adding of complay systems

Mathematical modeling of complex systems Part 3. Hydrodynamics

P. Degond

Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier

pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

Joint work with S. Motsch ; & A. Frouvelle, L. Navoret

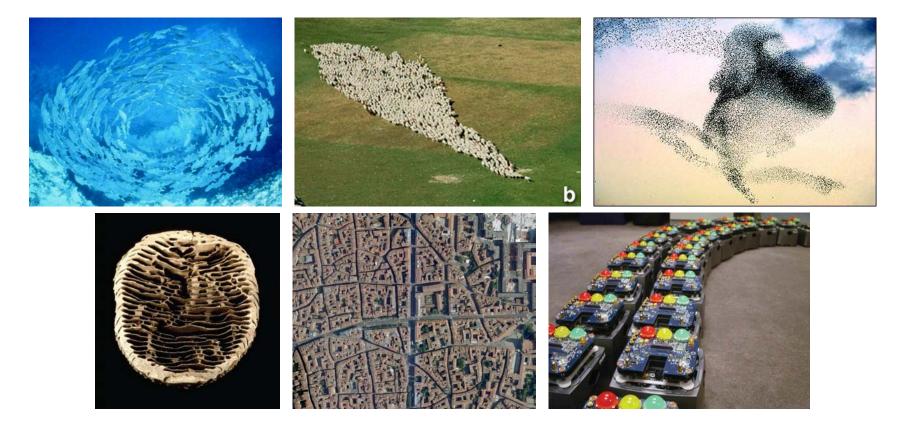
- 1. Introduction
- 2. From particle to Mean-Field model
- 3. From Mean-Field to Hydrodynamics
- 4. Properties of the hydro model
- 5. Conclusion

 \downarrow

1. Introduction

Complex system

- System with interacting agents without leaders
 - emergence of large scale space-time structures
 - produced by local interactions only



- Local interactions are complex & difficult to access from experiments
- Classical micro-macro approach is bottom-up
- Complex systems require top-down approach
 - use macro model to probe the data and extract the relevant information
- Important to link micro interactions to macro model
- Justification of macroscopic limits difficult
 - \implies \exists correlations: chaos assumption may not be true

Pierre Degond - Mathematical models of complex systems - Part 3. Hydrodynamics

Hydrodynamic limit of the Vicsek model 6

Leave justification of chaos assumption aside

Three steps

- time-continuous particle (IBM) model
- Mean-field kinetic limit
- Hydrodynamic limit
- Difficulty
 - dimension of invariants < dimension of equilibria</p>
 - New concept of 'Generalized Collisions Invariants'
 - → 1st derivation of non-conservative model from kinetics

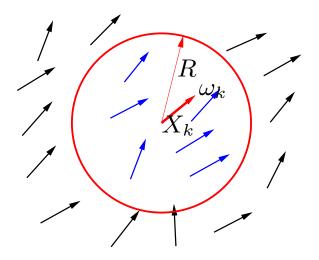
2. From particles to mean-field model

Vicsek model [Vicsek et al, PRL 95]

 $\rightarrow t^n = n \Delta t$

↑

- \implies k-th individual
- \rightarrow X_k^n : position at t^n
- $\implies \omega_k^n$: velocity with $|\omega_k^n| = 1$



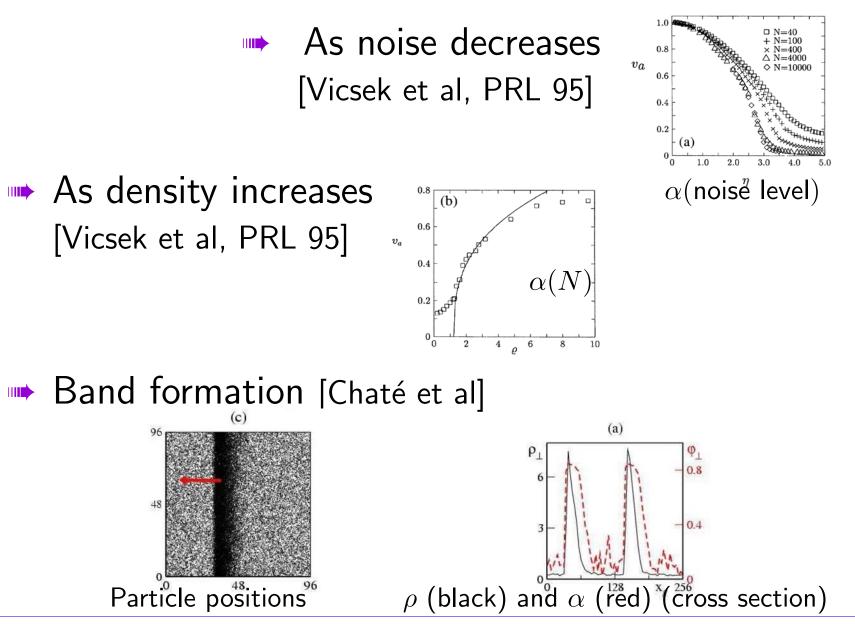
$$X_k^{n+1} = X_k^n + \omega_k^n \Delta t$$

$$\omega_k^{n+1} = \bar{\omega}_k^n + \text{ noise (uniform in small angle interval)}$$

$$\bar{\omega}_k^n = \frac{J_k^n}{|J_k^n|}, \quad J_k^n = \sum_{j, |X_j^n - X_k^n| \le R} \omega_j^n$$

Alignment to neighbours' mean velocity plus noise

Phase transition to aligned state



Pierre Degond - Mathematical models of complex systems - Part 3. Hydrodynamics

Time continuous Vicsek algorithm

Time continuous dynamics:

$$\dot{X}_k(t) = \omega_k(t)$$

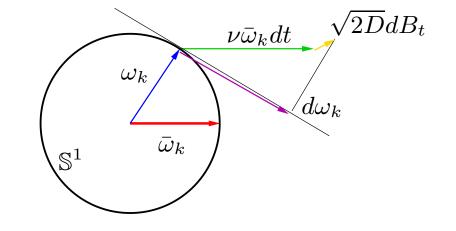
$$d\omega_k(t) = (\mathsf{Id} - \omega_k \otimes \omega_k)(\nu \bar{\omega}_k dt + \sqrt{2D} dB_t)$$

$$\bar{\omega}_k = \frac{J_k}{|J_k|}, \quad J_k = \sum_{j,|X_j - X_k| \le R} \omega_j$$

Recover original Vicsek by:

- Time discretization Δt
- \rightarrow Gaussian noise \rightarrow uniform

$$\rightarrow \nu \Delta t = 1$$

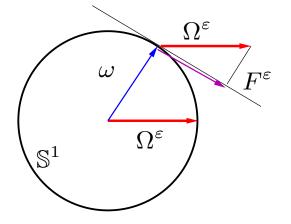


Mean-field model

 $f(x, \omega, t) = 1$ -particle proba distr.

- ➡ satisfies a Fokker-Planck equation
- \implies Scaling to macro variables $\tilde{x} = \varepsilon x$, $\tilde{t} = \varepsilon t$, $\varepsilon \ll 1$
- \rightarrow local interaction: $\tilde{R} = \varepsilon R$
- Fokker-Planck eq. in scaled variables

$$\begin{split} \varepsilon (\partial_t f^\varepsilon + \omega \cdot \nabla_x f^\varepsilon) + \nabla_\omega \cdot (F^\varepsilon f^\varepsilon) &= D \Delta_\omega f^\varepsilon \\ F^\varepsilon &= (\mathsf{Id} - \omega \otimes \omega) \Omega^\varepsilon \\ \Omega^\varepsilon &= \frac{j^\varepsilon}{|j^\varepsilon|}, \quad j^\varepsilon &= \int_{|v|=1} v f^\varepsilon(x, v, t) \, dv \end{split}$$



 $\implies \Omega^{\varepsilon}$ is the direction of the local flux

3. From Mean-Field to Hydrodynamics

Collision operator

Model can be written

$$\partial_t f^{\varepsilon} + \omega \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon})$$

$$Q(f) = -\nabla_{\omega} \cdot (F_f f) + D\Delta_{\omega} f$$

$$F_f = (\mathsf{Id} - \omega \otimes \omega)\Omega_f$$

$$\Omega_f = \frac{j_f}{|j_f|}, \quad j_f = \int_{|v|=1} v f(x, v, t) dv$$

 \blacksquare Problem: find the limit $\varepsilon \to 0$

 \downarrow

1st step: find the equilibria

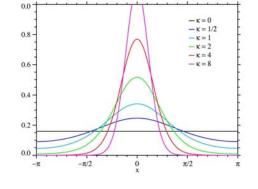
• Equilibrium manifold: $\mathcal{E} = \{f \mid Q(f) = 0\}$

Rewrite

$$Q(f) = \nabla_{\omega} \cdot \left[-F_f f + D\nabla_{\omega} f\right]$$

Introduce the solution of $[\ldots] = 0$

- $\Rightarrow \forall \Omega \in \mathbb{S}^1, \exists \text{ a unique normalized solu-} \\ \text{tion } f = M_\Omega \text{ such that } \Omega_f = \Omega$
- Von-Mises distribution:



14

$$M_{\Omega}(\omega) = Z^{-1} \exp \beta(\omega \cdot \Omega),$$

 $\int M_{\Omega}(\omega) \, d\omega = 1, \quad \beta = D^{-1}$

Equilibria

↓

 $\blacksquare Q(f)$ can be written

$$Q(f) = D \nabla_{\omega} \cdot \left[M_{\Omega_f} \nabla_{\omega} \left(\frac{f}{M_{\Omega_f}} \right) \right]$$

Entropy inequality

$$H(f) = \int Q(f) \frac{f}{M_{\Omega_f}} d\omega = -D \int M_{\Omega_f} \left| \nabla_{\omega} \left(\frac{f}{M_{\Omega_f}} \right) \right|^2 \leq 0$$

$$\stackrel{\bullet}{\longrightarrow} \mathcal{E} = \left\{ \rho M_{\Omega}(\omega) \text{ for arbitrary } \rho \in \mathbb{R}_+ \text{ and } \Omega \in \mathbb{S}^2 \right\}$$

$$\stackrel{\bullet}{\longrightarrow} \dim \mathcal{E} = \left\{ \begin{array}{c} 3 & \text{in dimension } 3 \\ 2 & \text{in dimension } 2 \end{array} \right.$$

2nd step: Collision invariants (conserved quantity)

- Function $\psi(\omega)$ such that $\int Q(f)\psi d\omega = 0$, $\forall f$
 - \blacksquare Form a vector space \mathcal{C}
 - \implies Multiply eq. by $\psi : \ \varepsilon^{-1}$ term disappears
 - ➡ Find a conservation law
 - \blacksquare Limit fully determined if dim $\mathcal{C} = \dim \mathcal{E}$
- \blacksquare Here dim C = 1 because $C = \text{Span}\{1\}$
 - conservation of mass
 - \rightarrow dim $\mathcal{E} = 3 > \dim \mathcal{C} = 1$ (in dimension 3)
 - → Is the limit problem ill-posed ?

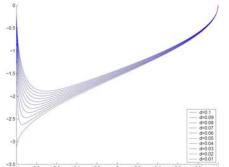
 \downarrow

Generalized collision invariants

- Given Ω , find ψ_{Ω} a GCI, such that $\int Q(f)\psi_{\Omega} d\omega = 0, \quad \forall f \text{ such that } \Omega_f = \Omega$
- Given Ω , the GCI form a 3-dim vector space spanned by 1 and $\vec{\psi}_{\Omega}(\omega)$

$$\vec{\psi}_{\Omega}(\omega) = \frac{\Omega \times \omega}{|\Omega \times \omega|} g(\Omega \cdot \omega)$$

 $g(\mu) \text{ sol. of elliptic eq:}$



$$-(1-\mu^2)\partial_{\mu}(e^{\mu/D}(1-\mu^2)\partial_{\mu}g) + e^{\mu/D}g = -(1-\mu^2)^{3/2}e^{\mu/D}$$

Use of generalized collision invariant 18

- Multiply FP eq by $ec{\psi}_{\Omega_f^{arepsilon}}$
 - $ightarrow O(\varepsilon^{-1})$ terms disappear

• Let
$$\varepsilon \to 0$$
: $f^{\varepsilon} \to \rho M_{\Omega}$ and $\vec{\psi}_{\Omega_{f^{\varepsilon}}} \to \vec{\psi}_{\Omega}$

Gives:

$$\int (\partial_t (\rho M_\Omega) + \omega \cdot \nabla_x (\rho M_\Omega)) \, \vec{\psi}_\Omega \, d\omega = 0$$

 \clubsuit Not a conservation equation because of dependence of $\vec{\psi}_{\Omega}$ upon Ω

Macro version of Vicsek model

19

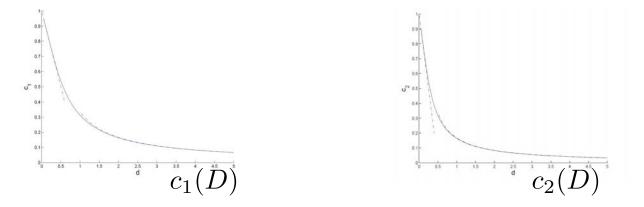
 \blacksquare density $\rho(x,t)$; flux director $\Omega(x,t)$:

$$\partial_t \rho + \nabla_x \cdot (c_1 \rho \Omega) = 0$$

$$\rho \ (\partial_t \Omega + c_2 (\Omega \cdot \nabla) \Omega) + D (\mathsf{Id} - \Omega \otimes \Omega) \nabla_x \rho = 0$$

$$|\Omega| = 1$$

 \bullet c_1 , c_2 : constants (moments of M_{Ω} and g), $c_2 < c_1$

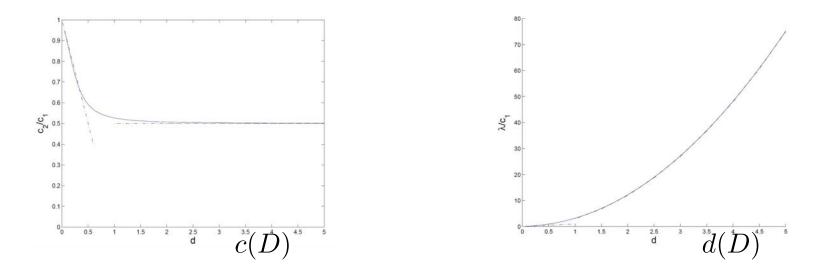


4. Properties of the hydrodynamic model

Hydrodynamic Vicsek model

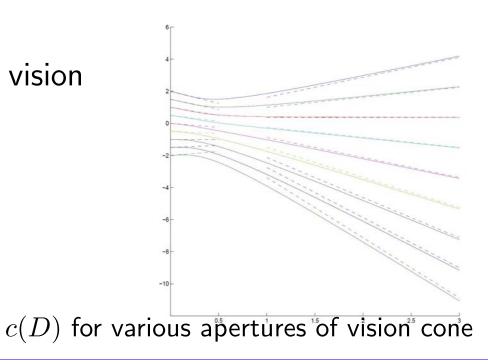
By time rescaling: $c = c_2/c_1 < 1$, $d = D/c_1$ Density $\rho(x, t)$, flux director $\Omega(x, t)$:

> $\partial_t \rho + \nabla_x \cdot (\rho \Omega) = 0$ $\rho \ (\partial_t \Omega + c(\Omega \cdot \nabla)\Omega) + d (\mathsf{Id} - \Omega \otimes \Omega) \nabla_x \rho = 0$ $|\Omega| = 1$



Hydrodynamic Vicsek model: comments 22

- Hyperbolic model with geometric constraint
 - Non-conservative terms arise from the constraint
 - Hydro & relaxation limits do not commute
- Velocity information travels slower than mass flow
 - 👄 like traffic
 - reinforced by forward vision[Frouvelle]

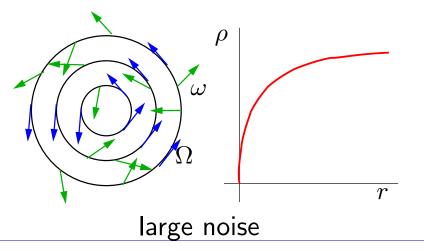


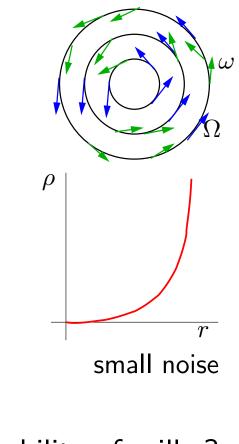
Mills are stationary solutions

Mills:
$$ho(r) =
ho_0 \, (r \,/\, r_0)^{c/d}$$
 , $\Omega = x^\perp / r$

 Shape depends on noise level
 small noise: ρ(r) convex: sharp edged mills

→ large noise: $\rho(r)$ concave: fuzzy edges





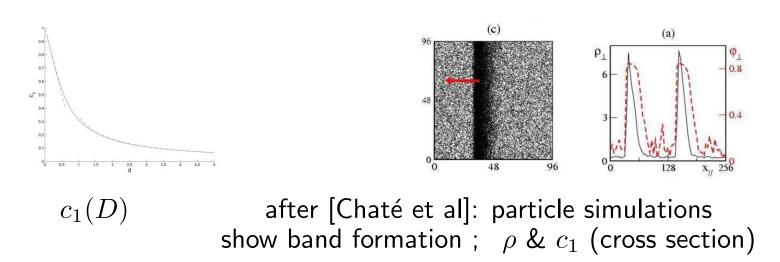
➡ Stability of mills ?

Order parameter

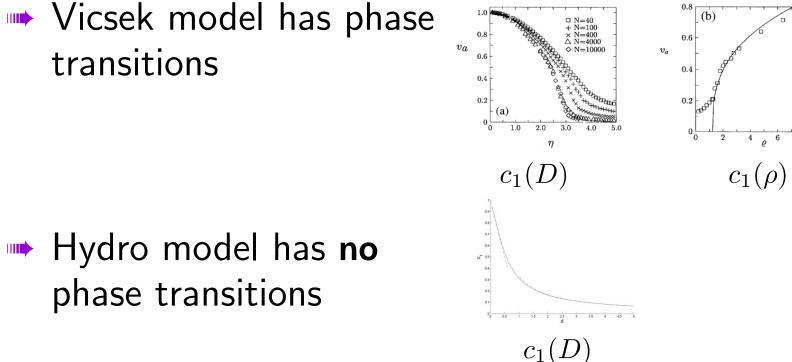
$$c_1 = |j_{M_{\Omega}}| = \text{order parameter}$$

$$c_1 \sim 1: \text{ aligned} \qquad c_1 \sim 0: \text{ random}$$

- \blacksquare Vicsek: c_1 not uniform in space
- Hydro model: c_1 uniform (fixed by D)
 - \rightarrow Cure: make $D(\rho)$ (fluctuations ?) see [Frouvelle]



Phase transitions



- Different regimes
 - \rightarrow Vicsek: interaction radius is O(1) (instead of $O(\varepsilon)$)
 - number of particle not large: Mean-Field and Hydro limits not valid

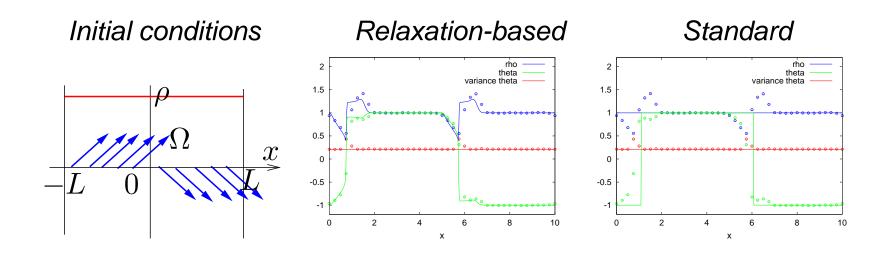
Hydro model: theory and numerics

26

 \downarrow

- \blacksquare Difficulty: geometric constraint $|\Omega|=1$
 - No theoretical framework
 - Chen-Levermore-Liu theory does not apply
 - Shock speed undefined, no entropy, ...
- Model = relaxation limit of conservative model $\partial_t(\rho\Omega) + c\nabla \cdot (\rho\Omega \otimes \Omega) + d\nabla_x \rho = -\epsilon^{-1}\rho(1 - |\Omega|^2)\Omega$
- Numerical methods [Motsch & Navoret]: compare
 - Standard methods
 - Method based on a splitting of the relaxation model

Vicsek vs Hydro



- Initial contact discontinuity $\theta \to -\theta$ at x = 0
- Vicsek (dots) and Hydro (solid line)
- $\rightarrow \rho(x)$ (blue), $\theta(x)$ green, $c_1(x)$ red $\Omega = (\cos \theta, \sin \theta)$
- Excellent agreement with relaxation-based meth.
- Wrong results with standard meth.

Vicsek vs Hydro (cont)

- Initial contact discontinuity resolved by complex wave pattern
 - not reproduced by standard methods
 - Confirms the need for a theory of these systems

 \downarrow

5. Conclusion

Hydrodynamics of Vicsek particles

- Hydrodynamics of Vicsek model
 - derived under appropriate scaling hypotheses
- Non-standard features have been outlined
 - lack of collision invariants
- A new concept has been proposed
- Ist derivation of non-conservative model from kinetic theory
 - [D. Motsch, M3AS, Vol. 18, (2008)]

About the Hydrodynamic model

- Excellent agreement with Vicsek particle model
 - provided relaxation formulation is used
- Geometrical constraint
 - requires theoretical investigations
- Improvements required:
 - non-constant order parameter
 - possibility of phase transition
 - more general alignement dynamics
- Further refinements
 - work in progress by A. Frouvelle