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Complex system

1 System with locally interacting agents
I emergence of spatio-temporal coordination

| patterns, structures, correlations, synchronization

| No leader / only local interactions




T

2. Examples

Pierre Degond - Mathematical models of complex systems - Part 1. Overview



1 Observations: f—

I. y W, o

| Free/Congested phase transitions — large scale struct.

| Spatio-temporal oscillations: stop-and-go waves
1 Coordination and synchronization (e.g. between lanes)

| Stochasticity, high sensitivity to perturbations

1 References:

T

| [Daganzo], [Helbing], [Klar et al], Traffic forecast, ...

| [D., Rascle et al]: non-overlapping constraint
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Example 2: Supply chains

1 Network of stations along
which parts are circulating T(m,n)

factory I

[ ]
P —
. . . n_'_
economic circuit .\E) B
— - | — —

[1 Observations: Sm—1 Sm Sm-+1
Spatial patterns (stocks, depletions)
Temporal patterns (economic cycles)

Instabilities (bullwhip effect)

[ References:
[Armbruster, D., Ringhofer], [Klar, Herty et al]: Fluid models
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Ex 3-1: collective motion

[1 Onset of collective motions in gregarious species
| Example: Fish (experiments by Theraulaz group)

1 Observations:

I trajectory fitting requires new stochastic models
I cohesion depends on group size

| alternating leadership

1 References:
| [Gautrais et al], [D. & Motsch] Persistent Turning Walker
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Ex 3-2: Herding

1 Herding in mammalian species
| exp. in Theraulaz group, ANR Project 'Panurge’

1 Observations

| stimulation by neighbours / time lag before response
| large scale structures: herd size < animal size

| non-overlapping constraint (Navoret et al, in progress)

| positive feedback reinforcement (e.g. trail formation)
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Ex 3-3: Pedestrian traffic 10

Pedestrians (ANR project 'Pedigree’)

density-depend. phase transitions (free/lane/clogging)
synchronization, oscillations (e.g. gate crossings)
path optimization, collision avoidance

cognitive processes

control by environmental variables
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Ex 3-4: collective decision making

1 Ant trail formation (coll. w. C. Jost)
positive feedback / pheromone deposition

(E. Boissard et al, in progress)

1 Constructions by social insects (coll. with G.
Theraulaz & C. Jost)

complex structures (sponge-like, layers, ...)
organization & functionalities
temporal dynamics

(C. Sbai et al, in progress)
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Striking features

1 Self-organization, pattern formation, time
synchronization,

large-scale complex and evolutive structures
organization emerges from local interactions only

no leader : Stigmergy [Grassé, 1959]

1 Aggregation, clogging, spatial constraint

transition from compressible to incompressible regime

1 Stochasticity in space & time
structures build up from local fluctuations

role of feedback (activator-inhibitor, cf Turing)
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3. Models
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3 classes of models

1 Microscopic (particle like)
Individual-Based Models (IBM's)

state of each individual followed in time

coupled Ordinary or Stochastic Differential Equations

1 Mesoscopic (kinetic)
probability distribution of individuals in state-space

e.g. (position, velocity, activity)

1 Macroscopic (continuum-like)
density, mean velocity, mean activity, . ..

not conservation egs in general (except mass ... )
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Example: ant displacement 15

15

(] Particle level:

X = u(f)
d@ — \/%Bt g

[ 1 Kinetic level:

[] Continuum level: o4
op = DAp : :
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llustration (Persistent Turning Walker) 16
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llustration (Persistent Turning Walker)
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llustration (Persistent Turning Walker)
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llustration (Persistent Turning Walker) 16
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llustration (Persistent Turning Walker)
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llustration (Persistent Turning Walker) 16
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llustration (Persistent Turning Walker) 16
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Model of cohesive displacement

[1 3-zones model

| [Aoki (82)] [Reynolds (86)]
[Huth & Wissel (92)] [Couzin et al. (02)]

: attraction A
. . alignment

. . repulsive

1 Alignement only
| [Vicsek et al (95)]
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Data analysis - modeling loop

Experimenis,

data recording

*

Slatistical

analvsls
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Pros & Cons

1 Pros for IBM's

easy to implement

behavioral rules can be directly incorporated

1 Pros of continuum models
computational efficiency for large systems
parameter identification, control & optimization

morpho-genesis & morpho-analysis easier
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Validity of macroscopic approach 20

1 Large statistics

validity for small groups ?

statistical answer

1 Independent particle assumptions

T

chaos assumption
when N — o0, particle are nearly independent
description by 1-particle distribution valid

validity for self-organization processes 7
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4. What are we looking for ?
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Predict is not explain (R. Thom) 22

Probe the systems by means of the models
use models with minimal set of parameter
which exhibit 'universality’ features

to provide clues for the observed structures

Can microscopic diversity be encoded in
macroscopic universality ?

large variety of microscopic behaviours
result in the same kind of macroscopic behaviour

e.g. diffusion (fractional), transport, nonlinearity, . ..
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What we would like to understand

0 What parameters at the micro-level determine
the class of macroscopic models
the qualitative behavior (e.g. line formation, ...)

the quantitative features (e.g. scaling laws, . ..)

1 Are macroscopic descriptions still valid 7
Is propagation of chaos still true ?

what if chaos assumptions fails ?

1 Animal models ?
labs for stochastic collective motion without leaders

observations and models useful for other fields

(neuro-science, engineering, social sciences, ... )
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