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Stochastic climate modeling

Most stochastic climate models are specific to the modelstsy,
but system-specific SDE models in particular implicitly Bppmit
theorems, which give general formulas
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Stochastic climate modeling

Most stochastic climate models are specific to the modelstsy,
but system-specific SDE models in particular implicitly Bppmit
theorems, which give general formulas

— the equations of motion are linearised about a mean state,

dX
— —LX
dt ’

white noise is added to account for the (fast-evolving) o
linearisation, and a damping term is added for stability:

dX AW
= = (L+D)X + —
g~ LT DX
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Theorem-based reduction methods

Hasselmann(1976)
Kurtz(1973) —— MTV(1999-2006) —— Franzke et al.(2005)
Papanicolaou(1976)

Khasminskii(1966)
Hasselmann(1976) —— Arnold et al.(2003)
Fatkullin and Vanden-Eijnden(2004)

% Significant similarities between the two methods, but aispartant
differences
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Hasselmann(1976)— . ..

dx

dy 1
% — Eg(xay)

(slow climate mode)

(fast weather mode)

Ase — 0, z — X In distribution, where X satisfies:

dt

= F(X) + eD(X) + veo (X) 2V

dt
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Hasselmann(1976)— . ..

‘Cll_f = f(z,y) (slow climate mode)
1

Z_CZ = —g(z,y) (fastweather mode)
€

Ase — 0, z — X In distribution, where X satisfies:

_ dW
= F(X) + eD(X) + Ver(X) =

= . T .
) f:hmT—wo%fO f(xayt)dt
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Hasselmann(1976)— . ..

‘Cll_f = f(z,y) (slow climate mode)
1

0@% = —g(z,y) (fastweather mode)
€

Ase — 0, z — X In distribution, where X satisfies:

= T(X) + eD(X) + Veo (X) T

= [ E(f(, yif)—?)(f( Jye) — f)* dt
' D:fo E(Vef(z,yf) — 7)(f(55 yi) — 7)*dt

* Simple to implement: do not have to resolve fast mode;
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Online closure

-
#

extrapolation step, - .

relaxation steps . ®

slow manifold

Figure 3: Schematic illustration of the projective integration scheme
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. —Franzke et al.(2005)

dx 1

g Efl(xay) + fo(x, )

dy 1 1

— = 390y + gy
T € €

Ase — 0, z — X In distribution, where X satisfies:

X f(X.X) 4+ DX) + o (X) 2
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dx 1

g Efl(way) + fo(x, )

dy 1 1

— = 390y + gy
T € €

Ase — 0, z — X In distribution, where X satisfies:

X f(X.X) 4+ DX) + o (X) 2

- similar formulas forD ando, but nowo = o(f1) andD = D(f1, g1)
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dx 1

g Efl(way) + fo(x, )

dy 1 1

— = 390y + gy
T € €

Ase — 0, z — X In distribution, where X satisfies:

X f(X.X) 4+ DX) + o (X) 2

- similar formulas forD ando, but nowo = o(f1) andD = D(f1, ¢1)
— In partiCUIar1D — fOOO E(vfl (xayt))(fl(wayt)agl(xvyt))* at

Stochastic Parameterisation Schemes Based on Riaorous Liimtheorems — p. 6/



. —Franzke et al.(2005)

dx 1

g Efl(%y) + fo(z, )

d 1 1

d—y = —90(%y) + -g1(v,y)
T € €

Ase — 0, z — X In distribution, where X satisfies:

X f(X.X) 4+ DX) + o (X) 2

- similar formulas forD ando, but nowo = o(f1) andD = D(f1, ¢1)
— In partiCUIar1D — fOOO E(vfl (xayt))(fl(xayt)vgl(xvyt))* at

* An explicit reduced equation can be derived

Stochastic Parameterisation Schemes Based on Riaorous Liimtheorems — p. 6/



. —Franzke et al.(2005)

dx 1

g Efl(%y) + fo(z, )

d 1 1

d—y = —90(%y) + -g1(v,y)
T € €

Ase — 0, z — X In distribution, where X satisfies:

X f(X.X) 4+ DX) + o (X) 2

- similar formulas forD ando, but nowo = o(f1) andD = D(f1, ¢1)
— In partiCUIar1D — fOOO E(vfl (xayt))(fl(xayt)vgl(xvyt))* at

* An explicit reduced equation can be derived

Stochastic Parameterisation Schemes Based on Riaorous Liimtheorems — p. 6/



. —Franzke et al.(2005)

dx 1

g Efl(%y) + fo(z, )

d 1 1

d—y = —90(%y) + -g1(v,y)
T € €

Ase — 0, z — X In distribution, where X satisfies:

X f(X.X) 4+ DX) + o (X) 2

- similar formulas forD ando, but nowo = o(f1) andD = D(f1, ¢1)
— In partiCUIar1D — fOOO E(vfl (xayt))(fl(xayt)vgl(xvyt))* at

* An explicit reduced equation can be derived

Stochastic Parameterisation Schemes Based on Riaorous Liimtheorems — p. 6/



Tests of assumptions

m Assumptions of reduction theory:
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Assumptions of reduction theory:
* time-scale separation into slow and fast variables

* ergodicity and mixing of fast dynamics
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Tests of assumptions

Assumptions of reduction theory:
* time-scale separation into slow and fast variables
* ergodicity and mixing of fast dynamics

% the existence of limiting slow dynamics
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Atmospheric low-frequency variability (LFV)

a) 2940M 61 1 20 - 61 1 29 0Z

b) 2940H 78 12 31 - 79 1 9 0OZ
AN
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QG model of LFV (Kravtsov et al. (2005))
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Bifurcation: unimodal to bimodal distribution of jet axis

Position of the jet maximum
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Existence of limiting slow dynamics

dx
Y= gwy)
it sl

The fast term is up-scaled by suitable choice of averagimgrpaters
In Hasselmann’s deterministic averaging equation
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Existence of limiting slow dynamics

dx
Y= gwy)
it sl

The fast term is up-scaled by suitable choice of averagimgrpaters
In Hasselmann’s deterministic averaging equation

Speeding up the fast mode is equivalent to changing thedaifion
parameter (the bottom drag parameter)
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Existence of limiting slow dynamics

dx
Y= gwy)
it sl

The fast term is up-scaled by suitable choice of averagimgrpaters
In Hasselmann’s deterministic averaging equation

Speeding up the fast mode is equivalent to changing thedaifion
parameter (the bottom drag parameter)

In large neighbourhood of bifurcation poimiot every set of slow
variables has limiting slow dynamics
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EOFs in region of jet bimodality

Autocorrelation timescale
and % explained variance vs. EOF,;
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Schematic of KRGO5 dynamics

bifurcation point

unimodal jet
distribution

bimodal jet distribution

Increasing spin—down timescale

\%
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Method of Franzke et al.(2005); 1-D SDE

Stationary mode PDFs of unreduced and 1-D regressed reduced models;
k=67 days
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Method of Franzke et al.(2005); 1-D SDE

Stationary mode time series of regressed reduced models w/out wave-4; k 167 days
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Method of Franzke et al.(2005); 3-D SDE

Time series of stationary mode; k 1223 days
Regressed reduced model with )\B:)\ A:)\F:O
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Hasselmann’'s method

Stationary mode PDFs of unreduced and reduced models; k 167 days

3000

Deterministic averaging—DNS hybrid; 4X faster than DNS
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Conclusions

In a large neighbourhood of bifurcation point there is naiting 3-D
slow dynamics despite good scale separation, highlighlihag
Importance of tests of existence of limits
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Conclusions

In a large neighbourhood of bifurcation point there is naiting 3-D
slow dynamics despite good scale separation, highlighlihag
Importance of tests of existence of limits

— Limiting slow dynamics can differ considerably from slowrdymics,
even for order of magnitude scale separation

The conclusion of KRGO5 that first-order dynamics of jet boality
arises from interaction between stationary and wave-4 e
Incorrect

— leading fast synoptic eddies are of first-order importanuk\aave-4
facilitates transitions between states
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Conclusions: Method of Franzke et al. (2005)

v" Very good simulation of climate statistics, including j@todality, of
KRGO05 model of intermediate complexity with order of magdi
timescale separation
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Conclusions: Method of Franzke et al. (2005)

v

\

Very good simulation of climate statistics, including j&todality, of
KRGO05 model of intermediate complexity with order of magdi
timescale separation

Formulae laid out in full, in paper
Effective SDE far faster than DNS

Combined with Hasselmann’s averaging algorithm, revealshnabout
underlying physics

Not suited to Marshall & Molteni (1993) model, which has slaascale
separation (Strounine et al. (to be submitted))

In present form, not suited to models whose operators aralhatultilinear
(i.e., operators which cannot be written as tensors)

For larger models, off-line calculations would be impraatiwithout
further simplifications
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v' Very good simulation of climate statistics
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