Mathematical modeling of complex systems Part 2. Self-organization vs chaos assumption P. Degond

Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier

pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

Joint work with E. Carlen and B. Wennberg ; numerical simulations by R. Chatelin

- 1. An example: the Vicsek model
- 2. Chaos property in particle systems
- 3. Binary particle dynamics on \mathbb{S}^1 : the CLD & BDG dynamics
- 4. Chaos property for CLD & BDG
- 5. Conclusion

1. An example: the Vicsek model

Vicsek model [Vicsek et al, PRL 95]

 $\rightarrow t^n = n \Delta t$

↑

- \implies k-th individual
- \rightarrow X_k^n : position at t^n
- $\implies \omega_k^n$: velocity with $|\omega_k^n| = 1$

$$X_k^{n+1} = X_k^n + \omega_k^n \Delta t$$

$$\omega_k^{n+1} = \bar{\omega}_k^n + \text{ noise (uniform in small angle interval)}$$

$$\bar{\omega}_k^n = \frac{J_k^n}{|J_k^n|}, \quad J_k^n = \sum_{j, |X_j^n - X_k^n| \le R} \omega_j^n$$

Alignment to neighbours' mean velocity plus noise

4

Phase transition [Vicsek et al, PRL 95]

Phase transition to aligned state

 \uparrow Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption \downarrow

- Vicsek dynamics exhibits
 - self-organization & emergence of coherent structures
 - supposes the build-up of correlations between particles
- Kinetic and Hydrodynamic models rely on the chaos assumption
 - \rightarrow When N is large, particles are statistically independent
- Question: are kinetic and hydrodynamic models relevant for Complex Systems ?
 - Goal: provide illustrative examples

2. Chaos property in particle systems

Method

- Construct the Master equation
 - \rightarrow Tells us the passage $F_N(t^n) \longrightarrow F_N(t^{n+1})$
 - where $F_N(v_1, \ldots, v_N) = N$ -particle probability distribution
 - \rightarrow Note: F_N invariant under permutations of $\{v_1, \ldots, v_N\}$
- Compute the marginals

$$F_N^{(j)}(v_1,\ldots,v_j) = \int F_N \, dv_{j+1}\ldots dv_N$$

- \rightarrow Master eq. \Rightarrow eq. for the marginals
- ➡ Eqs. for the marginals not closed (BBGKY hierarchy)
- \blacksquare Marginals: fixed number of variables when $N \to \infty$

Binary interactions

Hierarchy:

$$F_N^{(j)}(t^{n+1}) = \mathcal{J}^{(j)}(F_N^{(j+1)}(t^n))$$

- \blacksquare Taking the limit $N \to \infty$ 'simplifies' the problem
 - \twoheadrightarrow If N large, system is not influenced by the state of one given particle
- Particles become independent

$$F^{(j)}(v_1, \dots, v_j) = \prod_{k=1}^j F^{(1)}(v_k)$$

Chaos assumption

Binary interactions (cont)

11

Suppose at t = 0: particles are independent

$$F^{(j)}(v_1,\ldots,v_j)|_{t=0} = \prod F^{(1)}(v_k)|_{t=0}$$

- If N finite: Dynamics builds up correlations instantaneously
- \blacksquare If $N \to \infty$, correlations tend to 0
 - \rightarrow for Hard-Sphere Dynamics [Lanford], $\exists T \text{ s.t. } \forall t \in [0,T]$

$$F^{(j)}(v_1,\ldots,v_j)|_t \to \prod F^{(1)}(v_k)|_t \text{ as } N \to \infty$$

BBGKY hierarchy 'converges' to the Boltzmann eq.

Related questions

- \blacksquare As $N \to \infty$:
 - Dynamics becomes irreversible
 - \blacksquare = entropy functional H which \searrow in time
 - Dissipation
- For classical systems (e.g. rarefied gases)
 - strong relation between these concepts
- ➡ Is this still true for self-organization processes ?
 - will some of these concepts survive while others won't ?

3. Binary particle dynamics on \mathbb{S}^1 : the CLD & BDG dynamics

Dynamics on \mathbb{S}^1

Setting

- \implies N particles with velocities $v_k \in \mathbb{S}^1$
- \blacksquare i.e. $v_k \in \mathbb{R}^2$ with $|v_k| = 1$
- \implies Space homogeneous problem \Rightarrow kein $x \parallel \parallel$
- → All particles can interact
- \blacksquare State of the system at the n-th iterate

$$\Rightarrow Z_N(t^n) = (v_1, \dots, v_N)(t^n) \in (\mathbb{S}^1)^N$$

$$\rightarrow t^n = n\Delta t$$

 \rightarrow Discrete stochastic dynamics $Z_N(t^n) \longrightarrow Z_N(t^{n+1})$

Ex. 1: Space-homogeneous Vicsek dynamics₁₅

- Compute average direction $\bar{v} = \sum_k v_k / |\sum_k v_k|$
- Add independent noise $v'_k = \bar{v} w_k$

 $\implies g(z)$ proba on \mathbb{S}^1 , symmetric $g(z) = g(z^*)$

 $\implies w_k$: N independent random var. drawn according to g

Note:

- \rightarrow Multiplicative group structure of \mathbb{S}^1
- \blacksquare Also use phases θ s.t. $v = e^{i\theta}$
- \rightarrow All particles interact \Rightarrow no reduction using marginals

Ex 2. A 'binary' Vicsek dynamics: BDG 16

- After [Bertin, Droz, Gregoire]
- \blacksquare Pick a pair $\{i, j\}$ at random
 - \rightarrow probability $P_{ij} = 2/N(N-1)$
 - → average direction: $v_{ij} = (v_i + v_j)/|v_i + v_j|$
- \blacksquare Add independent noise drawn according to g:

$$\bullet v'_i = v_{ij}w_i \qquad v'_j = v_{ij}w_j$$

- \implies All particles but $\{i, j\}$ unchanged
- Variant (acception-rejection)
 - → Collision performed with probability $h(v_i v_j^*)$ s.t. $0 \le h \le 1$

Ex 3. 'Choose the Leader' (CLD) 17

- Pick an ordered pair (i, j) at random Probability $P_{ij} = 1/N(N-1)$
- \blacksquare Then, i joins j plus noise w drawn according to g

$$v_i' = v_j w$$

 \rightarrow All particles but *i* unchanged

4. Chaos property in BDG and CLD dynamics

Noise scaling

- Outline
 - Compute the masters eq. and the marginals
 - \implies Let $N \rightarrow \infty$ while scaling noise variance appropriately
- \blacksquare Assumptions on noise distribution as $N \to \infty$:

$$g_N \to \delta(v)$$

$$\operatorname{Var}(g_N) = \frac{\sigma^2}{N}$$
 i.e. $\operatorname{MSD}(g_N) = O(\frac{1}{\sqrt{N}})$

Goal: find eqs. for the marginals as $N \to \infty$ and $\Delta t = O(\frac{1}{N^2})$ (continuous time limit)

Master eq: methodology

- Take any observable $\phi(v_1, \ldots, v_N)$
 - → Denote $Z_N(t^n) = (v_1, ..., v_N)(t^n)$ the state of the system at time t^n
 - Markov transition operator

$$Q^*\phi(v_1,\ldots,v_N) = \mathbb{E}\{\phi(Z_N(t^{n+1})) \,|\, Z_N(t^n) = (v_1,\ldots,v_N)\}$$

Denote
$$F_N(v_1, \ldots, v_N) = N$$
-particle proba:

$$\mathbb{E}\{\phi(Z_N(t^{n+1}))\} = \int \phi F_N(t^{n+1}) \, dZ = \int (Q^*\phi) F_N(t^n) \, dZ$$

$$\Rightarrow F_N(t^{n+1}) = QF_N(t^n) \quad \text{where} \quad Q = \text{adjoint of } Q^*$$

Example: CLD

$$Q^*\phi(v_1,\ldots,v_N) = \frac{1}{N(N-1)} \sum_{i\neq j} \int_{\mathbb{S}^1} \phi(v_1,\ldots,wv_j,\ldots,v_j,\ldots,v_N) g(w) \, dw$$

$$QF_N(v_1,\ldots,v_N) = \frac{1}{N(N-1)} \sum_{i \neq j} g(v_j v i_i^*) \int_{\mathbb{S}^1} F_N(v_1,\ldots,w_i,\ldots,v_N) dw_i$$

Example: BDG

22

$$Q^*\phi(v_1, \dots, v_N) = \frac{2}{N(N-1)} \sum_{i < j} \left\{ \int_{\mathbb{S}^1} h(\sqrt{v_i v_j^*}) \times \phi(v_1, \dots, v'_i, \dots, v'_j, \dots, v_N) g(v_{ij}^* v'_i) g(v_{ij}^* v'_j) dv'_i dv'_j + (1 - h(\sqrt{v_i v_j^*})) \phi(v_1, \dots, v_N) \right\}$$

with mid-direction v_{ij} defined by

$$v_{ij} = (v_i + v_j) / |v_i + v_j|$$

$N \to \infty \text{ in } \mathsf{CLD}$

23

Small noise limit

$$\Rightarrow g_N \rightarrow \delta \quad \operatorname{Var}(g_N) = \sigma^2 / N \quad \Delta t = O(1/N^2)$$

First marginal:

$$\partial_t f^{(1)} - (\sigma^2/2) \partial^2_{\theta_1} f^{(1)} = 0$$

Second marginal:

 $\partial_t f^{(2)} - (\sigma^2/2) \Delta_{\theta_1,\theta_2} f^{(2)} + 2f^{(2)} = (f^{(1)}(\theta_1) + f^{(1)}(\theta_2)) \delta(\theta_2 - \theta_1)$

Stationary states as $t \to \infty$

$$f^{(1)} \rightarrow f^{(1)}_{eq} = 1: \text{ uniform distribution on } \mathbb{S}^1$$

$$f^{(2)} \rightarrow f^{(2)}_{eq} \text{ the unique solution of}$$

$$-(\sigma^2/2)\Delta_{\theta_1,\theta_2}f + 2f = 2\delta(\theta_2 - \theta_1)$$

$$f^{(2)}_{eq}(\theta_1,\theta_2) \neq f^{(1)}_{eq}(\theta_1) f^{(1)}_{eq}(\theta_2)$$

$$f^{(2)}_{eq}(\theta_1,\theta_2) \neq f^{(1)}_{eq}(\theta_1) f^{(1)}_{eq}(\theta_2)$$

$$f^{(2)}_{eq} \text{ peaked at } \theta_1 = \theta_2$$

- coherent motion
- but no preferred mean direction

24

Numerical simulations

- Experimental protocol
 - \implies simulations with $N = 10^2$, 10^3 , 10^4 & 10^5 particles
 - wait until 'stationary state'
 - \blacksquare Pick one i and a pair (i, j) at random
 - \blacksquare Redo the simulation M times to avoid correlations
 - \blacksquare Plot histograms of θ_1 and (θ_1, θ_2) of these M samples
 - \rightarrow Compare with theoretical $f_{eq}^{(1)}$ and $f_{eq}^{(2)}$

$f_{\rm eq}^{(1)}$ & $f_{\rm eq}^{(2)}$: experiments $N = 10^3$ 26

1

Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption $-\downarrow$

$f_{\rm eq}^{(2)}$: experiments vs theory $N=10^3$ 27

↑

Pierre Degond - Mathematical models of complex systems - Part 2. Chaos assumption

$N \to \infty$ in BDG

Small noise limit and continuous time limit

 $\Rightarrow g_N \rightarrow \delta \quad \operatorname{Var}(g_N) = \sigma^2 / N \quad \Delta t = O(1/N^2)$

- Strong bias ('grazing collisions') $h_N / \int h_N \to \delta \quad Var(h_N / \int h_N) = \tau^2 / N$
- Goal: in the limit $N \to \infty$:
 - \clubsuit Compare the relative influence of the noise σ and the grazing bias τ

Explicit hierarchy

29

$$\partial_t f^{(1)} = (\sigma^2 - \tau^2) \,\partial_\theta^2 f^{(2)}(\theta, \theta)|_{\theta = \theta_1}$$

.

$$\partial_t f^{(2)} = (\sigma^2 - \tau^2) (\partial_\theta^2 f^{(3)}(\theta, \theta_2, \theta)|_{\theta = \theta_1} + \partial_\theta^2 f^{(3)}(\theta_1, \theta, \theta)|_{\theta = \theta_2})$$

$$\partial_t f^{(j)} = (\sigma^2 - \tau^2) \sum_{k=1}^j \partial_\theta^2 f^{(j+1)}(\theta_1, \dots, \theta_{k-1}, \theta, \theta_{k+1}, \dots, \theta_j, \theta)|_{\theta = \theta_k}$$

Interpretation

If chaos assumption holds, $f^{(1)}(\theta)$ satisfies

$$\partial_t f = (\sigma^2 - \tau^2) (f^2)'' = 2(\sigma^2 - \tau^2) (f f')'$$

- nonlinear heat equation
- → $\sigma > \tau$: well-posed ; noise added wider than initial spread → $\sigma < \tau$: ill-posed ; noise added narrower: concentration ?
- BUT: Chaos assumption does not hold
- **Existence** for hierarchy ?
 - infinitely many stationary states

5. Conclusion

Observations & Future work

- 'Simple' dynamics of aggregation do not satisfy chaos assumption
 - How can kinetic theory survive this situation ?
 - Requires rethinking of classical concepts (entroypy, dissipation, irreversibility, equilibria, ...)
- Spatialization
 - → Kinetic & fluid models
 - application to practical systems (swarming, trail formation, construction, ...)