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Example (an infinite system based on the Toeplitz algebra)

o The Toeplitz algebra represented as operators on (>(N):
Let {e,} be the standard orthonormal basis of ¢2(N), and
let S: e, e,11, be the usual unilateral shift on #2(N).
Define 7 to be the C*-algebra generated by S.

o The Toeplitz algebra as the universal C*-algebra of an
isometry: There exists a unital C*-algebra generated by an isometry
V (i.e. V*V =1) such that whenever W satisfies W*W =1 there is
a C*-algebra homomorphism h: C*(V) — C*(W) such that
h(V) = W. (Such V is a universal isometry, and it is unique up to
canonical isomorphism).

@ Coburn’s classical result can be interpreted as saying that the
canonical homomorphism mapping V +— W is an isomorphism if and
only if WW™ % 1. In particular this happens when W = S.
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Example (an infinite system based on the Toeplitz algebra)

o If V is a universal isometry so is etV for t € R, and the universal
property gives (a continuous group of) automorphisms o of T
determined by what they do to S:  0+(S) = €S for t € R.

o (hw: prove this and also verify that {o:} is implemented by the
1-parameter unitary group t — et on (?(N) with Hamiltonian
He, = nep.)
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Example (an infinite system based on the Toeplitz algebra)

@ Using S*S = 1 we may ‘Wick order’ the products on S and S* and
have all the $*'s appear to the right; thus the set
{§MS*" : m,n € N} spans a dense *-subalgebra of 7.

@ Notice that t — o; is periodic, so it can be viewed as an action of the

circle T. Averaging over T gives a faithful conditional expectation E,
of T onto the fixed-point algebra 77 = span{S"S*" : n € N} of o:

B mcCxm .f _
& ITm n.

@ Since SMS*M §ngxn — gmax(m,n) gxmax(m.n) this fixed point algebra is
commutative; its spectrum is NU {oco}. One way to see this is to
prove directly that the map d, — S"S*" — S"15**1 extends to an
isomorphism of ¢ = C(NU {oo}) onto 77 (hw: do it!).
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Example (KMSj states of the Toeplitz algebra for 0 < 3 < 00)

Q z 5 0,(Sm5*") = el(m=nzgmG+n is entire so the spanning elements
are analytic.

@ By the KMSj condition (twice): ¢(SmS*") = e~ (m=mBy(SmS*n)

©(SmS*M) =0 form#n

@ ¢ is a KMSg-state <=
4 7 {QD(S”S*”) =e ™ form=n.
Q Since 7 =5span{S”5*"}, there is at most one KMSg state for each f3.

@ Is there one for each 37
i.e. does the above condition determine a bona-fide state of 77

Remark: We will see two techniques to deal with the recurring theme of
proving that a linear functional is a state.
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Example (Existence of KMSj states for 0 < § < o0)

1) Spatially: Recall that the dynamics o has a diagonal Hamiltonian
He, = ne, with respect to the standard basis of #(N). The partition
function Tr(e PH) =Y e " = 172_5 is defined for every 8 > 0, and
thus @g(T) = (1 — e #) Tr(Te=PH) is a KMS; state.

P(SmS*M) =0 form # n

©(S"S*™) = e~ form = n.

Exercise: Verify that g satisfies

2) Via the conditional expectation onto 77:

Recall the conditional expectation E, mapping 7 onto the fixed-point
algebra 77 =span{S"S*" : n € N} of o, and recall that 77 is isomorphic
to C(NU {oo}). Define a p.I.f. on C(NU{o0}) by

Ps(6n) := (1 — e #)e~" and then induce Ps from 77 up to 7T via the
conditional expectation:

0p(T) = PgoEs(T).

Exercise: Verify that this is the same state as above.
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Example (KMSj states of the Toeplitz algebra for 5 = 0)

@ Recall the exact sequence of C*-algebras 0 - X — 7 — C(T) — 0
where K is the ideal of compact operators, obtained as the closed
linear span of the elements S™(1 — S5*)S*".

e From the KMSy condition, ¢(55*) = ¢(5*S) =1 and hence
©(S™(1 — §5*)S*") = 0 (this requires the Cauchy -Schwarz
inequality), so a KMSy state ¢ vanishes on I and must be a lifting
from a state of C(T).

@ States of C(T) correspond to probability measures on T, but because
of the extra assumption of o-invariance, only (normalized) Lebesgue
measure will do. So there is exactly one KMSy state of T ;
it is given by

0 form#n

1 for m=n.

P(STS™) = {
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Examples: Cuntz algebras and their Toeplitz extensions

The Toeplitz-Cuntz algebra 7O, is the universal unital C*-algebra
generated by isometries Sy, ..., S, with mutually orthogonal ranges.

Let F denote the free monoid on n generators, then 7O, is faithfully
represented on ¢?(F") via $;d,, = dj,,, where 11 is the word piypin - - - ik
whose length k is denoted by |u|, and ju is simply concatenation.

The Cuntz algebra O, is the quotient of 7O, by the ideal generated by

the projection 1 — 5157 —--- — 5,5;. It is universal for n isometries
satisfying > ; 5;SF = 1.
The gauge action on 70O, (and on O,,) is the dynamics defined by

Jt(sj') = e’tSJ-, j = 1, e, n

The elements 5,57 =S, ... 5., S, ... S, and the identity (which
corresponds to the empty word) span a dense *-subalgebra of 7O, and

are g-analytic because 7+(S,S}) = e(nl=IWg, S
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Examples: KMS states of Toeplitz-Cuntz algebras
Suppose ¢ is a KMSg state of TO,,

o if |u| # |v], then ©(S5,S,;) = 0 by o-invariance.

o If 11 and v are finite words, then  ¢(5,S;) =

= 0(Sus - S Sy - S50i8(Si)) = Suyme P o(Suy - S Sp - )
Repeating the process we see something stronger than o-invariance:
. e if u=v
° P(SuSy) = .
0 if .
o 5pan{S,S; : € F;} is a commutative C*-algebra with spectrum
Q,, = compactification of (finite) path space F}.
@ There is a canonical (dual) coaction of the free group F, on TO,,
and span{S,S;; : u € F} = C(Q,) is its fixed point algebra.
@ The KMS state factors through the corresponding conditional

expectation E : TO, — C(Q,) determined by E : 5,5} + 6,,,, 5,5,
and is thus more symmetric than one would expect from o-invariance.
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Examples: KMS states of Toeplitz-Cuntz algebras

o If a KMSg state ¢ exists, it is uniquely determined by the values

e~ HBif p=v
e(SuS)) = .
0 if u+#wv.
o Since 0 < (137, 55) =1~ ne=®, we must have 8 > log n,

and in the case of O, we must have equality.

Do such states exist?

@ It is not difficult to construct the unique state g that satisfies the
above condition by inducing the probability measure supported on the
finite paths in Q, given by P3(d,) = (1 — ne=#)e Pl through the
conditional expectation E : TO, — C(Q,): ¢ = PgoE.

In the case of O, a KMSg state ¢ exists only for 5 = logn. It is induced
from a measure on Q,, supported on the boundary {1,2,---n}> of Q,.
The probability that gives rise to the unique KMSg state is the product of
the uniform distribution p; =1/nfor j=1,--- ,n.
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Summarizing, we have:

Theorem (Olesen-Pedersen, Evans)
@ For 3 = log n there exists a unique c-KMSg-state on O,; there are no
KMSg-states for 3 # log n.

@ For each 3 > log n there exists a unique o-KMSg-state on T O,
there are no KMSg-states for 3 < log n.

o In the standard representation of 7O, on ¢?(F}) the dynamics has a
diagonal Hamiltonian: He, = |ule,,.

o The partition function is ~ Tr(e ") = > ek} e B =
and is defined for every 5 > log n.

@ The state g is of type | for 8 > log n and of type Ill;/, for 3 = log n.

1
1—ne—~

Remark: The KMSg state of O, was originally obtained as ¢ = 70 E,
where 7 is the unique tracial state on the fixed point algebra O, which is
the UHF-algebra of type n®°, via the corresponding conditional expectation

27
E,: On— 07, E(a)= 21/ oe(a)dt.
™ Jo
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Examples: Cuntz-Krieger algebras
Let A be an n x n matrix of zeros and ones having no zero rows. The

Cuntz-Krieger algebra O, is the universal C*-algebra generated by partial

isometries sx for k = 1,2,...n, (partial isometry means ss*s = s) such
that

(CK1): 1= st and (CK2): sise= > A(k,j)s;s]-
J J

We define a time evolution o on Oa by o¢(s;) = e'’s;.

Theorem (Enomoto-Fujii-Watatani)

A KMSpg state on O 4 exists iff there exists a non negative vector v such
that Av = ePv.

If A is irreducible, this happens only for B = log ra, where rp = spectral
radius of A and the KMSg state yg is unique and determined by

v = {pp(sjs7)}]_, = normalized Perron-Frobenius eigenvector
corresponding to the largest eigenvalue e® of A.

v
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As is customary, when @ = pipp -« - fin is a finite word in the symbols
{1,2,...n} we write s, for the product s, s, - - - 5,

hw project: prove the E-F-W theorem

here are the key steps.
© Show that the elements s;s;; are analytic and have dense linear span.

@ Identify the vector v in the E-F-W theorem in terms of the values of a
state on convenient expressions in the s;, and use (CK2) to show that
the condition Av = €’v is necessary if the state is KMSg.

© Prove that the condition is also sufficient for KMSg (this is a bit
harder).

© When the matrix A is irreducible apply the Perron-Frobenius Theorem
to get the uniqueness result.

Ol

v
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We have seen several examples,

Finite quantum systems: M,(C); o(A) = e'*"ae~ ",

Gibbs state pg(a) = ﬁ Tr(ae=#H) partition function Tr(e=?H)

Toeplitz system: C*(S), (S = shift); 0+(S) = e; ¢z induced from

geometric density (1 — e=?)e™#"; partition function e 7?

Toeplitz-Cuntz system: 7O, = C*(51,52,--,5,|S5;Sj = 6k j1);
o(S5j) = eSj; a KMSg state exists for each 5 > log n; g induced from
probability measure on rooted (n + 1)-tree with density (1 — ne=#)e=#Ix

(1 a path of length |ul), partition function = ;——.

Toeplitz-Cuntz-Krieger system: (ok, we haven't really seen this one,
only the [E-F-W] theorem for O4, but the T-C-K system is similar to the
T-C system except that one has a restricted tree of A—admissible paths,
[L. Exel, Comm. Math. Phys. 2003]);

Before introducing the systems form number theory, we need some basic
constructions from number theory.

M. Laca (University of Victoria) June 2010 14 /23



the p-adic integers Z, via Hensel series

Let p be a prime number. Every positive integer can be written in a
unique way as

n=ag—+aip+ ap’>+---+ap’ with aj€{0,1,2,...,(p—1)}.
If we now allow formal infinite sums, or Hensel series
z=aytaip+ap’+--- a4,

and we define sums and products of sequences by mimicking what happens
with the finite sums (i.e. with carry-over to the right), then we obtain a
compact ring which is usually denoted Z, and called the p-adic integers.
This way of viewing the infinite product space [[5°{0,1,2,...,(p — 1)} is
very convenient because the series in powers of p remind us of how to add
and multiply. As indicated above, the positive integers correspond to finite
expansions. Exercise: Find the Hensel series of —1.
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Z, as a completion of N and as a projective limit

@ Zp can also be defined as the completion of N under the p-adic
absolute value, |n|, = p~% (where p¥ is the highest power of p that
divides n). To see this, it suffices to verify that N embeds
isometrically in Z, as the finite Hensel series, which are dense.

@ For each k consider the finite ring Z/p* of integers modulo p*. If
k < j then reduction modulo p* determines surjective ring
homomorphisms hy j of Z/p/ to Z/p*, and produces a projective
system

- Z)p* - p* = 5 2 p? = Z)p — 0.

By definition (proj lim; 7./p') is the subset of HJ(Z/p’) consisting of
sequences {a;} such that hy j(a;) = ax whenever k < j. This gives
homomorphisms hy « : (projlim; 7./p') — Z./p* such that when

k< j hejohjoo = hioo.

Exercise: show that the three definitions of Z, (Hensel series, p-adic
completion, projective limit) yield the same object.
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The dual group of Z,

@ Denote by #Z/Z the group of rationals with denominator p¥, taken
modulo Z.

o lfre #Z/Z and z € Z/p¥, it makes sense to define a pairing
(z,r) :=exp2mirz (?') and the map r — (-, r) gives a concrete
realization of the dual of the additive group Z/p*.

@ These pairings (for each k € N) are compatible with the projective
system (Z/p*)ken and with the injective system (ﬁZ/Z)keN-

@ The direct limit of the injective system is simply the group
Z[%]/Z = U, #Z/Z of rationals with denominator a power of p,
taken modulo Z.
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The duality established between Z/p* and #Z/Z gives a duality between

the respective limits (the dual of an inverse limit is the direct limit of
duals), and we conclude that

Zp s in duality with  Z[[]/Z

through the pairing
(z,r) = exp2mirz
(Exercise: make sure this makes sense to you).
Specifically, the map z € Z, — (z,-) = exp (27i - z) gives an isomorphism

of compact groups
Z, = (Z[%)/2)"
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The ring of integral adeles as an inverse limit.

When m|n let rm 1 Z/n — Z/m be the ring homomorphism given by
reduction modulo m. The multiplicative order on N* is not total but it is
directed (given k and m take n = km to get an element that follows both
k and m). These connecting maps are coherent in the sense that if k|m|n,
then ri.m © rm.n = ric,p, SO

{Z/m:meN*}

is an inverse system of rings indexed by the multiplicatively ordered
semigroup N*. The inverse limit

Z = lim(2,/m)

m

is thus a compact (profinite) ring, called the ring of finite adeles.
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The multiplicative order in N* is not linear, but it is directed, and the
technical definition of inverse limit is the usual one: 7 consists of
sequences (ap),enx such that a, € Z/n for each n and ap, = rim pan
whenever m|n.

This tells us how to add and n)\ultiply in 2 and it also tells us that Z
embeds as a dense subring of Z: for z € Z choose a, = z (mod n).

The inverse limit can also be characterized (up to canonical isomorphism)
by a universal property.
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The ring of integral adeles as a product.

Let n =], p*»(") be the prime factorization of n € N*.
The Chinese Remainder Theorem gives a decomposition

z/n=]z/p""
p

As n tends multiplicatively to infinity, all the v,(n) go to infinity, and
taking limits on both sides gives

z=]z
1%
Recall that Z, = (Z[;]/Z)".

Exercise (due now): guess what the Pontryagin dual of Z is. Or rather, to
keep the hats apart guess the group of which Z is the dual.
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Using the pairing of the inverse system {Z/n: n € N*} giving rise to Z to
the directed system {1Z/Z : n € N*} giving rise to Q/Z, one proves that

Z=(Q/z)y

Sorry about this, but the ™ on the left denotes the adeles, while the ()" on
the right indicates the Pontryagin dual, i.e. the continuous
homomorphisms (of Q/Z in this case) into the circle group.
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invertibles and zero divisors in Z

@ The invertible elements of the ring 7 are the integral ideles:
2" = im(z/n)’ HZ*

@ Notice that z € Z,, is invertible if and only if its first Hensel
coefficient is nonzero (in which case long division is possible and gives
the inverse), so
(zp)pep € [l pep Zp is invertible iff (z,)o # 0 for all p (equivalently
zp ¢ pZp) for all p.

o 7 has lots of zero divisors:
(zp)pep € [l pep Zp is a zero divisor iff z, = 0 for some p.
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