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1. Introduction
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4Complex system

➠ System with interacting agents without leaders

➟ emergence of large scale space-time structures

➟ produced by local interactions only
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5Local interactions

➠ Local interactions are complex & difficult to
access from experiments

➠ Classical micro-macro approach is bottom-up

➠ Complex systems require top-down approach

➟ use macro model to probe the data and extract the

relevant information

➠ Important to link micro interactions to macro
model

➠ Justification of macroscopic limits difficult

➟ ∃ correlations: chaos assumption may not be true
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6Hydrodynamic limit of the Vicsek model

➠ Leave justification of chaos assumption aside

➠ Three steps

➟ time-continuous particle (IBM) model

➟ Mean-field kinetic limit

➟ Hydrodynamic limit

➠ Difficulty

➟ dimension of invariants < dimension of equilibria

➟ New concept of ’Generalized Collisions Invariants’

➟ 1st derivation of non-conservative model from kinetics
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2. From particles to mean-field model
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8Vicsek model [Vicsek et al, PRL 95]

R

Xk

ωk

➠ Time-discrete model:

➟ tn = n∆t

➟ k-th individual

➟ Xn
k : position at tn

➟ ωn
k : velocity with |ωn

k | = 1

➠ Xn+1

k = Xn
k + ωn

k ∆t

ωn+1

k = ω̄n
k + noise (uniform in small angle interval)

ω̄n
k =

Jn
k

|Jn
k |

, Jn
k =

∑

j, |Xn
j −Xn

k
|≤R

ωn
j

➠ Alignment to neighbours’ mean velocity plus noise
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9Phase transition to aligned state

➠ As noise decreases
[Vicsek et al, PRL 95]

α(noise level)➠ As density increases
[Vicsek et al, PRL 95]

α(N)

➠ Band formation [Chaté et al]

Particle positions ρ (black) and α (red) (cross section)
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10Time continuous Vicsek algorithm

➠ Time continuous dynamics:

Ẋk(t) = ωk(t)

dωk(t) = (Id − ωk ⊗ ωk)(νω̄kdt +
√

2DdBt)

ω̄k =
Jk

|Jk|
, Jk =

∑

j,|Xj−Xk|≤R

ωj

➠ Recover original Vicsek by:

➟ Time discretization ∆t

➟ Gaussian noise → uniform

➟ ν∆t = 1

ωk

ω̄k
S

1

√

2DdBtνω̄kdt

dωk
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11Mean-field model

➠ f(x, ω, t) = 1-particle proba distr.

➟ satisfies a Fokker-Planck equation

➟ Scaling to macro variables x̃ = εx, t̃ = εt, ε ≪ 1

➟ local interaction: R̃ = εR

➠ Fokker-Planck eq. in scaled variables

ε(∂tf
ε + ω · ∇xf

ε) + ∇ω · (F εf ε) = D∆ωf ε

F ε = (Id − ω ⊗ ω)Ωε

Ωε =
jε

|jε| , jε =

∫

|υ|=1

υf ε(x, υ, t) dυ

➟ Ωε is the direction of the local flux

F ε

S
1

Ω
ε

ω

Ω
ε
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3. From Mean-Field to Hydrodynamics
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13Collision operator

➠ Model can be written

∂tf
ε + ω · ∇xf

ε =
1

ε
Q(f ε)

➟ with collision operator

Q(f) = −∇ω · (Ff f) + D∆ωf

Ff = (Id − ω ⊗ ω)Ωf

Ωf =
jf

|jf |
, jf =

∫

|υ|=1

υf(x, υ, t) dυ

➠ Problem: find the limit ε → 0
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141st step: find the equilibria

➠ Equilibrium manifold: E = {f |Q(f) = 0}

➠ Rewrite

Q(f) = ∇ω · [−Ff f + D∇ωf ]

➟ Introduce the solution of [. . .] = 0

➟ ∀Ω ∈ S
1, ∃ a unique normalized solu-

tion f = MΩ such that Ωf = Ω

➠ Von-Mises distribution:

MΩ(ω) = Z−1 exp β(ω · Ω),

∫

MΩ(ω) dω = 1, β = D−1
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15Equilibria

➠ Q(f) can be written

Q(f) = D∇ω ·
[

MΩf
∇ω

(

f

MΩf

)]

➠ Entropy inequality

H(f) =

∫

Q(f)
f

MΩf

dω = −D

∫

MΩf

∣

∣

∣

∣

∇ω

(

f

MΩf

)
∣

∣

∣

∣

2

≤ 0

➠ E = { ρMΩ(ω) for arbitrary ρ ∈ R+ and Ω ∈ S
2 }

(or S
1 in dim 2)

➟ dim E =







3 in dimension 3

2 in dimension 2
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162nd step: Collision invariants (conserved quantity)

➠ Function ψ(ω) such that
∫

Q(f)ψ dω = 0, ∀f

➟ Form a vector space C
➟ Multiply eq. by ψ: ε−1 term disappears

➟ Find a conservation law

➟ Limit fully determined if dim C = dim E

➠ Here dim C = 1 because C = Span{1}
➟ conservation of mass

➟ dim E = 3 > dim C = 1 (in dimension 3)

➟ Is the limit problem ill-posed ?
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17Generalized collision invariants

➠ Given Ω, find ψΩ a GCI, such that
∫

Q(f)ψΩ dω = 0, ∀f such that Ωf = Ω

➠ Given Ω, the GCI form a 3-dim vector space

spanned by 1 and ~ψΩ(ω)

➠ ~ψΩ(ω) = Ω×ω
|Ω×ω|g(Ω · ω)

g(µ) sol. of elliptic eq:

−(1−µ2)∂µ(e
µ/D(1−µ2)∂µg)+eµ/Dg = −(1−µ2)3/2eµ/D
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18Use of generalized collision invariant

➠ Multiply FP eq by ~ψΩfε

➟ O(ε−1) terms disappear

➟ Let ε → 0: f ε → ρMΩ and ~ψΩfε → ~ψΩ

➟ Gives:
∫

(∂t(ρMΩ) + ω · ∇x(ρMΩ)) ~ψΩ dω = 0

➠ Not a conservation equation because of

dependence of ~ψΩ upon Ω
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19Macro version of Vicsek model

➠ density ρ(x, t) ; flux director Ω(x, t) :

∂tρ + ∇x · (c1ρΩ) = 0

ρ (∂tΩ + c2(Ω · ∇)Ω) + D (Id − Ω ⊗ Ω)∇xρ = 0

|Ω| = 1

➠ c1, c2: constants (moments of MΩ and g), c2 < c1

c1(D) c2(D)
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4. Properties of the hydrodynamic model
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21Hydrodynamic Vicsek model

➠ By time rescaling: c = c2/c1 < 1, d = D/c1

Density ρ(x, t), flux director Ω(x, t):

∂tρ + ∇x · (ρΩ) = 0

ρ (∂tΩ + c(Ω · ∇)Ω) + d (Id − Ω ⊗ Ω)∇xρ = 0

|Ω| = 1

c(D) d(D)
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22Hydrodynamic Vicsek model: comments

➠ Hyperbolic model with geometric constraint

➟ Non-conservative terms arise from the constraint

➟ Hydro & relaxation limits do not commute

➠ Velocity information travels slower than mass flow

➟ like traffic

➟ reinforced by forward vision

[Frouvelle]

c(D) for various apertures of vision cone
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23Mills are stationary solutions

➠ Mills: ρ(r) = ρ0 (r / r0)
c/d , Ω = x⊥/r

➠ Shape depends on noise level

➟ small noise: ρ(r) convex:

sharp edged mills

➟ large noise: ρ(r) concave:

fuzzy edges

Ω

ω

r

ρ

small noise

Ω

ω

r

ρ

large noise
➟ Stability of mills ?
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24Order parameter

➠ c1 = |jMΩ
| = order parameter

➟ c1 ∼ 1: aligned ➟ c1 ∼ 0: random

➠ Vicsek: c1 not uniform in space

➠ Hydro model: c1 uniform (fixed by D)

➟ Cure: make D(ρ) (fluctuations ?) see [Frouvelle]

c1(D) after [Chaté et al]: particle simulations
show band formation ; ρ & c1 (cross section)
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25Phase transitions

➠ Vicsek model has phase
transitions

c1(D) c1(ρ)

➠ Hydro model has no
phase transitions

c1(D)

➠ Different regimes

➟ Vicsek: interaction radius is O(1) (instead of O(ε))

➟ number of particle not large: Mean-Field and Hydro

limits not valid
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26Hydro model: theory and numerics

➠ Difficulty: geometric constraint |Ω| = 1

➟ No theoretical framework

➟ Chen-Levermore-Liu theory does not apply

➟ Shock speed undefined, no entropy, . . .

➠ Model = relaxation limit of conservative model

∂t(ρΩ) + c∇ · (ρΩ ⊗ Ω) + d∇xρ = −ǫ−1ρ(1 − |Ω|2)Ω

➠ Numerical methods [Motsch & Navoret]: compare

➟ Standard methods

➟ Method based on a splitting of the relaxation model
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27Vicsek vs Hydro

Initial conditions Relaxation-based Standard
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➠ Initial contact discontinuity θ → −θ at x = 0

➠ Vicsek (dots) and Hydro (solid line)

➠ ρ(x) (blue), θ(x) green, c1(x) red Ω = (cos θ, sin θ)

➠ Excellent agreement with relaxation-based meth.

➠ Wrong results with standard meth.
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28Vicsek vs Hydro (cont)

➠ Initial contact discontinuity resolved by complex
wave pattern

➟ not reproduced by standard methods

➟ Confirms the need for a theory of these systems
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5. Conclusion
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30Hydrodynamics of Vicsek particles

➠ Hydrodynamics of Vicsek model

➟ derived under appropriate scaling hypotheses

➠ Non-standard features have been outlined

➟ lack of collision invariants

➠ A new concept has been proposed

➟ Generalized Collision Invariant

➠ 1st derivation of non-conservative model from
kinetic theory

➟ [D. Motsch, M3AS, Vol. 18, (2008)]
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31About the Hydrodynamic model

➠ Excellent agreement with Vicsek particle model

➟ provided relaxation formulation is used

➠ Geometrical constraint

➟ requires theoretical investigations

➠ Improvements required:

➟ non-constant order parameter

➟ possibility of phase transition

➟ more general alignement dynamics

➠ Further refinements

➟ work in progress by A. Frouvelle
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