Mathematical modeling of complex systems Part 1. Overview

P. Degond

Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier

pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

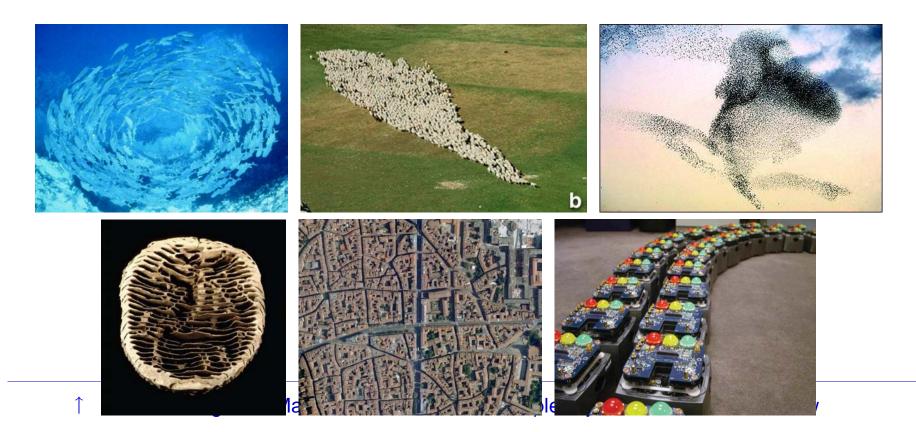
Summary

- 1. What is a complex system ?
- 2. Examples
- 3. Models
- 4. What are we looking for ?

1. What is a complex system ?

Complex system

- System with locally interacting agents
 - emergence of spatio-temporal coordination
 - patterns, structures, correlations, synchronization
 - ➡ No leader / only local interactions



2. Examples

Example 1: Vehicular traffic

- Observations:
 - \implies Free/Congested phase transitions \rightarrow large scale struct.
 - Spatio-temporal oscillations: stop-and-go waves
 - Coordination and synchronization (e.g. between lanes)
 - Stochasticity, high sensitivity to perturbations

References:

- [Daganzo], [Helbing], [Klar et al], Traffic forecast, ...
- [D., Rascle et al]: non-overlapping constraint

Example 2: Supply chains

 P_{n+1}

 P_n

 $\tau(m,n)$

 P_{n-1}

 S_m

 S_{m+1}

- Network of stations along which parts are circulating
 - factory
 - economic circuit
- Observations:

- Temporal patterns (economic cycles)
- Instabilities (bullwhip effect)

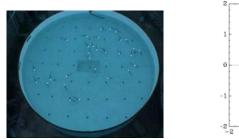
References:

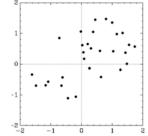
[Armbruster, D., Ringhofer], [Klar, Herty et al]: Fluid models

Ex 3-1: collective motion

- Onset of collective motions in gregarious species
 - → Example: Fish (experiments by Theraulaz group)

Observations:





- trajectory fitting requires new stochastic models
- cohesion depends on group size
- alternating leadership
- References:
 - [Gautrais et al], [D. & Motsch] Persistent Turning Walker

Ex 3-2: Herding

Herding in mammalian species

🖛 exp. in Theraulaz group, ANR Project 'Panurge'

Observations

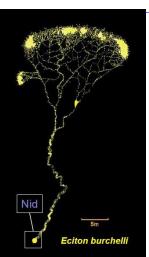
- stimulation by neighbours / time lag before response
- \rightarrow large scale structures: herd size \ll animal size
- non-overlapping constraint (Navoret et al, in progress)
- positive feedback reinforcement (e.g. trail formation)

Ex 3-3: Pedestrian traffic

- Pedestrians (ANR project 'Pedigree')
 - density-depend. phase transitions (free/lane/clogging)
 - synchronization, oscillations (e.g. gate crossings)
 - → path optimization, collision avoidance
 - cognitive processes
 - control by environmental variables

Ex 3-4: collective decision making

- Ant trail formation (coll. w. C. Jost)
 - positive feedback / pheromone deposition
 - (E. Boissard et al, in progress)
- Constructions by social insects (coll. with G. Theraulaz & C. Jost)
 - complex structures (sponge-like, layers, ...)
 - organization & functionalities
 - temporal dynamics
 - (C. Sbai et al, in progress)



Striking features

- ion. pattern formation. time
- Self-organization, pattern formation, time synchronization,
 - large-scale complex and evolutive structures
 - organization emerges from local interactions only
 - no leader : Stigmergy [Grassé, 1959]
- Aggregation, clogging, spatial constraint
 - transition from compressible to incompressible regime
- Stochasticity in space & time
 - structures build up from local fluctuations
 - role of feedback (activator-inhibitor, cf Turing)

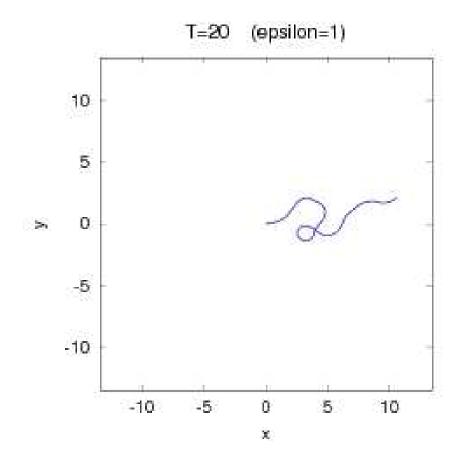
3. Models

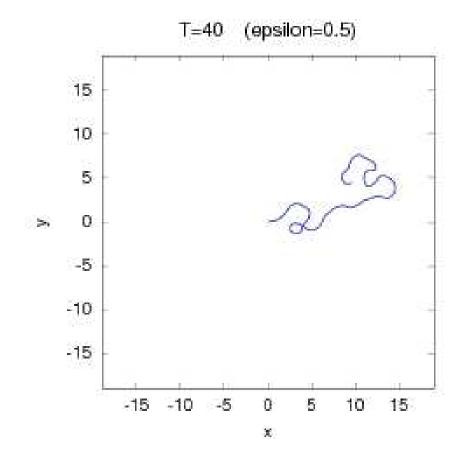
3 classes of models

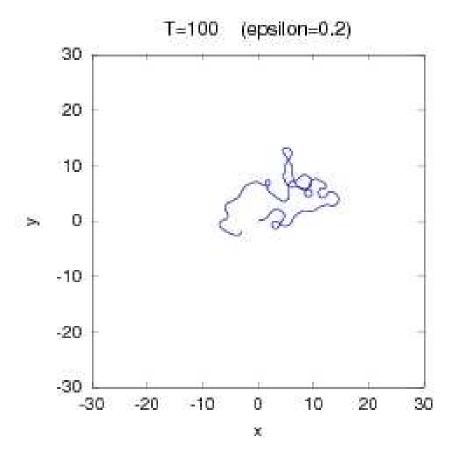
- Microscopic (particle like)
 - Individual-Based Models (IBM's)
 - state of each individual followed in time
- Mesoscopic (kinetic)
 - probability distribution of individuals in state-space
 - e.g. (position, velocity, activity)
- Macroscopic (continuum-like)
 - density, mean velocity, mean activity, ...
 - not conservation eqs in general (except mass ...)

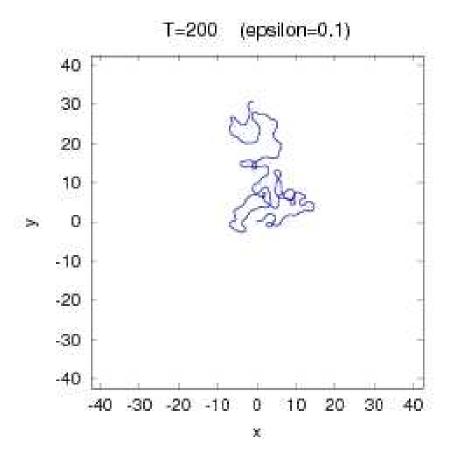
Example: ant displacement

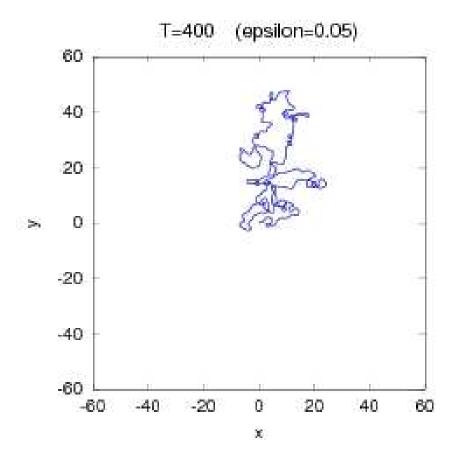
Particle level: $\dot{X} = u(\theta)$ $d\theta = \sqrt{2b} B_t$ Kinetic level: $\partial_t f + u(\theta) \cdot \nabla_x f = b \partial_{\theta}^2 f$ Continuum level: $\partial_t \rho = D \Delta \rho$

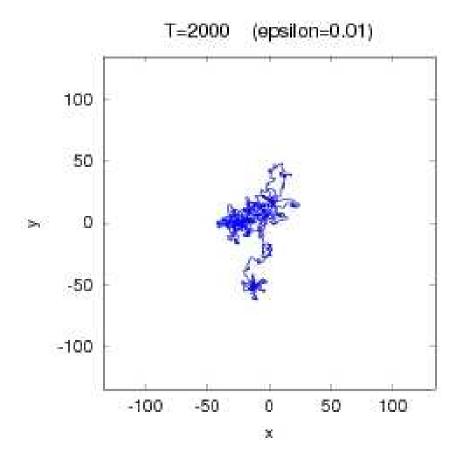


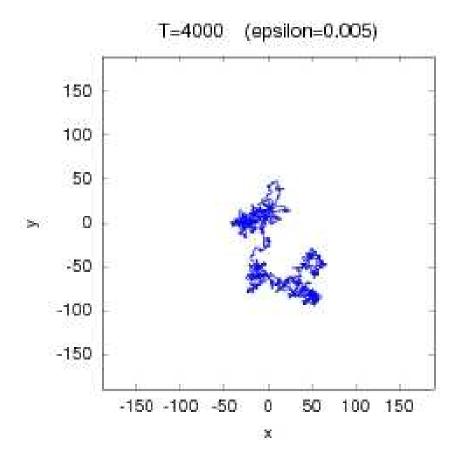




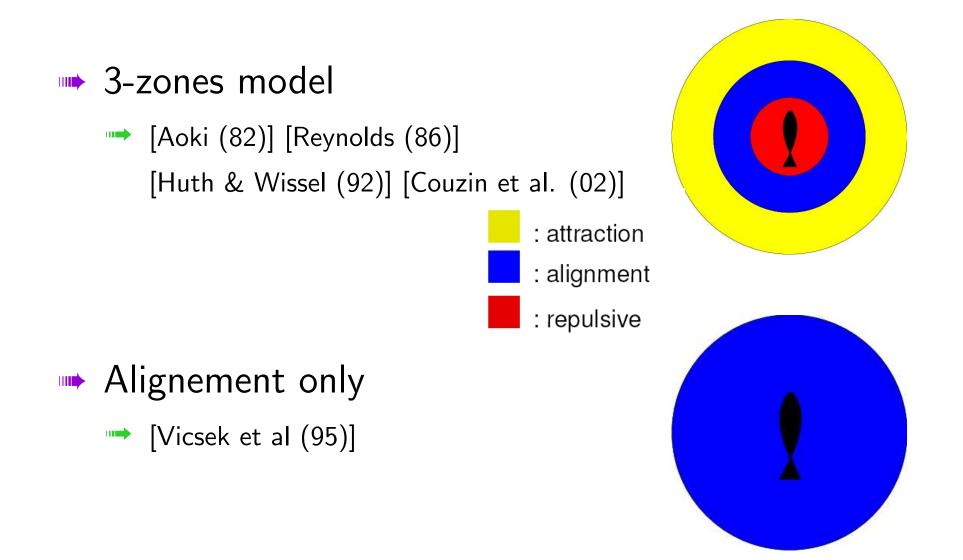




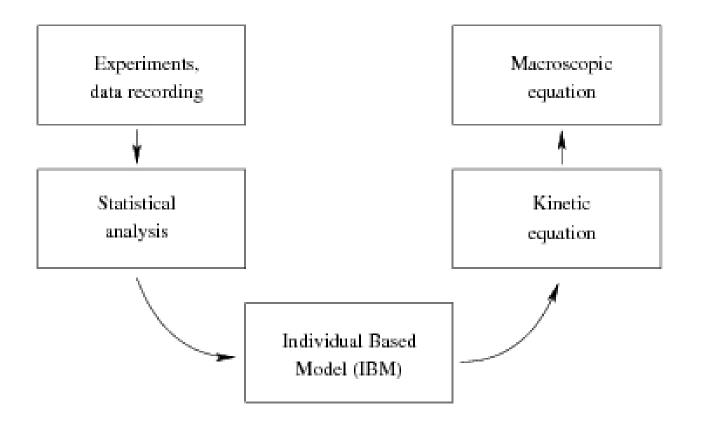




Model of cohesive displacement



Data analysis - modeling loop



Pros & Cons

Pros for IBM's

- ➡ easy to implement
- behavioral rules can be directly incorporated
- Pros of continuum models
 - computational efficiency for large systems
 - ➡ parameter identification, control & optimization
 - morpho-genesis & morpho-analysis easier

Validity of macroscopic approach

Large statistics

- ➡ validity for small groups ?
- statistical answer
- Independent particle assumptions
 - chaos assumption
 - \implies when $N \rightarrow \infty$, particle are nearly independent
 - description by 1-particle distribution valid
 - validity for self-organization processes ?

4. What are we looking for ?

Predict is not explain (R. Thom)

- Probe the systems by means of the models
 - use models with minimal set of parameter
 - which exhibit 'universality' features
 - to provide clues for the observed structures
- Can microscopic diversity be encoded in macroscopic universality ?
 - large variety of microscopic behaviours
 - result in the same kind of macroscopic behaviour
 - e.g. diffusion (fractional), transport, nonlinearity, ...

What we would like to understand

- What parameters at the micro-level determine
 - the class of macroscopic models
 - the qualitative behavior (e.g. line formation, ...)
 - the quantitative features (e.g. scaling laws, ...)
- Are macroscopic descriptions still valid ?
 - is propagation of chaos still true ?
 - what if chaos assumptions fails ?
- Animal models ?
 - labs for stochastic collective motion without leaders
 - observations and models useful for other fields

(neuro-science, engineering, social sciences, ...) Pierre Degond - Mathematical models of complex systems - Part 1. Overview