follows both k and m). These connecting maps are coherent in the sense that if k|m|n, then $r_{k,m} \circ r_{m,n} = r_{k,n}$, so

 $\{\mathbb{Z}/m: m \in \mathbb{N}^{\times}\}$

is an inverse system of rings indexed by the multiplicatively ordered semigroup $\mathbb{N}^{\times}.$ The inverse limit

$$\widehat{\mathbb{Z}} = \varprojlim_{m}(\mathbb{Z}/m)$$

is thus a compact (profinite) ring, called the ring of finite adeles.

The multiplicative order in \mathbb{N}^{\times} is not linear, but it is directed, and the technical definition of inverse limit is the usual one: $\widehat{\mathbb{Z}}$ consists of sequences $(a_n)_{n\in\mathbb{N}^{\times}}$ such that $a_n \in \mathbb{Z}/n$ for each n and $a_m = r_{m,n}a_n$ whenever m|n.

This tells us how to add and multiply in $\widehat{\mathbb{Z}}$, and it also tells us that \mathbb{Z} embeds as a dense subring of $\widehat{\mathbb{Z}}$: for $z \in \mathbb{Z}$ choose $a_n = z \pmod{n}$.

The inverse limit can also be characterized (up to canonical isomorphism) by a universal property.

The ring of integral adeles as a product.

Let $n = \prod_{p} p^{v_{p}(n)}$ be the prime factorization of $n \in \mathbb{N}^{\times}$. The Chinese Remainder Theorem gives a decomposition

$$\mathbb{Z}/n = \prod_{p} \mathbb{Z}/p^{v_p(n)}$$

As *n* tends multiplicatively to infinity, all the $v_p(n)$ go to infinity, and taking limits on both sides gives

$$\widehat{\mathbb{Z}} = \prod_{p} \mathbb{Z}_{p}.$$

Recall that $\mathbb{Z}_p = (\mathbb{Z}[\frac{1}{p}]/\mathbb{Z})^{\hat{}}$.

Exercise (due now): guess what the Pontryagin dual of $\widehat{\mathbb{Z}}$ is. Or rather, to keep the hats apart guess the group of which $\widehat{\mathbb{Z}}$ is the dual.

Using the pairing of the inverse system $\{\mathbb{Z}/n : n \in \mathbb{N}^{\times}\}$ giving rise to $\widehat{\mathbb{Z}}$ to the directed system $\{\frac{1}{n}\mathbb{Z}/\mathbb{Z} : n \in \mathbb{N}^{\times}\}$ giving rise to \mathbb{Q}/\mathbb{Z} , one proves that

$$\widehat{\mathbb{Z}} = (\mathbb{Q}/\mathbb{Z})^{\hat{}}$$

Sorry about this, but the $\widehat{}$ on the left denotes the adeles, while the ()[^] on the right indicates the Pontryagin dual, i.e. the continuous homomorphisms (of \mathbb{Q}/\mathbb{Z} in this case) into the circle group.

invertibles and zero divisors in $\widehat{\mathbb{Z}}$

 \bullet The invertible elements of the ring $\widehat{\mathbb{Z}}$ are the integral ideles:

$$\widehat{\mathbb{Z}}^* = \varprojlim (\mathbb{Z}/n)^* = \prod_p \mathbb{Z}_p^*.$$

- Notice that z ∈ Z_p is invertible if and only if its first Hensel coefficient is nonzero (in which case long division is possible and gives the inverse), so
 (z_p)_{p∈P} ∈ ∏_{p∈P} Z_p is invertible iff (z_p)₀ ≠ 0 for all p (equivalently z_p ∉ pZ_p) for all p.
- $\widehat{\mathbb{Z}}$ has lots of zero divisors: $(z_p)_{p\in\mathcal{P}}\in\prod_{p\in\mathcal{P}}\mathbb{Z}_p$ is a zero divisor iff $z_p=0$ for some p.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A