Mathematical modeling of complex systems

Part 3. Hydrodynamics
P. Degond

Institut de Mathématiques de Toulouse

CNRS and Université Paul Sabatier

pierre.degond@math.univ-toulouse.fr  (see http://sites.google.com /site /degond/)

Joint work with S. Motsch :
& A. Frouvelle, L. Navoret

T Pierre Degond - Mathematical models of complex systems - Part 3. Hydrodynamics



Summary

Introduction

From particle to Mean-Field model

From Mean-Field to Hydrodynamics

Properties of the hydro model

o1 &~

Conclusion

T Pierre Degond - Mathematical models of complex systems - Part 3. Hydrodynamics



1. Introduction

T Pierre Degond - Mathematical models of complex systems - Part 3. Hydrodynamics



Complex system 4

1 System with interacting agents without leaders

I emergence of large scale space-time structures

| produced by local interactions only
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Local interactions 5

Local interactions are complex & difficult to
access from experiments

Classical micro-macro approach is bottom-up

Complex systems require top-down approach

use macro model to probe the data and extract the
relevant information

Important to link micro interactions to macro
model

Justification of macroscopic limits difficult

3 correlations: chaos assumption may not be true
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Hydrodynamic limit of the Vicsek model 6

1 Leave justification of chaos assumption aside

[1 Three steps
time-continuous particle (IBM) model
Mean-field kinetic limit

Hydrodynamic limit

1 Difficulty
dimension of invariants < dimension of equilibria
New concept of 'Generalized Collisions Invariants’

1st derivation of non-conservative model from kinetics
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2. From particles to mean-field model
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Vicsek model [Vicsek et al, PRL 95] 8

0 Time-discrete model:
" = nAt
k-th individual
X[': position at ¢"

wy: velocity with |w}'| =1

0 X =X+ oy At

wit = @7 + noise (uniform in small angle interval)
J?’L
-n k n n
wk—un’, J, = E W
k

(] Alignment to neighbours’ mean velocity plus noise
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Phase transition to aligned state 9

O N=40
+ N=100
x N=400

1 As noise decreases
[Vicsek et al, PRL 95]

A N=4000

At _
Vg $h O N=10000
Xk 1

] As density increases
[Vicsek et al, PRL 95] -
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Time continuous Vicsek algorithm 10

1 Time continuous dynamics:

Xp(t) = wi(t)
dwk(t) — (ld — Wi X wk)(uu_}kdt + \/@dBt)

Jk Z
Jy. — —— J — .
wkﬂ ‘Jk’ ) k w]

1 Recover original Vicsek by:

Time discretization At

Gaussian noise — uniform
vAt =1
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Mean-field model 11

0 f(x,w,t) = l-particle proba distr.
satisfies a Fokker-Planck equation
Scaling to macro variables & =cx, t=¢t, e <1

~

local interaction: R =¢R

1 Fokker-Planck eq. in scaled variables

(O f* +w - Vof?) + Vo (F°f°) = DALS N e
FF=(ld—w®w)’ ‘ :

F = ‘7,6 , j€:/ vfe(x,v,t)dv
7€ lv|=1

()¢ is the direction of the local flux
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3. From Mean-Field to Hydrodynamics
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Collision operator 13

1 Model can be written

1
Of +w- V[ = g@(fg)
with collision operator

QUf) =—Vu- (Fyf)+DALS
Ff: (ld—W®W)Qf

Qp = =, jf:/ vf(x,v,t)dv
lv|=1

1 Problem: find the limit ¢ — 0
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Ist step: find the equilibria 14

0 Equilibrium manifold: £ ={f|Q(f) =0}

1 Rewrite

Q(f) =Vu-|=F; f+ DV,f]

Introduce the solution of |...] =0

VQ € S', 3 a unique normalized solu-
tion f = Mgq such that Q; = Q /\

1 Von-Mises distribution:

Molw) = 27 expBlo-Q), [ Ma@)do=1, =D
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Equilibria 15

0 Q(f) can be written

Qf) =DV, [Mﬂfvw(ﬂjng)]

f
Ve (MQf>

0 & = { pMgq(w) for arbitrary p € R, and Q € S* }
r (or S' in dim 2)

3 In dimension 3

1 Entropy inequality

H(f) =/@<f>Mf;f o= [ iy,

2
<0

dim £ = <

2 In dimension 2

\
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2nd step: Collision invariants (conserved quantity)

0 Function ¥ (w) such that [ Q(f)¢Ydw =0, Vf
Form a vector space C
Multiply eq. by ¥: €71 term disappears
Find a conservation law

Limit fully determined if dim C = dim £

1 Here dimC =1 because C = Span{l}

conservation of mass
dm &=3>dimC=1 (in dimension 3)
Is the limit problem ill-posed 7
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Generalized collision invariants 17

1 Given €, find ¥ a GCI, such that
/Q(f)% dw =0, Vf suchthat 2y =0

1 Given €2, the GCI form a 3-dim vector space
spanned by 1 and @Eg(w)

0 Yo(w) = gra9(Q - w)
g(p) sol. of elliptic eq:

......

......
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Use of generalized collision invariant 18

7 Multiply FP eq by 1.
O(e1) terms disappear
Let e — 0: f¢ — pMq and ?ngs — g

Gives:

/ (0,(pMa) +w - Vo (pMa)) iy dw = 0

1 Not a conservation equation because of
dependence of g upon )
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Macro version of Vicsek model 19

[ density p(x,t) ; flux director Q(x, 1) :

&,0 + Vm y (Clpﬂ) =0
P (O +c(Q-V)Q)+D(ld-—QxQ)V,p=0
Q] =1

[ ¢1, co: constants (moments of Mg and g), o < ¢
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4.  Properties of the hydrodynamic model
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Hydrodynamic Vicsek model 21

0 By time rescaling: c=cy/c1 <1, d=D/c;
Density p(x,t), flux director Q(x,t):

Op+ Vi (p2) =0
p (O +¢c(2-V)Q)+d(ld—QxQ)V,p=0
Q=1
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Hydrodynamic Vicsek model: comments 22

1 Hyperbolic model with geometric constraint
Non-conservative terms arise from the constraint

Hydro & relaxation limits do not commute

1 Velocity information travels slower than mass flow
like traffic

reinforced by forward vision

[Frouvelle]

c(D) for various apertures of vision cone
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Mills are stationary solutions 23

0 Mills:  p(r) = po (r /o), Q=at/r

[1 Shape depends on noise level

| small noise: p(r) convex:
sharp edged mills

| large noise: p(r) concave:

fuzzy edges

7
small noise

r I Stability of mills 7

large noise
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Order parameter 24

0 ¢ = |ju,| = order parameter

I ¢ ~ 1: aligned "I ¢; ~ 0: random

1 Vicsek: ¢; not uniform in space

1 Hydro model: ¢; uniform (fixed by D)
1 Cure: make D(p) (fluctuations ?) see [Frouvelle]

(a)

c1(D) after [Chaté et al]: particle simulations
show band formation ; p & c¢; (cross section)
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Phase transitions 25

1 Vicsek model has phase
transitions

] Hydro model has no
phase transitions

c1(D)

1 Different regimes
Vicsek: interaction radius is O(1) (instead of O(¢))

number of particle not large: Mean-Field and Hydro
limits not valid
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Hydro model: theory and numerics 26

0 Difficulty: geometric constraint |2| = 1
No theoretical framework
Chen-Levermore-Liu theory does not apply

Shock speed undefined, no entropy, . ..

1 Model = relaxation limit of conservative model
Oi(pQ) +cV - (2R Q) +dVep=—¢'p(1 — Q)0

] Numerical methods [Motsch & Navoret]: compare
Standard methods

Method based on a splitting of the relaxation model
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Vicsek vs Hydro 27

Initial conditions Relaxation-based Standard

L ‘ tho —— | L ‘ rho —— |
2 a 2 theta
thi —

-
==
@ @
=

variance a
15y o o : 15+

Ja) O : |
Nk Tz ° I - ﬁ
L 0 W o: , o:

(] Initial contact discontinuity 6 — —6 at =z =0
[ Vicsek (dots) and Hydro (solid line)
[ p(x) (blue), 6(x) green, ci(x) red € = (cosh,sind)

[] Excellent agreement with relaxation-based meth.

[ Wrong results with standard meth.
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Vicsek vs Hydro (cont) 28

1 Initial contact discontinuity resolved by complex
wave pattern

not reproduced by standard methods

Confirms the need for a theory of these systems
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5. Conclusion
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Hydrodynamics of Vicsek particles

1 Hydrodynamics of Vicsek model

derived under appropriate scaling hypotheses

1 Non-standard features have been outlined

lack of collision invariants

1 A new concept has been proposed

Generalized Collision Invariant

1 1st derivation of non-conservative model from
kinetic theory

[D. Motsch, M3AS, Vol. 18, (2008)]

T Pierre Degond - Mathematical models of complex systems - Part 3. Hydrodynamics

30



About the Hydrodynamic model 31

1 Excellent agreement with Vicsek particle model

provided relaxation formulation is used

1 Geometrical constraint

requires theoretical investigations

] Improvements required:
non-constant order parameter
possibility of phase transition

more general alignement dynamics

1 Further refinements

work in progress by A. Frouvelle
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