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Dynamical systems and states

A C*-dynamical system is a pair (A, σ) with

A a C∗-algebra (whose self adjoint elements are the observables)

σ : R→ Aut(A) (the dynamics or time evolution on A)

(here σ0 = id, σs ◦ σt = σs+t and t 7→ σt(a) is norm continuous)

A state of A is a positive linear functional ϕ normalized so that ‖ϕ‖ = 1
and ϕ(σt(a)) is the expectation value of the observable a ∈ Asa

corresponding to the state ϕ at time t ∈ R.
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Basic facts

1 The states of a commutative C*-algebra A = C0(Ω) are in bijection
with the probability measures on its spectrum Ω.

ϕµ(f ) =

∫
Ω
f dµ.

2 If A is a C*-subalgebra of B(H) for a Hilbert space H, each unit
vector ξ ∈ H gives rise to a state

ωξ(a) := 〈aξ, ξ〉.

These vector states are not all there is, but...

3 GNS construction: for each state ϕ of A there is a Hilbert space
Hϕ, a representation πϕ : A→ B(Hϕ), and a cyclic unit vector
ξϕ ∈ Hϕ such that

ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉.
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Analytic elements

Let (A, σ) be a C*-dynamical system; an element a ∈ A is called σ-analytic
if the map t 7→ σt(a) ∈ A extends to an A-valued entire function
z 7→ σz(a). Equivalently, a is σ-analytic if t 7→ f (σt(a)) extends to a
complex-valued entire function for every bounded linear functional f on A.
Fact: The σ-analytic elements form a dense *-subalgebra of A.
Key idea: For a ∈ A the element

an :=

√
n

π

∫
R
σt(a) exp(−nt2) dt

is analytic for σ because the function

z 7→ σz(an) :=

√
n

π

∫
R
σt(a) exp(−n(t − z)2) dt

is entire and ‖an − a‖ → 0.
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The KMS condition

Definition (Haag-Hugenholtz-Winnink, 1967)

A state ϕ on A satisfies the Kubo-Martin-Schwinger (KMS) condition with
respect to σ at inverse temperature β ∈ [0,∞) (ϕ is a σ- KMSβ state), if

ϕ(ab) = ϕ(bσiβ(a))

for all σ-analytic elements a, b ∈ A.

Remark: This is a tracelike condition, twisted by σ along ‘imaginary time’.

General reference for KMS condition [ Bratteli-Robinson, Operator
algebras and quantum statistical mechanics. 2. Equilibrium states. 2nd ed.
1997. Springer Verlag; pdf downloadable]
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KMS condition (equivalent formulations)
1 Since ‖ϕ(σt(a))‖ ≤ ‖a‖ the state ϕ is KMSβ for σ iff

ϕ(ab) = ϕ(bσiβ(a))

for a and b in a set of analytic elements with dense linear span.
This formulation has the advantage of reducing the verification to a
minimum. (hw: prove the equivalence)

Also equivalent, and closer to the original boundary condition for
Green functions used by Kubo, is the condition:

2 (For β > 0.) A state ϕ is a KMSβ-state if for any a, b ∈ A there
exists a continuous function

f : {z ∈ C | 0 ≤ =z ≤ β} → C

that is analytic in the open strip 0 < =z < β and satisfies

f (t) = ϕ(bσt(a)), f (t + iβ) = ϕ(σt(a)b) for all t ∈ R.

This has the advantage of not requiring analytic elements.
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KMS states are stationary

Proposition

If β 6= 0 and ϕ is a KMSβ state, then ϕ is σ-invariant.

Proof: (assuming 1 ∈ A to simplify things).

Let b be analytic for σ. The entire function z 7→ ϕ(σz(b)) has period (iβ)
because the KMS condition implies

ϕ(σz(b)1) = ϕ(1σz+iβ(b)).

Since ‖φ(σt(b))‖ ≤ ‖b‖ for t ∈ R the function is bounded on the
boundary of the strip 0 < =z < β and has period iβ so it is bounded on
C, hence it is constant.

We will soon see that the converse is not true.

For β = 0 the KMS condition is simply a tracial condition that does not
involve σ, but it is standard for this case to require σ-invariance explicitly,
so the definition is (KMS0 state) ≡ (σ-invariant trace).
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ground states

The state ϕ of A is a ground state for σ if

z 7→ ϕ(bσz(a))

is bounded on the upper half plane for every a, b ∈ A with a analytic for σ.

When the function is bounded it is bounded by ‖a‖‖b‖ and it suffices to
check the condition for a set of analytic elements with dense linear span.
(hw: verify this) The proof involves a Phragmen-Lindelöf type result in
complex variable:

Proposition

Let H denote the upper half plane and suppose f is continuous on H and
holomorphic on H. If f is bounded on H then it is bounded by
sup{|f (x)| : x ∈ R}.
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KMS as an equilibrium condition
In 1967 H-H-W proposed the KMS condition as a definition of equilibrium
for quantum systems. This was postulated from an insightful analogy with
a property of boundary values of Green functions in statistical mechanics,
motivated by work of Kubo, and of Martin and Schwinger.
Soon afterwards it was proved that KMS states have several of the
properties characteristic of equilibrium, e.g.

Stability
Passivity
Minimality

and that they also play a major role in the Tomita-Takesaki theory in von
Neumann algebras.
The KMS condition is an essentially noncommutative phenomenon:

Proposition (see e.g Bratteli-Robinson vol.II ch 5)

If (A, σ) has a faithful KMS and A is commutative, then σ is trivial.

For us, KMS is simply a condition that generalizes the trace property in
the presence of a dynamics.
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Example (finite quantum systems)

‘borrowed’ from [Hugenholtz, C*-algebras and statistical mechanics Proc.
Symp. Pure Math. 38 (1981)]

A = Matn(C), so the observables are the selfadjoint n × n matrices.

Every time evolution σ on Matn(C) arises as σt(a) = e itHae−itH

with H a selfadjoint matrix (a Hamiltonian) which is determined up
to an additive constant, and is usually normalized so that its smallest
eigenvalue is 0. Exercise: which matrices are analytic for σ?

There is a 1 to 1 correspondence between states ϕ of Matn(C) and
density matrices Qϕ such that ϕ(a) = Tr(aQϕ).
(Q ∈ Matn(C) is a density matrix iff Q ≥ 0 and TrQ = 1 )

ϕ is pure (i.e. extremal in the state space) iff Qϕ is a rank-one
projection.
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Example (finite quantum systems)

The stationary (i.e. σ-invariant) states are those for which

Tr(e itHae−itHQ) = Tr(aQ) ∀a ∈ Matn(C);

by the trace property this is equivalent to Tr(ae−itHQe itH) = Tr(aQ)
hence ϕ is stationary iff Qϕ commutes with e itH , and thus with H.

Extremal stationary states are pure; their density matrices are the
projections onto the eigenvectors of H.

The von Neumann entropy of a state ϕ = Tr(·Qϕ) is

S(ϕ) := −Tr(Qϕ logQϕ).

S(ϕ) = 0 (minimal) when ϕ is pure, and S(ϕ) = log n (maximal)
when ϕ is the normalized trace. “A pure state has maximal
information, and the normalized trace has minimal information.”
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Example (finite quantum systems)

Definition

The free energy: of the state ϕ of Matn(C) with Hamiltonian H at inverse
temperature β = 1/T is F (ϕ) := −S(ϕ) + βϕ(H),

The free energy (for fixed β and H) is minimized at a unique state:

Proposition (thermodynamic inequality)

1) F (ϕ) := −S(ϕ) + βϕ(H) ≥ − log Tr(e−βH);

2) equality holds if and only if ϕ is the Gibbs state ϕG , having density
matrix QG = 1

Tr(e−βH)
e−βH .

For a proof see e.g. the appendix in [Hugenholtz, C*-algebras and
statistical mechanics]. (or try it as an exercise, for which you will need a
few basic but nontrivial facts about matrices and convex functions)
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Convex functions and matrices

For self adjoint matrices A and B,

| log Tr eA − log Tr eB | ≤ ‖A− B‖

If, in addition f : R→ R is a convex function, then

Tr
(
f (A)− f (B)− (A− B)f ′(B)

)
≥ 0

When f is strictly convex, then equality holds iff A = B.

If A and B are positive, then setting f (t) = t log t gives

Tr(A logA)− Tr(A logB) ≥ Tr(A− B)

and if A and B are density matrices (trace one and positive), this
yields

Tr(A logA)− Tr(A logB) ≥ 0
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Convex functions and matrices

(Peierls’s inequality) For self adjoint A ∈ Matn(C) and {xi} an
orthonormal set in H ∑

i

e〈Axi ,xi 〉 ≤ Tr eA.

The function A 7→ log TrA is an increasing convex function of the
selfadjoint matrices to R.

The function Ω 7→ Tr(Ω log Ω) is convex on the set of density
matrices {Ω ∈ Matn : Ω ≥ 0, Tr Ω = 1}
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Example (finite quantum systems)

Proposition

The Gibbs state ϕG is the unique state on Matn(C) such that

ϕ(ab) = ϕ(bσiβ(a))

for all a, b ∈ Matn(C), where σiβ(a) = e−βHaeβH .

HW project: Prove the proposition. You will need to show that the Gibbs
density is the only density that satisfies

Tr(abQ) = Tr(be−βHaeβHQ)

for every pair of matrices a, b in Matn(C) (an interesting exercise in linear
algebra).

Thus the KMS condition characterizes equilibrium for finite systems. For
some infinite systems, equilibrium states are defined as thermodynamical
limits of local Gibbs states, and are also characterized by KMS.
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The set of KMS-states
Let Σβ be the set of σ-KMSβ-states. Then

if ϕi ∈ Σβi and βi → β then any weak∗ limit point of {ϕi}i is a
KMSβ-state;

if ϕ ∈ Σβ then the normal extension ϕ̄ of ϕ to πϕ(A)′′ is faithful and
σϕ̄t ◦ πϕ = πϕ ◦ σ−βt ; in particular, for β 6= 0 a state ϕ with faithful
GNS-representation can be a σ-KMSβ-state for at most one
dynamics σ, and then if such a nontrivial dynamics σ is fixed, β is
also uniquely determined;

a point ϕ ∈ Σβ is extremal if and only if πϕ(A)′′ is a factor (i.e. has
trivial center)

extremal KMSβ states are also called pure phases.

if A is unital then Σβ is a Choquet simplex in A∗, that is, it is a
convex weakly∗-closed subset of A∗ and (assuming A is separable)
every point in Σβ is the barycenter of a unique probability measure
concentrated on the extremal points of Σβ;
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Partition function

Some C*-dynamical systems have no Hamiltonian (that is, σt is not of the
form e itH · e−itH for any H associated to the C*-algebra A). To get
around this, we consider A represented on a Hilbert space H.
However, the following situation often arises

Let π : A→ B(H) be an irreducible representation. Assume there
exists an (unbounded) self-adjoint operator H on K such that

π(σt(a)) = e itHπ(a)e−itH for all a ∈ A.

The operator H is uniquely determined if we require that zero is the
smallest point in its spectrum. The function β 7→ Tr(e−βH) is then
called the partition function associated to π.

When Tr(e−βH) <∞, then ϕ(·) = Tr(· e−βH)/Tr(e−βH) is a
σ-KMSβ-state. This is similar to the Gibbs state of the finite system
over A = Matn(C).
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Equivalently, if ϕ is an extremal σ-KMSβ-state such that the von
Neumann algebra M = πϕ(A)′′ has type I, then
ϕ(a) = Tr(ae−βH)/Tr(e−βH) for a unique positive operator H
affiliated with M, having zero in the spectrum.

For each β′ > β, we have e−β
′H ≤ e−βH , and hence

ϕ′(·) = Tr(· e−β′H)/Tr(e−β
′H)

is a KMSβ′ state.
(So ‘cooling down’ to a larger inverse temperature has the effect of
improving equilibrium.)

cf. [Powers-Sakai, ’75], [Jorgensen, ’77] and others.
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Phase transition and symmetry breaking

A phase transition is an abrupt change in physical properties of a system.

Example: transition between the solid, liquid, and gaseous phases as
temperature increases.

Phase transitions often (but not always) take place between phases with
different symmetry. Some intuitive examples are:

A snowflake is less symmetric than a (spherical) drop of water.

Ferromagnets are capable of spontaneous magnetization (dipoles
“align” each other) at low temperatures.

In C*-algebraic terms, the group of automorphisms of A commuting with
σ and preserving every KMSβ-state changes as β varies.
Typically the symmetry group gets smaller as temperature decreases. This
is known as spontaneous symmetry breaking: only symmetric
configurations can be at equilibrium at high temperature while the system
admits asymmetric equilibrium configurations upon cooling down.
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