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1. An example: the Vicsek model
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Vicsek model [Vicsek et al, PRL 95] 4

0 Time-discrete model:
" = nAt
k-th individual
X[': position at ¢"

wy: velocity with |w}'| =1

0 X =X+ oy At

wit = @7 + noise (uniform in small angle interval)
J?’L
-n k n n
wk—un’, J, = E W
k

(] Alignment to neighbours’ mean velocity plus noise
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Phase transition [Vicsek et al, PRL 95] 5
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Phase transition to aligned state 6
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1 As noise decreases
[Vicsek et al, PRL 95]
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Self-organization 7

1 Vicsek dynamics exhibits
self-organization & emergence of coherent structures

supposes the build-up of correlations between particles

1 Kinetic and Hydrodynamic models rely on the
chaos assumption

When N s large, particles are statistically independent

1 Question: are kinetic and hydrodynamic models
relevant for Complex Systems 7

Goal: provide illustrative examples
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2. Chaos property in particle systems
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Method 9

[1 Construct the Master equation
Tells us the passage Fiy(t") — Fy(t"™)

where Fy(vy,...,vn) = N-particle probability
distribution

Note: Fly invariant under permutations of {vq,..., vy}

[1 Compute the marginals

F](Vj)(vl, RS /FN dvitq ... doy
Master eq. = eq. for the marginals
Egs. for the marginals not closed (BBGKY hierarchy)

Marginals: fixed number of variables when N — oo
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Binary interactions 10

] Hierarchy:
FP ) = gOESV (1)

1 Taking the limit N — oo 'simplifies’ the problem

If N large, system is not influenced by the state of one
given particle

1 Particles become independent

F(j)Ul,... ﬁ

k=1
Chaos assumption
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Binary interactions (cont) 11

(1 Suppose at t = 0: particles are independent
Doy, 0o = T F® () eo

1 If N finite: Dynamics builds up correlations
iInstantaneously

1 If N — oo, correlations tend to O
for Hard-Sphere Dynamics [Lanford|, 3T s.t. Vt € |0, T

FO(r, o)l = [ [FP(w)le as N — oo

BBGKY hierarchy 'converges’ to the Boltzmann eq.
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Related questions 12

1 As N — o0:
Dynamics becomes irreversible
3 entropy functional H which Y\ in time
Dissipation

Equilibria = states of maximal disorder

1 For classical systems (e.g. rarefied gases)

strong relation between these concepts

1 Is this still true for self-organization processes ?

will some of these concepts survive while others won't 7
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3. Binary particle dynamics on S':
the CLD & BDG dynamics
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Dynamics on S* 14

] Setting
N particles with velocities v;, € S*
i.e. v, € R? with || =1
Space homogeneous problem = kein z !!!

All particles can interact

[1 State of the system at the n-th iterate
Zn({t") = (v1,...,o5) (") € (SHY
t" = nAt

Discrete stochastic dynamics Zy (") — Zn(t")
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Ex. 1: Space-homogeneous Vicsek dynamicsis

(1 Compute average direction v =>_, vx /| >, Ukl

(1 Add independent noise v,

V W
) =g(z")
wi: N independent random var. drawn according to ¢

g(z) proba on S*, symmetric g(z

Uk
/U /l_}
] Note:
Multiplicative group structure of S!
Also use phases 0 s.t. v = e

All particles interact = no reduction using marginals
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Ex 2. A 'binary’ Vicsek dynamics: BDG 16

(1 After [Bertin, Droz, Gregoire]

1 Pick a pair {7, j} at random
probability P;; = 2/N(N — 1)

average dlrectlon: vij = (vi +v5)/|vi + vy

] Add independent noise drawn according to g:
U; = vijwi ’U;- = "UZ']'UJ]'
All particles but {7, j} unchanged

1 Variant (acception-rejection)

Collision performed with probability
h(vivi) st. 0 < h <1

T Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption




Ex 3. "Choose the Leader’ (CLD) 17

1 Pick an ordered pair (7, j) at random
Probability P;; = 1/N(N — 1)

1 Then, 7 joins 7 plus noise w drawn according to g

All particles but 7 unchanged

T Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption



18

4. Chaos property in BDG and CLD dynamics
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Noise scaling 19

1 Outline
Compute the masters eq. and the marginals

Let V — oo while scaling noise variance appropriately
1 Assumptions on noise distribution as N — oo:

gy — 0(v)

o° 1

Var(gn) = ~ i.e. MSD(gy) = O(\/—N)

1 Goal: find egs. for the marginals as N — oo and

At = O(%) (continuous time limit)
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Master eq: methodology 20

(1 Take any observable ¢(vy,...,vy)

Denote Zn(t") = (vy,...,vn)(t") the state of the
system at time t"

Markov transition operator

Q d(v1, ... o) = E{o(Zn (") | Zn(t") = (v, ..., on)}
1 Denote Fiy(vq,...,vn) = N-particle proba:

E(o(Zy(r)} = [ 0Fw(e")dz = [ (Q0) Fu(t") az
Fy(") = QFn(t") where @ = adjoint of Q*

T Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption



Example: CLD 1

Q*gb(?}l, 7Q)]\f) —
N(Nl— 1) ; st O(vr, - wyy, g, N ) g(w) du
QFN(Ula 7UN) —

T

1 .
N(N —1) Zg(vjmi)/ Fn(vy, .. w;g, ... on) dw;
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Example: BDG 22

Q" ¢(vr, ..., un) = N(NQ_ D Z{/Sl h(4/viv}) %

XAV, .y U, Vs, ON) g(05507) g(v50)) dug d
+ (1 = h(yfvit)) (v, . .. ,UN)}

with mid-direction v;; defined by

vig = (vi + ;) / Joi + vy

T Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption



N — oo in CLD 23

1 Small noise limit
gNﬁé Var(gN)ZJQ/N At:O(l/NQ)

1 First marginal:

0. — (0/2)83, 1V = 0

1 Second marginal:

Oif'? = (0°/2) Ny 0, P + 2 = (F1(01) + 1 (62))5(0, — 01)
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Stationary states as t — o0 24

] f(l) — fé? = 1: uniform distribution on S'

[] f(z) — fe%) the unique solution of

—(0%/2) D, 0, f +2f = 20(0> — 01)

-3
x 10

0 fed (01,0) # foq (01) £ (6:) .

Chaos assumption violated

[] fe%) peaked at 0; = 0

coherent motion Zgi
pi/2

L - -~ 3pif
but no preferred mean direction Phi i P
P 0 0 pi/2
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Numerical simulations 25

1 Experimental protocol
simulations with N = 102, 102, 10* & 10° particles
wait until 'stationary state’
Pick one ¢ and a pair (7, 7) at random
Redo the simulation M times to avoid correlations
Plot histograms of 6; and (61, 6;) of these M samples
Compare with theoretical fe(a) and fe(a)
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fe(ql) & f§3>: experiments N = 10° 26
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e(qQ): experiments vs theory N = 103 27
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N — oo in BDG 28
1 Small noise limit and continuous time limit
gNﬁd Var(gN):(fQ/N At:O(l/NQ)

1 Strong bias ('grazing collisions’)
hN/th — 0 Var(hN/th) = 7'2/N

1 Goal: in the limit N — oc:

Compare the relative influence of the noise ¢ and the
grazing bias 7
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Explicit hierarchy 29

O fM = (0 = 7°) 95 (0,0)|0—0,

atf(2) — (02 _ 72)(agf(3)(97 627 ‘9)’9291 T 892][(3)((917 (97 9)‘9292)

J
atf(]) — (0'2 — 7-2) Z agf(]—i_l) ((917 sy ek—la (97 Hk—|—17 SRR 9]7 9)’9:0]-6

k=1
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Interpretation 30

[ If chaos assumption holds, f1)() satisfies
Of = (0 =) (f*)" =20 =) (f )

nonlinear heat equation
o > 7: well-posed ; noise added wider than initial spread

o < 71: ill-posed ; noise added narrower: concentration 7

1 BUT: Chaos assumption
does not hold

Iu.nzs
© 0.0z
0.015
Lom
Iu.ms
2pi y

1 Existence for hierarchy ?

infinitely many stationary states
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5. Conclusion
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Observations & Future work 32

1 'Simple’ dynamics of aggregation do not satisfy
chaos assumption

How can kinetic theory survive this situation ?

Requires rethinking of classical concepts (entroypy,
dissipation, irreversibility, equilibria, . ..)

1 Spatialization
Kinetic & fluid models

application to practical systems (swarming, trail
formation, construction, ...)

T Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption



	
	hypertarget {sum}{Summary}
	
	Vicsek model {small [Vicsek et al, PRL 95]}
	Phase transition {small [Vicsek et al, PRL 95]}
	Phase transition to aligned state
	Self-organization
	
	Method
	Binary interactions
	Binary interactions (cont)
	Related questions
	
	Dynamics on ${mathbb S}^1$
	Ex. 1: Space-homogeneous Vicsek dynamics
	Ex 2. A 'binary' Vicsek dynamics: BDG 
	Ex 3. 'Choose the Leader' (CLD)
	
	Noise scaling
	Master eq: methodology
	Example: CLD
	Example: BDG
	$N 	o infty $ in CLD
	Stationary states as $t 	o infty $
	Numerical simulations
	$f^{(1)}_{mbox
{�ootnotesize eq}}$ & $f^{(2)}_{mbox {�ootnotesize eq}}$: experiments
, $N=10^3$
	$f^{(2)}_{mbox
{�ootnotesize eq}}$: experiments vs theory , $N=10^3$
	$N 	o infty $ in BDG
	Explicit hierarchy
	Interpretation
	
	Observations & Future work

