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Stochastic climate modeling

Most stochastic climate models are specific to the modeled system,

but system-specific SDE models in particular implicitly apply limit

theorems, which give general formulas
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Stochastic climate modeling

Most stochastic climate models are specific to the modeled system,

but system-specific SDE models in particular implicitly apply limit

theorems, which give general formulas

→ the equations of motion are linearised about a mean state,

dX

dt
= LX,

white noise is added to account for the (fast-evolving) error in

linearisation, and a damping term is added for stability:

dX

dt
= (L + D)X +

dW

dt
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Theorem-based reduction methods

Hasselmann(1976)

Kurtz(1973) −→ MTV(1999-2006)−→ Franzke et al.(2005)

Papanicolaou(1976)

Khasminskii(1966)

Hasselmann(1976)−→ Arnold et al.(2003)

Fatkullin and Vanden-Eijnden(2004)

⋆ Significant similarities between the two methods, but also important

differences
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Hasselmann(1976)−→ . . .

dx

dt
= f(x, y) (slow climate mode)

dy

dt
=

1

ǫ
g(x, y) (fast weather mode)

As ǫ → 0, x → X in distribution, where X satisfies:

dX

dt
= f(X) + ǫD(X) +

√
ǫσ(X)

dW

dt
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√
ǫσ(X)
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· f = limT→∞

1
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1

ǫ
g(x, y) (fast weather mode)

As ǫ → 0, x → X in distribution, where X satisfies:

dX

dt
= f(X) + ǫD(X) +

√
ǫσ(X)

dW

dt

· f = limT→∞

1

T

∫ T

0
f(x, yx

t ) dt

· σ =
∫
∞

0
E(f(x, yx

t ) − f)(f(x, yx
0
) − f)∗ dt

· D =
∫
∞

0
E(∇xf(x, yx

t ) −∇xf)(f(x, yx
t ) − f)∗ dt

⋆ Simple to implement: do not have to resolve fast mode,y
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Online closure
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. . . −→Franzke et al.(2005)

dx

dτ
=

1

ǫ
f1(x, y) + f0(x, x)

dy

dτ
=

1

ǫ2
g0(y, y) +

1

ǫ
g1(x, y)

As ǫ → 0, x → X in distribution, where X satisfies:

dX

dτ
= f0(X, X) + D(X) + σ(X)

dW

dτ
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· similar formulas forD andσ, but nowσ = σ(f1) andD = D(f1, g1)
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Tests of assumptions

Assumptions of reduction theory:
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Tests of assumptions

Assumptions of reduction theory:

⋆ time-scale separation into slow and fast variables

⋆ ergodicity and mixing of fast dynamics

⋆ the existence of limiting slow dynamics
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Atmospheric low-frequency variability (LFV)
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QG model of LFV (Kravtsov et al. (2005))
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Bifurcation: unimodal to bimodal distribution of jet axis
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Existence of limiting slow dynamics

dx

dt
= f(x, y)

dy

dt
=

1

δǫ
g(x, y)

The fast term is up-scaled by suitable choice of averaging parameters

in Hasselmann’s deterministic averaging equation
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Existence of limiting slow dynamics

dx

dt
= f(x, y)

dy

dt
=

1

δǫ
g(x, y)

The fast term is up-scaled by suitable choice of averaging parameters

in Hasselmann’s deterministic averaging equation

Speeding up the fast mode is equivalent to changing the bifurcation

parameter (the bottom drag parameter)

In large neighbourhood of bifurcation point,not every set of slow

variables has limiting slow dynamics
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EOFs in region of jet bimodality
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Schematic of KRG05 dynamics

bimodal jet distribution

)(

bifurcation point

Increasing spin−down timescale

unimodal jet

distribution
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Method of Franzke et al.(2005); 1-D SDE
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Method of Franzke et al.(2005); 1-D SDE
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Method of Franzke et al.(2005); 3-D SDE
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Hasselmann’s method
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Conclusions

In a large neighbourhood of bifurcation point there is no limiting 3-D

slow dynamics despite good scale separation, highlightingthe

importance of tests of existence of limits
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Conclusions

In a large neighbourhood of bifurcation point there is no limiting 3-D

slow dynamics despite good scale separation, highlightingthe

importance of tests of existence of limits

→ Limiting slow dynamics can differ considerably from slow dynamics,

even for order of magnitude scale separation

The conclusion of KRG05 that first-order dynamics of jet bimodality

arises from interaction between stationary and wave-4 modes is

incorrect

→ leading fast synoptic eddies are of first-order importance and wave-4

facilitates transitions between states
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Conclusions: Method of Franzke et al. (2005)

X Very good simulation of climate statistics, including jet bimodality, of

KRG05 model of intermediate complexity with order of magnitude

timescale separation
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KRG05 model of intermediate complexity with order of magnitude

timescale separation

X Formulae laid out in full, in paper

X Effective SDE far faster than DNS

X Combined with Hasselmann’s averaging algorithm, reveals much about

underlying physics

Not suited to Marshall & Molteni (1993) model, which has smaller scale

separation (Strounine et al. (to be submitted))

In present form, not suited to models whose operators are notall multilinear

(i.e., operators which cannot be written as tensors)

For larger models, off-line calculations would be impractical without

further simplifications
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Conclusions: Hasselmann’s method

X Very good simulation of climate statistics
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