Long time behavior of solutions of Hamilton-Jacobi in the plane

P. Cardaliaguet

Univ. Brest

Workshop on - Analysis of nonlinear PDEs and free boundary problems: applications to homogenization PIMS, Vancouver. July 20-24 2009

Long time behaviour of the average u(·, t)/t, where u is the solution to

$$\begin{cases} u_t(x,t) + F(x, Du(x,t)) = 0 & \text{in } \mathbb{R}^N \times (0, +\infty) \\ u(x,0) = 0 & \text{in } \mathbb{R}^N \end{cases}$$

• Limit as $\lambda \to 0$ of λv_{λ} where v_{λ} is the solution to

 $\lambda v_{\lambda}(x) + F(x, Dv_{\lambda}(x)) = 0$ in \mathbb{R}^N

Long time behaviour of the average u(·, t)/t, where u is the solution to

$$\begin{cases} u_t(x,t) + F(x, Du(x,t)) = 0 & \text{in } \mathbb{R}^N \times (0, +\infty) \\ u(x,0) = 0 & \text{in } \mathbb{R}^N \end{cases}$$

• Limit as $\lambda \to 0$ of λv_{λ} where v_{λ} is the solution to

$$\lambda v_{\lambda}(x) + F(x, Dv_{\lambda}(x)) = 0$$
 in \mathbb{R}^{N}

A (1) > A (1) > A

- Ergodic control and differential games
- Homogenization

э.

lf

- $F(x, \cdot)$ is coercive : $\lim_{|p| \to +\infty} F(x, p) = +\infty$ uniformly in x
- $F(\cdot, p)$ is \mathbb{Z}^N -periodic

Theorem [Lions-Papanicolau-Varadhan]

There is a constant $c \in \mathbb{R}$ s.t.

$$\lim_{T\to+\infty}\frac{1}{T}u(x,T)=\lim_{\lambda\to 0^+}\lambda v_{\lambda}(x)=c$$

Relies on

- uniform bounds on $\frac{1}{T}u(x, T)$ and on $\lambda v_{\lambda}(x)$
- ② uniform Lipschitz bounds for v_{λ}
- uniqueness of the constant c for which there is a continuous periodic solution to

$$F(x, D\chi(x)) = -c \qquad \text{in } \mathbb{R}^N$$

lf

- $F(x, \cdot)$ is coercive : $\lim_{|p| \to +\infty} F(x, p) = +\infty$ uniformly in x
- $F(\cdot, p)$ is \mathbb{Z}^N -periodic

Theorem [Lions-Papanicolau-Varadhan]

There is a constant $c \in \mathbb{R}$ s.t.

$$\lim_{T\to+\infty}\frac{1}{T}u(x,T)=\lim_{\lambda\to 0^+}\lambda v_{\lambda}(x)=c$$

Relies on

- uniform bounds on $\frac{1}{T}u(x, T)$ and on $\lambda v_{\lambda}(x)$
- 2 uniform Lipschitz bounds for v_{λ}
- uniqueness of the constant c for which there is a continuous periodic solution to

$$F(x, D\chi(x)) = -c$$
 in \mathbb{R}^N

What happens when *H* is not coercive ?

Without coercivity condition on F

- No uniform Lipschitz bounds for v_{λ}
- Equation

$$F(x, D\chi(x)) = -c$$
 in \mathbb{R}^N

has no continuous, periodic solution in general.

4 A N

What happens when *H* is not coercive ?

Without coercivity condition on F

- No uniform Lipschitz bounds for v_{λ}
- Equation

$$F(x, D\chi(x)) = -c$$
 in \mathbb{R}^N

has no continuous, periodic solution in general.

Examples

For N = 2 and

 $F(x_1, x_2, p_1, p_2) = -|p_1| + |p_2| - \ell(x_1, x_2) \qquad \forall (p_1, p_2), (x_1, x_2) \in \mathbb{R}^2$.

• Resonance : If $\ell(x_1, x_2) = \overline{\ell}(x_1 - x_2)$, then

$$\frac{1}{T}u(x_1, x_2, T) = \lambda v_\lambda(x_1, x_2) = \bar{\ell}(x_1 - x_2) \; .$$

The limit exists but is not constant.

Saddle point : [Alvarez-Bardi] If

$$\bar{\ell} := \min_{x_1} \max_{x_2} \ell(x_1, x_2) = \max_{x_2} \min_{x_1} \ell(x_1, x_2) ,$$

then

$$\lim_{T \to +\infty} \frac{1}{T} u(x, T) = \lim_{\lambda \to 0^+} \lambda v_{\lambda}(x) = \bar{\ell} .$$

Examples

For N = 2 and

 $F(x_1, x_2, p_1, p_2) = -|p_1| + |p_2| - \ell(x_1, x_2) \qquad \forall (p_1, p_2), (x_1, x_2) \in \mathbb{R}^2$.

• Resonance : If $\ell(x_1, x_2) = \overline{\ell}(x_1 - x_2)$, then

$$\frac{1}{T}u(x_1, x_2, T) = \lambda v_{\lambda}(x_1, x_2) = \bar{\ell}(x_1 - x_2) .$$

The limit exists but is not constant.

Saddle point : [Alvarez-Bardi] If

 $\bar{\ell} := \min_{x_1} \max_{x_2} \ell(x_1, x_2) = \max_{x_2} \min_{x_1} \ell(x_1, x_2) ,$

then

$$\lim_{T \to +\infty} \frac{1}{T} u(x, T) = \lim_{\lambda \to 0^+} \lambda v_{\lambda}(x) = \bar{\ell}$$

Examples

For N = 2 and

 $F(x_1, x_2, p_1, p_2) = -|p_1| + |p_2| - \ell(x_1, x_2) \qquad \forall (p_1, p_2), (x_1, x_2) \in \mathbb{R}^2$.

• Resonance : If $\ell(x_1, x_2) = \overline{\ell}(x_1 - x_2)$, then

$$\frac{1}{T}u(x_1, x_2, T) = \lambda v_{\lambda}(x_1, x_2) = \bar{\ell}(x_1 - x_2) .$$

The limit exists but is not constant.

Saddle point : [Alvarez-Bardi] If

$$\bar{\ell} := \min_{x_1} \max_{x_2} \ell(x_1, x_2) = \max_{x_2} \min_{x_1} \ell(x_1, x_2) ,$$

then

$$\lim_{T\to+\infty}\frac{1}{T}u(x,T)=\lim_{\lambda\to 0^+}\lambda v_{\lambda}(x)=\bar{\ell}.$$

Examples (continued)

Assume

$$F(x,p) = a(x)|p+p_0|$$
 $(x,p) \in \mathbb{R}^N \times \mathbb{R}^N$

where

- $p_0 \in \mathbb{R}^N \setminus \{0\}$
- a: ℝ^N → ℝ is Lipschitz continuous, ℤ^N−periodic and changes sign

Proposition

The limits

$$w(x) := \lim_{T \to +\infty} \frac{1}{T} u(x, T) = \lim_{\lambda \to 0^+} \lambda v_{\lambda}(x)$$

exist.

However w is discontinuous unless it is identically zero.

Example borrowed from [C., Lions, Souganidis].

P. Cardaliaguet (Univ. Brest)

- non-resonnance conditions (convex case) : Arisawa-Lions (1998)
- special decoupled structure conditions : Barles (2007), Imbert-Monneau (2008), Bardi (2009)
- sub-additive type result (convex case) : Quincampoix-Renault (2009).

Assumptions :

$${oldsymbol F}(x, {oldsymbol
ho}) = {oldsymbol H}({oldsymbol
ho}) - \ell(x), \qquad orall (x, {oldsymbol
ho}) \in \mathbb{R}^N imes \mathbb{R}^N \ ,$$

where

- $\ell : \mathbb{R}^N \to \mathbb{R}$ is continuous, \mathbb{Z}^N -periodic,
- *H* : ℝ^N → ℝ is Lipschitz continuous, 1-positively homogeneous and convex.
- Nonresonnance condition :

$$\forall k \in \mathbb{Z}^N \setminus \{0\} \ , \ \exists a \in \partial H(0) \text{ with } k.a \neq 0 \ ,$$

Theorem (special case of [Arisawa-Lions, 98])

There is a constant $c \in \mathbb{R}$ such that

$$\lim_{T \to +\infty} \frac{1}{T} u(x, T) = \lim_{\lambda \to 0^+} \lambda v_{\lambda}(x) = c$$

Assumptions :

$${oldsymbol F}(x, {oldsymbol
ho}) = {oldsymbol H}({oldsymbol
ho}) - \ell(x), \qquad orall (x, {oldsymbol
ho}) \in \mathbb{R}^N imes \mathbb{R}^N \ ,$$

where

- $\ell : \mathbb{R}^N \to \mathbb{R}$ is continuous, \mathbb{Z}^N -periodic,
- *H* : ℝ^N → ℝ is Lipschitz continuous, 1-positively homogeneous and convex.
- Nonresonnance condition :

$$\forall k \in \mathbb{Z}^N \setminus \{0\} \ , \ \exists a \in \partial H(0) \text{ with } k.a \neq 0 \ ,$$

Theorem (special case of [Arisawa-Lions, 98])

There is a constant $c \in \mathbb{R}$ such that

$$\lim_{T\to+\infty}\frac{1}{T}u(x,T)=\lim_{\lambda\to 0^+}\lambda v_{\lambda}(x)=c$$

P. Cardaliaguet (Univ. Brest)

Sketch of proof

- Under the structure condition, (λν_λ) is unif. bounded and Lipschitz continuous.
- Hence up to a subsequence, (λν_λ) converges to some w
 Lipschitz continuous, Z^N-periodic solution to

$$H(D\bar{w}) = 0 \qquad \text{in } \mathbb{R}^N$$

• From the homogeneity and the convexity of H,

 $\langle a, D\bar{w} \rangle \leq 0$ in \mathbb{R}^N $\forall a \in \partial H(0)$

Integrating over $[0, 1]^N$ leads to

 $\langle a, D\bar{w} \rangle = 0$ in \mathbb{R}^N $\forall a \in \partial H(0)$

• Therefore \bar{w} is constant along the lines $t \to x + ta$ for any $x \in \mathbb{R}^N$, $a \in \partial H(0)$.

A sub-additive type result

Assumptions :

$${oldsymbol F}(x, {oldsymbol
ho}) = H({oldsymbol
ho}) - \ell(x), \qquad orall (x, {oldsymbol
ho}) \in \mathbb{R}^N imes \mathbb{R}^N \ ,$$

where

- $\ell : \mathbb{R}^N \to \mathbb{R}$ is continuous, \mathbb{Z}^N -periodic,
- $H : \mathbb{R}^N \to \mathbb{R}$ is 1-positively homogeneous and convex.

Theorem (special case of [Quincampoix-Renault, preprint])

The limits

$$\lim_{T\to+\infty}\frac{1}{T}u(x,T)=\lim_{\lambda\to 0^+}\lambda v_{\lambda}(x)$$

always exist (but need not be constant).

Outline

< (□) < 三 > (□)

< 47 ▶

< A >

< 47 ▶

- E - N

Assumptions

Assumptions

We work in the plane (N = 2) and with F of the form

$$F(x,p) = H(p) - \ell(x) \qquad orall (x,p) \in \mathbb{R}^2 imes \mathbb{R}^2$$

where

- ℓ is \mathbb{Z}^2 -periodic and Lipschitz continuous,
- $H : \mathbb{R}^2 \to \mathbb{R}$ is Lipschitz continuous, 1–positively homogeneous,
- For any $\rho \in \mathbb{R}^2 \setminus \{0\}$ with $H(\rho) = 0$, $DH(\rho)$ exists and is nonzero.

Standard consequence of the assumptions

Lemma

Under the above assumptions, $\frac{1}{T}u(\cdot, T)$ and λv_{λ} are uniformly Lipschitz continuous and bounded.

We note that $w_{\lambda} := \lambda v_{\lambda}$ solves

$$\lambda w_{\lambda} + H(Dw_{\lambda}) - \lambda \ell = 0$$
 in \mathbb{R}^2 .

Lemma

Any limit *w* of a converging subsequence of (λv_{λ}) is a Lipschitz continuous, periodic viscosity solution to

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

Standard consequence of the assumptions

Lemma

Under the above assumptions, $\frac{1}{T}u(\cdot, T)$ and λv_{λ} are uniformly Lipschitz continuous and bounded.

We note that $w_{\lambda} := \lambda v_{\lambda}$ solves

$$\lambda w_{\lambda} + H(Dw_{\lambda}) - \lambda \ell = 0$$
 in \mathbb{R}^2 .

Lemma

Any limit *w* of a converging subsequence of (λv_{λ}) is a Lipschitz continuous, periodic viscosity solution to

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

Standard consequence of the assumptions

Lemma

Under the above assumptions, $\frac{1}{T}u(\cdot, T)$ and λv_{λ} are uniformly Lipschitz continuous and bounded.

We note that $w_{\lambda} := \lambda v_{\lambda}$ solves

$$\lambda w_{\lambda} + H(Dw_{\lambda}) - \lambda \ell = 0$$
 in \mathbb{R}^2 .

Lemma

Any limit *w* of a converging subsequence of (λv_{λ}) is a Lipschitz continuous, periodic viscosity solution to

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rigidity result : Heuristic arguments

Characteristic method

Assume *w* is a smooth solution to H(Dw) = 0 in \mathbb{R}^N . Then the map $t \to w(x_0 + tDH(Dw(x_0)))$ is constant in \mathbb{R} .

Indeed

- **1** Let $x'(t) = DH(Dw(x(t)), t \in \mathbb{R}, x(0) = x_0.$
- If H(Dw(x)) = 0 for all x. Hence $D^2w(x)DH(Dw(x)) = 0$.
- So $\frac{d}{dt}Dw(x(t)) = D^2w(x(t))x'(t) = D^2w(x(t))DH(Dw(x(t))) = 0.$ Hence $x(t) = x_0 + tDH(Dw(x_0))$ for all $t \in \mathbb{R}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rigidity result : Heuristic arguments

Characteristic method

Assume *w* is a smooth solution to H(Dw) = 0 in \mathbb{R}^N . Then the map $t \to w(x_0 + tDH(Dw(x_0)))$ is constant in \mathbb{R} .

Indeed

1 Let
$$x'(t) = DH(Dw(x(t)), t \in \mathbb{R}, x(0) = x_0.$$

- $\begin{array}{l} \textcircled{0} \quad \frac{d}{dt}w(x(t)) = \langle Dw(x(t)), x'(t) \rangle = \langle Dw(x(t)), DH(Dw(x(t))) \rangle = \\ H(Dw(x(t)) = 0. \\ \text{Hence } w(x(t)) = w(x_0) \text{ for all } t \in \mathbb{R}. \end{array}$
- H(Dw(x)) = 0 for all x. Hence $D^2w(x)DH(Dw(x)) = 0$.
- So $\frac{d}{dt}Dw(x(t)) = D^2w(x(t))x'(t) = D^2w(x(t))DH(Dw(x(t))) = 0.$ Hence $x(t) = x_0 + tDH(Dw(x_0))$ for all $t \in \mathbb{R}$.

Rigidity result : a counter-example

If *w* is a Lipschitz continuous solution to H(Dw) = 0, the map $t \rightarrow w (x_0 + tDH(Dw(x_0)))$ is not constant on \mathbb{R} in general.

For instance, $w(x_1, x_2) = -|x_1| - x_2$ is a solution for

 $H(p_1, p_2) = |p_1| + p_2$

However, if $x_0 = (1, 1)$, then Dw(1, 1) = (-1, -1) and $DH(Dw(\bar{x})) = (-1, 1)$, while

 $w((1,1) + tDH(Dw(\bar{x})) = \min\{-2, -2t\} < -2 = w(1,1) \quad \forall t > 1.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rigidity result : a counter-example

If *w* is a Lipschitz continuous solution to H(Dw) = 0, the map $t \rightarrow w (x_0 + tDH(Dw(x_0)))$ is not constant on \mathbb{R} in general.

For instance, $w(x_1, x_2) = -|x_1| - x_2$ is a solution for

$$H(p_1, p_2) = |p_1| + p_2$$

However, if $x_0 = (1, 1)$, then Dw(1, 1) = (-1, -1) and $DH(Dw(\bar{x})) = (-1, 1)$, while

 $w((1,1) + tDH(Dw(\bar{x})) = \min\{-2, -2t\} < -2 = w(1,1) \quad \forall t > 1.$

Rigidity result

Lemma

Let w be a Lipschitz continuous viscosity solution to

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

If x_0 is a point of differentiability of w, then

 $t \to w (x_0 - tDH(Dw(x_0)))$ is constant on $[0, +\infty)$.

イロト イヨト イヨト イヨト

Rigidity result (continued)

Let

$$\mathcal{P}_0 = \left\{ \boldsymbol{\rho} \in \mathbb{R}^2 \backslash \{0\} \;,\; \boldsymbol{H}(\boldsymbol{\rho}) = \boldsymbol{H}(-\boldsymbol{\rho}) = 0 \right\} \;.$$

Theorem

Equation

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

has a Lipschitz continuous, \mathbb{Z}^2 -periodic and non constant solution w iff there is some $\bar{p} = (\bar{p}_1, \bar{p}_2) \in \mathcal{P}_0$ with either $\bar{p}_2 = 0$ or $\bar{p}_1/\bar{p}_2 \in \mathbb{Q}$. Moreover w is 1-dim., i.e.,

$$w(x) = \bar{w}(\langle p, x \rangle) \qquad orall x \in \mathbb{R}^2 \; ,$$

for some *p* as above, where $\overline{w} : \mathbb{R} \to \mathbb{R}$ is periodic.

• • • • • • • • • • • •

Rigidity result (continued)

Let

$$\mathcal{P}_0 = \left\{ \boldsymbol{\rho} \in \mathbb{R}^2 \backslash \{0\} \;,\; \boldsymbol{H}(\boldsymbol{\rho}) = \boldsymbol{H}(-\boldsymbol{\rho}) = 0 \right\} \;.$$

Theorem

Equation

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

has a Lipschitz continuous, \mathbb{Z}^2 -periodic and non constant solution w iff there is some $\bar{p} = (\bar{p}_1, \bar{p}_2) \in \mathcal{P}_0$ with either $\bar{p}_2 = 0$ or $\bar{p}_1/\bar{p}_2 \in \mathbb{Q}$. Moreover w is 1-dim., i.e.,

$$w(x) = ar w(\langle oldsymbol p, x
angle) \qquad orall x \in \mathbb{R}^2 \; ,$$

for some *p* as above, where $\bar{w} : \mathbb{R} \to \mathbb{R}$ is periodic.

• • • • • • • • • • • •

Example

lf

$$H(\boldsymbol{p}_1,\boldsymbol{p}_2) = -|\boldsymbol{p}_1| + \alpha |\boldsymbol{p}_2| \qquad \forall (\boldsymbol{p}_1,\boldsymbol{p}_2) \in \mathbb{R}^2 ,$$

where $\alpha > 0$, then

$$\mathcal{P}_0 = \left\{ (p_1, p_2) \in \mathbb{R}^2 \setminus \{0\} \ , \ |p_1| = \alpha |p_2|
ight\} \ .$$

Hence equation

$$H(Dw(x)) = 0$$
 in \mathbb{R}^2

has a Lipschitz continuous, \mathbb{Z}^2 -periodic and non constant solution w iff $\alpha \in \mathbb{Q}$.

< 6 b

Ergodic behaviour

Let us set

$$\mathcal{P} = \left\{ p \in \mathbb{R}^2 \setminus \{0\} \ , \ H(p) = H(-p) = 0 \text{ and } [p_2 = 0 \text{ or } p_1/p_2 \in \mathbb{Q}] \right\}$$

Theorem (Non-resonnance conditions)

Assume that $\mathcal{P} = \emptyset$. Then the (λv_{λ}) and the $u(\cdot, T)/T$ converge to the same constant as $\lambda \to 0$ and $T \to +\infty$.

Proof :

- Any converging subsequence of (λv_{λ}) converges to a constant.
- This constant *c* must be independent of the subsequence by comparison.
- For $\lambda > 0$ small, $ct + v_{\lambda}$ is "almost" a solution of

$$u_t + H(Du) - \ell = 0$$
 in $\mathbb{R}^2 \times (0, +\infty)$

Ergodic behaviour

Let us set

$$\mathcal{P} = \left\{ p \in \mathbb{R}^2 \setminus \{0\} \ , \ H(p) = H(-p) = 0 \text{ and } [p_2 = 0 \text{ or } p_1/p_2 \in \mathbb{Q}] \right\}$$

Theorem (Non-resonnance conditions)

Assume that $\mathcal{P} = \emptyset$. Then the (λv_{λ}) and the $u(\cdot, T)/T$ converge to the same constant as $\lambda \to 0$ and $T \to +\infty$.

Proof :

- Any converging subsequence of (λv_{λ}) converges to a constant.
- This constant *c* must be independent of the subsequence by comparison.
- For $\lambda > 0$ small, $ct + v_{\lambda}$ is "almost" a solution of

$$u_t + H(Du) - \ell = 0$$
 in $\mathbb{R}^2 \times (0, +\infty)$

• • • • • • • • • • •

< 同 > < ∃ >

Convergence result

We now assume that $\mathcal{P} \neq \emptyset$. Then equation

$$(*) \qquad H(Dw) = 0 \qquad \text{in } \mathbb{R}^2$$

has continuous, \mathbb{Z}^2 -periodic solutions.

Theorem (Resonnant case)

Under the above assumptions, there is a continuous \mathbb{Z}^2 -periodic solution $w : \mathbb{R}^2 \to \mathbb{R}$ to (*) such that

$$w(x) = \lim_{T \to +\infty} \frac{u(x,T)}{T} = \lim_{\lambda \to 0^+} \lambda v_{\lambda}(x)$$
 uniformly w.r.t. $x \in \mathbb{R}^2$.

• • • • • • • • • • • •

Idea of proof (I)

Let

$$\mathcal{W} = \{ w \text{ cluster points of } (\lambda v_{\lambda}) \}$$
.

Lemma

There is some $\bar{p} \in \mathcal{P}$ s.t. for any $w \in \mathcal{W}$,

$$w(x) = \bar{w}(\langle \bar{p}, x \rangle)$$

for some $\bar{w} : \mathbb{R} \to \mathbb{R}$.

Idea of proof (II)

Let us assume to fix the ideas that $\bar{p} = (1, -1)$.

Lemma

Let $w \in \mathcal{W}$ and $\bar{w} : \mathbb{R} \to \mathbb{R}$ be 1-periodic such that

$$w(x_1,x_2)=ar w(x_1-x_2)$$
 $\forall x=(x_1,x_2)\in\mathbb{R}^2$

Then at any point $x = (x_1, x_2)$ in a neighbourhood of which *w* is not constant,

$$w(x_1, x_2) = \int_0^1 \ell(t, x_2 - x_1 + t) dt$$

Remark : The above equality does not hold for any $x \in \mathbb{R}^2$ in general.

Idea of proof (III) : local corrector

To fix the ideas suppose that

$$H(p_1, p_2) = -|p_1| + |p_2|$$
 and $\bar{p} = (1, -1)$

Then

$$DH(s\bar{p}) = (-1, -1) \qquad \forall s > 0 \; .$$

Let

$$\bar{\ell}(\boldsymbol{s}) = \int_0^1 \ell(t, t - \boldsymbol{s}) dt$$

and

$$\chi(x_1, x_2) = \int_0^{x_1} \ell(t, x_2 - x_1 + t) dt - x_1 \overline{\ell}(x_1 - x_2)$$

Then χ is continuous and \mathbb{Z}^2 -periodic.

Idea of proof (III) : local corrector

To fix the ideas suppose that

$$H(p_1, p_2) = -|p_1| + |p_2|$$
 and $\bar{p} = (1, -1)$

Then

$$DH(s\bar{p}) = (-1, -1) \qquad \forall s > 0 \; .$$

Let

$$\bar{\ell}(s) = \int_0^1 \ell(t, t-s) dt$$

and

$$\chi(x_1, x_2) = \int_0^{x_1} \ell(t, x_2 - x_1 + t) dt - x_1 \overline{\ell}(x_1 - x_2)$$

Then χ is continuous and \mathbb{Z}^2 -periodic.

Lemma

If $\bar{\ell}'(\bar{x}_1 - \bar{x}_2) > 0$, then

$$z_{\lambda}(\boldsymbol{x}_1,\boldsymbol{x}_2) = \frac{1}{\lambda} \bar{\ell}(\boldsymbol{x}_1 - \boldsymbol{x}_2) + \chi(\boldsymbol{x}_1,\boldsymbol{x}_2)$$

is an "approximate solution" of

$$\lambda z_{\lambda} + H(Dz_{\lambda}) - \ell = 0$$

in a neighborhood of the line $x_1 - x_2 = \bar{x}_1 - \bar{x}_2$.

This means that χ is an local corrector.

イロト イヨト イヨト イヨト

< 47 ▶

Assumptions

Assumptions

We still work in the plane (N = 2) and with F of the form

$$F(x, p) = H(p) - \ell(x) \qquad \forall (x, p) \in \mathbb{R}^2 \times \mathbb{R}^2$$

where

- ℓ is \mathbb{Z}^2 -periodic and Lipschitz continuous,
- there are k ≥ 1 and H_∞: ℝ² → ℝ, k-positively homogeneous and locally Lipschitz continuous, such that

 $\lim_{s\to 0^+} \overline{s^k H(p/s)} = H_{\infty}(p) \quad \text{locally uniformly in } p$

For any p ∈ ℝ²\{0} with H_∞(p) = 0, DH_∞(p) exists and is nonzero.

Ergodicity

Let

$$\mathcal{P} = \left\{ p \in \mathbb{R}^2 \ , \ H_{\infty}(p) = H_{\infty}(-p) = 0 \text{ and } \left[p_2 = 0 \text{ or } \frac{p_1}{p_2} \in \mathbb{Q} \right] \right\}$$

Theorem

If either $\mathcal{P} = \emptyset$ or

$$orall {oldsymbol{p}} \in \mathcal{P} \qquad \lim_{s o 0} \left| H\left(rac{oldsymbol{p}}{s}
ight)
ight| = +\infty \; ,$$

then there is $c \in \mathbb{R}$ with

$$\lim_{T\to+\infty}\frac{u(x,T)}{T}=\lim_{\lambda\to 0^+}v_\lambda(x)=c\quad \text{uniformly w.r.t. }x\in\mathbb{R}^2.$$

æ

< ∃⇒

Example

Let $H_{\infty}: \mathbb{R}^2 \to \mathbb{R}$ satisfy

- *H*_∞ is Lipschitz continuous and *k*−positively homogeneous (*k* > 1),
- for any $p \in \mathbb{R}^2 \setminus \{0\}$ with H(p) = 0, DH(p) exists and is nonzero.

Set $H(p) = H_{\infty}(p + a)$ for some $a \in \mathbb{R}^2$. If $\mathcal{P} \neq \emptyset$ but

 $\langle DH_{\infty}(\boldsymbol{p}), \boldsymbol{a} \rangle \neq 0$ for any $\boldsymbol{p} \in \mathcal{P}$,

then ergodicity holds because

$$\left| \begin{array}{ll} H\left(\frac{p}{s}\right) \right| &= & (1/s)^k \left| \begin{array}{ll} H_{\infty}\left(p + sa\right) \right| \\ &= & (1/s)^k \left| H_{\infty}(p) + sDH_{\infty}(p).a + o(s) \right| \\ &= & (1/s)^{k-1} \left| DH_{\infty}(p).a + o(1) \right| \rightarrow +\infty \qquad \text{as } s \rightarrow 0^+. \end{array}$$

Application to homogeneization

Let us consider the problem :

$$\begin{cases} z_t^{\epsilon} + H(Dz^{\epsilon}(x)) - \ell(x/\epsilon) = 0 & \text{in } \mathbb{R}^2 \times (0, T) \\ z^{\epsilon}(x, 0) = z_0(x) & \text{in } \mathbb{R}^2 \end{cases}$$

where *H* is 1–positively homogeneous and ℓ as above.

Corollary

If $\mathcal{P} = \emptyset$, then there is a Lipschitz continuous Hamiltonian $\overline{H} : \mathbb{R}^2 \to \mathbb{R}$ such that, for any bounded uniformly continuous map $z_0 : \mathbb{R}^2 \to \mathbb{R}$, the solution z^{ϵ} uniformly converges to the solution z of

$$\begin{cases} z_t + \bar{H}(Dz(x)) = 0 & \text{in } \mathbb{R}^2 \times (0, T) \\ z(x, 0) = z_0(x) & \text{in } \mathbb{R}^2 \end{cases}$$

Assumption for the resonnant case

We assume k = 1.

Further assumption

We assume that $\mathcal{P} \neq \emptyset$ and that, for any $\bar{p} \in \mathcal{P}$, there are $\alpha(\bar{p}) \in \mathbb{R}^2 \setminus \{0\}$ and $\beta(\bar{p}) \in \mathbb{R}$ s.t.,

$$\lim_{s \to 0^+} H\left(\frac{\theta \bar{p}}{s} + b\right) = \alpha(\bar{p}).b + \beta(\bar{p})$$

where the limit is uniform w.r.t. $\theta \ge 1/M$ and $|b| \le M$ for any M > 0.

A (1) > A (2) > A

Example

Let $H_\infty:\mathbb{R}^2\to\mathbb{R}$ satisfy

- H_{∞} is Lipschitz continuous and 1–positively homogeneous,
- for any $p \in \mathbb{R}^2 \setminus \{0\}$ with H(p) = 0, DH(p) exists and is nonzero,

•
$$\mathcal{P} \neq \emptyset$$

Set $H(p) = H_{\infty}(p + a)$ for some $a \in \mathbb{R}^2$. Then the "further assumption" holds :

$$\begin{aligned} H\left(\frac{\theta\bar{p}}{s}+b\right) &= \frac{\theta}{s}H_{\infty}\left(\bar{p}+\frac{s}{\theta}(a+b)\right) \\ &= \frac{\theta}{s}\left(H_{\infty}(\bar{p})+\frac{s}{\theta}DH_{\infty}(\bar{p}).(a+b)+o(\frac{s}{\theta})\right) \\ &= \alpha(\bar{p}).b+\beta(\bar{p})+o(1) \end{aligned}$$

where $\alpha(\bar{p}) = DH_{\infty}(\bar{p}) \neq 0$ and $\beta(\bar{p}) = \langle DH_{\infty}(\bar{p}), a \rangle$.

The resonnent case

Theorem

Under the above assumptions,

$$w(x) = \lim_{t \to +\infty} rac{u(x,t)}{t} = \lim_{\lambda \to 0^+} v_{\lambda}(x) \quad ext{uniformly w.r.t. } x \in \mathbb{R}^2.$$

where $w(x) = \bar{w}(\langle \bar{p}, x \rangle)$ for some $\bar{p} \in \mathcal{P}$. At any "point of increase" (resp. "point of decrease") s of \bar{w} we have :

$$\bar{w}(s) = \frac{1}{T(\bar{p})} \int_0^{T(\bar{p})} \ell(s\bar{p} + t\alpha(\bar{p})) ds - \beta(\bar{p}) \qquad (\text{resp.} -\beta(-\bar{p})) ,$$

where $T(\bar{p}) > 0$ is s.t. $T(\bar{p})\alpha(\bar{p}) \in \mathbb{Z}^2$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The resonnent case

Theorem

Under the above assumptions,

$$w(x) = \lim_{t \to +\infty} rac{u(x,t)}{t} = \lim_{\lambda \to 0^+} v_{\lambda}(x) \quad ext{uniformly w.r.t. } x \in \mathbb{R}^2.$$

where $w(x) = \bar{w}(\langle \bar{p}, x \rangle)$ for some $\bar{p} \in \mathcal{P}$. At any "point of increase" (resp. "point of decrease") s of \bar{w} we have :

$$\bar{w}(s) = \frac{1}{T(\bar{p})} \int_0^{T(\bar{p})} \ell(s\bar{p} + t\alpha(\bar{p})) ds - \beta(\bar{p}) \qquad (\text{resp.} -\beta(-\bar{p})) ,$$

where $T(\bar{p}) > 0$ is s.t. $T(\bar{p})\alpha(\bar{p}) \in \mathbb{Z}^2$.

イロト イポト イヨト イヨ

Open problems

Uniform value

In differential games one would like to know if the "optimal strategies" are independent of the (large) time horizon.

Characterization of the limit

Where are the flat parts of the limit w?

• *N*-dimensional case

Completely open for $N \ge 3$.

Thank you for your attention !

æ

イロト イヨト イヨト イヨト