
STRUCTURE OF NUCLEAR C∗-ALGEBRAS: LECTURES 6-10

NATHANIAL P. BROWN

1. Day 6: Highlights of classification up to 2006

1.1. The Kirchberg-Phillips Theorem. Unfortunately, stating the Kirchberg-Phillips
theorem requires a fair amount of terminology. Here are a few requisite definitions.

Definition 1.1. A C∗-algebra A is nuclear if there exist c.c.p. maps ϕn : A→Mk(n)(C) and
ψn : Mk(n)(C)→ A such that ψn ◦ ϕn → idA in the point-norm topology:

‖ψn ◦ ϕn(a)− a‖ → 0,

for all a ∈ A.

Nuclearity is also called the completely positive approximation property (CPAP) because
it means there exist diagrams

A

ϕn $$H
H

H
H

H
idA // A

Mk(n)(C)
ψn

::u
u

u
u

u

which asymptotically commute pointwise. See [3] for more on approximation properties of
operator algebras.

Following Cuntz [6], we restrict to simple C∗-algebras in the next definition. See [19] for
the nonsimple case.

Definition 1.2. A simple C∗-algebra A is purely infinite if every hereditary subalgebra
B ⊂ A contains an infinite projection p (i.e., p is Murray-von Neumann equivalent to a
proper subprojection).

Next is a notion of equivalence for ∗-homomorphisms.

Definition 1.3. We say two ∗-homomorphisms π, σ : A → B are asymptotically unitarily
equivalent if there exists a (norm) continuous family of unitaries ut ∈ D (or the unitization
D̃, if D is nonunital), 0 ≤ t <∞, such that

lim
t→∞
‖utπ(a)u∗t − σ(a)‖ = 0

for all a ∈ A.

One of the many remarkable aspects of KK-theory is the number of equivalent definitions
that can be given. Specializing to separable unital nuclear simple C∗-algebras, KK0(A,D)
has a beautiful and extraordinarily useful description (see [35, Theorem 4.1.3] for a proof).
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2 NATHANIAL P. BROWN

Theorem 1.4. For a separable unital nuclear simple C∗-algebra A and a separable unital
simple C∗-algebra D, KK0(A,D) is (isomorphic to) the set of asymptotic unitary equivalence
classes of homomorphisms from K⊗O∞ ⊗ A to K⊗O∞ ⊗D with addition given by direct
sum of homomorphisms.1

Moreover, the Kasparov product KK0(A,B)×KK0(B,D)→ KK0(A,D) is simply compo-
sition of homomorphisms.

We say an element η ∈ KK0(A,B) is invertible if there exists and element γ ∈ KK0(B,A)
such that the Kasparov product η · γ equals [idA] ∈ KK0(A,A).

Theorem 1.5 (Kirchberg-Phillips). Assume both A and B are separable nuclear unital purely
infinite and simple, and that there exists an invertible element η ∈ KK0(A,B). Then there
exists an isomorphism π : K⊗ A→ K⊗B such that η = [π].

Separable nuclear unital purely infinite simple C∗-algebras are often referred to as Kirch-
berg algebras, and we shall follow this custom.

Here are a few refinements of the Kirchberg-Phillips Theorem. We first get rid of the
compacts by assuming that our invertible element η maps the unit of A to the unit of B
(where we identify η with a homomorphism).

Corollary 1.6 (Kirchberg-Phillips). Assume A and B are Kirchberg algebras and there
exists a invertible element η ∈ KK0(A,B) such that [1A] × η = [1B]. Then there exists an
isomorphism π : A→ B such that η = [π].

Next, we pass from KK-theory to the Elliott invariant by assuming the Universal Coef-
ficient Theorem (UCT) of Rosenberg and Schochet ([42]). A proper discussion of the UCT
would take awhile, so just trust that it’s a technical assumption that allows one to pass from
KK-classification to K-classification. It should also be mentioned that most examples of
nuclear C∗-algebras (e.g., AF algebras, Cuntz algebras, irrational rotation algebras, crossed
products of the form C(X) o Z, C∗-algebras of amenable discrete groups, Bunce-Deddens
algebras, graph C∗-algebras, etc.) are known to satisfy the UCT; and there is no known
example of a nuclear C∗-algebra that doesn’t satisfy the UCT. (In fact, it is a major open
question whether every nuclear C∗-algebra satisfies the UCT.)

Corollary 1.7 (Kirchberg-Phillips). Assume both A and B are Kirchberg algebras satisfying
the UCT. If α : Ell(A) → Ell(B) is an isomorphism, then there exists an isomorphism
π : A→ B such that π∗ = α.

1.2. Lin’s Theorem. To state Lin’s Theorem we need to define a new class of algebras.

Definition 1.8. A unital simple C∗-algebra A is called tracially AF if for each finite set
F ⊂ A, ε > 0 and nonzero positive element a ∈ A, there is a finite-dimensional algebra
B ⊂ A with unit 1B such that

(1) ‖[x, 1B]‖ < ε for all x ∈ F ;
(2) d(1Bx1B, B) < ε for all x ∈ F (where d means the distance in norm);
(3) 1A − 1B is Murray-von Neumann equivalent to a projection in the hereditary subal-

gebra generated by a.

Here is Lin’s Theorem (cf. [25]).

1Don’t forget that this KK-picture does not hold for more general algebras!
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Theorem 1.9 (Lin). Let A and B be simple unital nuclear tracially AF algebras satisfying
the UCT. Then A ∼= B if and only if Ell(A) ∼= Ell(B).

This was a breakthrough in classification because the definition of tracially AF doesn’t
presuppose an inductive limit decomposition (among other reasons). It turns out, though,
that they are inductive limits of a very special type – and you must prove this before deducing
Lin’s Theorem.

Definition 1.10. An approximately homogenous (AH) algebra is an inductive limit of alge-
bras of the form

k⊕
i=1

piMm(i)(C(Xi))pi,

where Xi is a connected compact metric space2 and pi ∈Mm(i)(C(Xi)) is a projection.

Definition 1.11. A is said to have real rank zero if every self-adjoint element in A can be
approximated by self-adjoints with finite spectrum.

Definition 1.12. An AH algebra has slow dimension growth if it is the inductive limit of
algebras

An =

k(n)⊕
i=1

p
(n)
i Mm(n,i)(C(X

(n)
i ))p

(n)
i ,

where

lim
n→∞

(
max

1≤i≤k(n)

dim(X
(n)
i )

rank(p
(n)
i )

)
= 0,

and dim denotes the topological covering dimension and rank(p
(n)
i ) means the rank at any

point in X
(n)
i (since X

(n)
i ) is connected). In other words, the ranks of the projections should

grow faster than the dimensions of the spaces.

It turns out that every tracially AF algebra classified by Lin is isomorphic to a unital
simple AH algebra with real rank zero and slow dimension growth, and conversely all such
AH algebras are tracially AF. The story is a little complicated, and to tell it properly requires
more definitions.

Definition 1.13. We say K0(A) is weakly unperforated if for every x ∈ K0(A) and n ∈ N
we have that nx ∈ K0(A)+ \ {0} implies x ∈ K0(A)+.

Note that a weakly unperforated group can have torsion (as opposed to an unperforated
one, where nx ∈ K0(A)+ implies x ∈ K0(A)+).

Definition 1.14. We say K0(A) has the Riesz interpolation property if for all x1, x2, y1, y2 ∈
K0(A) such that xi ≤ yj, i, j = 1, 2, there exists z ∈ K0(A) such that xi ≤ z ≤ yj, i, j = 1, 2.

These definitions are relevant to our discussion because if A is simple and tracially AF,
then K0(A) is always weakly unperforated and has the Riesz interpolation property (see [23],
[24]). So the following theorem of Elliott and Gong provides a candidate AH algebra, for
each tracially AF algebra (see [10]).

2Without loss of generality, one can assume the spaces Xi are CW complexes.
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Theorem 1.15. For each simple unital tracially AF algebra A, there exists a simple unital
AH algebra B with real rank zero and slow dimension growth such that Ell(A) ∼= Ell(B).

So how does the proof of Lin’s Theorem go? Well, start with two algebras A1 and A2 as
in the statement of the theorem. Then use the previous theorem to find a model AH algebra
B. Finally, prove that A1

∼= B and similarly A2
∼= B; hence A1

∼= A2.
We should also mention that every simple unital AH algebra B with real rank zero and slow

dimension growth is tracially AF, thanks to the Dadarlat-Gong reduction theorem (see [7],
[12]). (Dadarlat and Gong showed, independently, that every such AH algebra is isomorphic
to one of the special inductive limits considered in [10], and these latter algebras are tracially
AF by construction.)

1.3. The Elliott-Gong-Li Theorem. After years of hard work, the real-rank-zero assump-
tion was removed when the following theorem was proved.

Theorem 1.16 (Elliott-Gong-Li, [11]). If A and B are unital simple AH algebras with very
slow dimension growth, and if η : Ell(A) → Ell(B) is an isomorphism, then there is an
isomorphism π : A→ B such that π∗ = η.

Very slow dimension growth is a technical condition that means A is the inductive limit
of algebras

An =

k(n)⊕
i=1

p
(n)
i Mm(n,i)(C(X

(n)
i ))p

(n)
i ,

where

lim
n→∞

(
max

1≤i≤k(n)

dim(X
(n)
i )3

rank(p
(n)
i )

)
= 0.

As in the real rank zero case, a crucial step in proving the Elliott-Gong-Li Theorem is a
reduction result (due to Gong, see [13]) which shows that every unital simple AH algebra
with very slow dimension growth is isomorphic to another AH algebra with a very special
inductive limit decomposition; it is these very special inductive limits that end up being
classified in [11].

1.4. Counterexamples. In 2001, Mikael Rørdam solved an old and important problem by
constructing a simple C∗-algebra that contained an infinite projection and a finite projection
[39]. In fact, he even constructed a nuclear example, which definitively ended hope of
classifying all simple nuclear C∗-algebras via their Elliott Invariants. (Since his example
has the Elliott Invariant of a purely infinite algebra – the infinite projection prevents traces
– yet can’t be purely infinite because of the finite projection.)

A few years later, in [44], Andrew Toms constructed a simple AH algebra with the Elliott
Invariant of something covered by the Elliott-Gong-Li Theorem, but which didn’t have slow
dimension growth.3 Hence the Elliott Invariant isn’t even complete for the very special class
of AH algebras, let alone more general stably finite algebras.

3More precisely, Andrew’s example had a pathology in its Cuntz semigroup that can’t occur in a slow-
dimension-growth algebra.
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1.5. Coup d’état. In 2007 Wilhelm Winter began a revolution – singlehandedly, and by
force. He defined natural algebras that ought to be classifiable. He developed a coherent
program for classifying them. And he successfully carried out the program to a remarkable
degree.

It’s an exciting time to be studying nuclear C∗-algebras and I hope to convey some of this
in the pages that follow.

2. Day 7: Order-zero maps, decomposition rank and nuclear dimension.

We now introduce the right class of algebras and become acquainted with definitions,
ideas, permanence properties and other basic facts.

2.1. Order-zero maps. The theory of c.p. maps and nuclear C∗-algebras was largely worked
out in the 1970s, but Wilhelm’s work exploits the following special c.p. maps.

Definition 2.1. A map ϕ : A → B is said to have order zero if it is c.c.p. and preserves
orthogonality, meaning ϕ(a)ϕ(b) = 0 whenever a and b are self-adjoint and ab = 0.4

It is clear that ∗-homomorphisms have order zero, however there are other important
examples. For example, define a completely positive map A → C0(0, 1] ⊗ A by a 7→ x ⊗ a
(where x denotes the linear function with slope 1). This is clearly an order-zero map,
but it turns out every other order-zero map arises from the composition of it and a ∗-
homomorphism. This follows from an important structure theorem.

Theorem 2.2. [59, Theorem 2.3] Let ϕ : A → B be an order-zero map and set C :=
C∗(ϕ(A)). Then there is a positive element h ∈ C ′ ∩ M(C) (the relative commutant of
C inside its multiplier algebra) with ‖h‖ = ‖ϕ‖ and a ∗-homomorphism

πϕ : A→ {h}′ ∩M(C)

such that
ϕ(a) = πϕ(a)h,

for all a ∈ A.
If A is unital, then h = ϕ(1A).

Remark 2.3. A few remarks are in order.

(1) The map πϕ is called a support ∗-homomorphism.
(2) Comparing with Stinespring’s Theorem, which essentially says that c.p. maps are

compressions of representations, we see that the order-zero ones are simply compres-
sions by something in the commutant.

(3) Order-zero maps are rarely unital (unlike general c.p. maps). Indeed, if ϕ : A → B
is unital, then h = ϕ(1A) = 1B, so compressing by h doesn’t change πϕ.

(4) When A is unital, there is a one-to-one correspondence between ∗-homomorphisms
C0(0, 1]⊗A→ B and order-zero maps A→ B. Indeed, the operator h determines a
∗-homomorphism C0(0, 1] → C∗(h), x 7→ h, and the fact that h commutes with the
image of πϕ ensures that this map extends to C0(0, 1]⊗ A.

(5) If A is unital, ϕ : A→ B has order zero and ϕ(1A) = h is an invertible element in B,
then the support ∗-homomorphism πϕ takes values in B (since C∗(ϕ(A)) contains h
and hence contains the unit of B).

4We don’t really have to insist on contractive maps in the definition, it’s just convenient. Also, there is a
notion of order-n maps, but we won’t need it (cf. [50]).
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In summary, one should think of order-zero maps as extremely close to ∗-homomorphisms.
When the domain is finite dimensional and the target algebra has tons of projections, this
can be sharpened a bit; we can almost arrange that the image of the order-zero map is
contained in a finite-dimensional subalgebra. To make this precise, we introduce another
definition.

Definition 2.4. An order-zero map ϕ : F → B is discrete if ϕ(p) is a multiple of a projection
for every minimal central projection p ∈ F .

When F is finite-dimensional, our case of interest, we can write 1 = p1 + · · · + pk, where
pi are the central projections coming from the matrix summands of F . Hence discreteness
of ϕ : F → B implies that

ϕ(1) = ϕ(p1) + · · ·+ ϕ(pk) = α1q1 + · · ·+ αkqk

for scalars αi and orthogonal projections q1, . . . , qk ∈ B. Let q = q1 + · · ·+ qk and note that
h = ϕ(1) is invertible in the corner qBq (if each αi is non-zero, otherwise cut to a smaller
corner). Thus – and here’s the crucial point – the map x 7→ h−1ϕ(x) is a unital order-zero
map into qBq; hence it’s a ∗-homomorphism (actually, a support ∗-homomorphism). Finally,
since this ∗-homomorphism takes pi to qi, its image contains h and thus contains the image
of ϕ. Thus, we have proved the following fact.

Lemma 2.5. If F is finite dimensional and ϕ : F → B is a discrete order-zero map, then
there is a support ∗-homomorphism πϕ : F → B containing h = ϕ(1F ). Thus ϕ(F ) ⊂ πϕ(F ).

The proof of the following fact is not all that hard, but I won’t reproduce the proof – see
[52, Lemma 2.4].

Proposition 2.6. Assume F is finite-dimensional, ϕ : F → B is an order-zero map and
B has real rank zero.5 For every ε > 0 we can find a larger finite-dimensional algebra
F ′, a unital embedding ι : F → F ′ and a discrete order-zero map ϕ′ : F ′ → B such that
ϕ(1F ) ≤ ϕ′(1F ′) and ‖ϕ(x)− ϕ′ ◦ ι(x)‖ < ε‖x‖ for all x ∈ F .

2.2. Order-zero approximation of nuclear C∗-algebras. It is a remarkable fact that
all nuclear C∗-algebras admit approximations by order-zero maps. However, this fact would
likely have gone unnoticed had it not been for Wilhelm’s work on classification. Put another
way, we should regard the following theorem as a deep consequence of the classification
program.6

Theorem 2.7. If A is a nuclear C∗-algebra, then one can find c.c.p. maps ϕk : A→ Fk and
ψk : Fk → A such that ψk ◦ ϕk → idA pointwise, each Fk is finite dimensional and the maps

ψk|pFk
: pFk → A,

where p ∈ Fn is a minimal central projection, all have order zero.

Proof. Here I follow Kirchberg’s sketch, but starting from the QD case and pointing out how
this leads to approximately order-zero maps ϕk. Or would it be better to outline Ilan’s (less
technical) argument? �

5Meaning every self-adjoint can be approximated by a self-adjoint with finite spectrum.
6This result was found by Eberhard Kirchberg and Ilan Hirshberg, independently, and I thank them for

showing me their proofs.
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It’s even possible to arrange that the maps ϕk are “asymptotically” order zero, meaning
that the induced map

ϕ̄ : A→ ΠFk
⊕Fk

,

given by a 7→ (ϕk(a)) +⊕Fk has order zero. I think.

2.3. Decomposition rank and nuclear dimension. Theorem 2.7 is more than just an
improvement on the approximation property characterizing nuclearity, it points to a natural
notion of dimension – one that’s distinctly nuclear.

Definition 2.8. We say the nuclear dimension of A is bounded by n, or write dimnuc(A) ≤ n,
if there exist c.c.p. maps ϕk : A → Fk and c.p. maps ψk : Fk → A such that ψk ◦ ϕk → idA
pointwise, each Fk is finite dimensional and there exists a partition 1Fk

= p0 + · · ·+pn where
each pi is a central projection and ψk|piFk

: piFk → A has order zero.7

Comparing with Theorem 2.7, the nuclear dimension simply asks for a uniform bound
on the number of summands that we can restrict to and get order-zero maps. Also, note
that we didn’t require the ψk’s to be contractive (though ‖ψk‖ ≤ n + 1, since each ψk|piFk

is contractive). Adding this axiom may seem innocuous, but it actually leads to a much
stronger definition.

Definition 2.9. We say the decomposition rank of A is bounded by n, or write dr(A) ≤ n,
if there exist c.c.p. maps ϕk : A → Fk and ψk : Fk → A such that ψk ◦ ϕk → idA pointwise,
each Fk is finite dimensional and there exists a partition 1Fk

= p0 + · · · + pn where each pi
is a central projection and ψk|piFk

: piFk → A has order zero.

As usual, one then defines the nuclear dimension, respectively decomposition rank, of A
to be the smallest integer n satisfying the appropriate definition. To get started let’s analyze
the case of nuclear dimension zero.

Proposition 2.10. dimnuc(A) = 0 if and only if A is AF.

Proof. It is clear that every AF algebra has nuclear dimension zero, so assume dimnuc(A) = 0.
For simplicity, let’s also assume A is unital. Then we can find c.c.p. maps ϕk : A → Fk
and ψk : Fk → A such that ψk ◦ ϕk → idA pointwise and ψk has order zero. Since ϕk is
contractive, ϕk(1A) ≤ 1Fk

; hence ψk(ϕk(1A)) ≤ ψk(1Fk
) ≤ 1A, the last inequality being due

to the contractivity of ψk. But this implies ψk(1Fk
)→ 1 (because ψk(ϕk(1A))→ 1A), which

in turn implies two things: the support ∗-homomorphisms πψk
take values in A, since ψk(1Fk

)
is invertible, and for any a ∈ A we have

a ≈ ψk(ϕk(a)) = ψk(1Fk
)πψk

(ϕk(a)) ≈ πψk
(ϕk(a)).

Finally, since πψk
(ϕk(a)) is contained in a finite-dimensional subalgebra of A, we see that A

must be AF. �

The following fact is a little harder (see [60, Proposition 2.4]), but one direction is a good
exercise. Namely, using partitions of unity, you may want to show that the topological
covering dimension dominates the nuclear dimension.

Proposition 2.11. If X is a second countable compact Hausdorff space, then

dimnuc(C(X)) = dimtop(X).

7Of course, if no such maps exist, then dimnuc(A) =∞.
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Here are some fairly straightforward inequalities.

Proposition 2.12. The following statements make good exercises:

(1) dimnuc(A⊕B) ≤ max{dimnuc(A), dimnuc(B)};
(2) dimnuc(A⊗B) ≤ (dimnuc(A) + 1)(dimnuc(B) + 1)− 1;
(3) dimnuc(lim−→

Ai) ≤ lim inf(dimnuc(Ai));

(4) dimnuc(A/J) ≤ dimnuc(A).8

Here are some less trivial permanence-type facts.

Proposition 2.13. [20, Proposition 3.11] If A is unital with unitization Ã, then dimnuc(A) =
dimnuc(Ã).

Proposition 2.14. [60, Proposition 2.5] dimnuc(A) ≤ dimnuc(B), whenever A ⊂ B is a
hereditary subalgebra.

The assumption that A is hereditary is essential in the previous proposition. Indeed, any
abelian C∗-algebra can be embed into an AF algebra, so nuclear dimension can decrease in
arbitrary subalgebras.

Proposition 2.15. [60, Proposition 2.9] For any ideal J / A we have

max{dimnuc(J), dimnuc(A/J)} ≤ dimnuc(A) ≤ dimnuc(J) + dimnuc(A/J) + 1.

2.4. Examples. It turns out that most of our favorite nuclear C∗-algebras are known to be
finite dimensional. Though the proofs are rarely easy, here’s a few important examples.

(1) If X is a finite-dimensional topological space and α : X → X is a minimal homeo-
morphism, then C(X) o Z is also finite dimensional. (See [48].)

(2) Finitely generated subhomogeneous algebras are finite dimensional. (See [32].)
(3) Kirchberg algebras satisfying the UCT all have dimension ≤ 5. (See [60].)
(4) All the AH and ASH algebras that have been classified are also finite dimensional

(thanks to the various reduction theorems that go into their proofs).

3. Day 8: Classification: A Paradigm

3.1. A little history. In [4] Alain Connes proved there is a unique injective II1-factor –
namely, the hyperfinite II1-factor R. His proof boiled down to two things. First, if M is an
injective II1-factor, then M ⊗̄ R ∼= R. Next, Connes showed that M absorbs R tensorially,
i.e., M ∼= M ⊗̄R, and the proof was complete. (See part 2 of [4, Theorem 5.1].)

Two decades later Kirchberg and Phillips followed the same pattern. It was shown that if
A and B are Kirchberg algebras and there is an invertible element η ∈ KK0(A,B), then

A⊗O∞ ⊗K ∼= B ⊗O∞ ⊗K.
Indeed, Elliott’s approximate intertwining argument together with Definition 1.4 (which isn’t
really a definition, it’s a hard theorem!) yield this fact without too much trouble. But then
Kirchberg’s absorption theorem – i.e., the fact that A ∼= A⊗O∞ for every Kirchberg algebra
[18] – completes the proof of the Kirchberg-Phillips Theorem.

There are two lessons to take away from these examples.

8For this quotient result, you need to know the Choi-Effros lifting theorem,i.e., that there is a c.c.p.
splitting A/J → A whenever A or A/J is nuclear.
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(1) It is easier to classify after tensoring with nice algebras. (R in Connes’s case, and
O∞ in Kirchberg and Phillips’s case.) Very roughly, enlarging algebras in this way
gives more space, more room to move, and this helps a lot. As a simple example of
this phenomenon, two non-orthogonal projections in A can be made orthogonal in
A⊗O∞ by tensoring with orthogonal projections from O∞.

(2) Tensorial absorption of certain algebras is to be expected for large and natural classes
of operator algebras. For example, since O∞ is KK-equivalent to C, it follows that
Ell(A) ∼= Ell(A⊗O∞) for every Kirchberg algebra A. Hence, Kirchberg’s absorption
theorem was predicted by classification (and turned out to be a necessary step in
proving classification because of lesson (1) above).

With one additional wrinkle, Wilhelm Winter followed the same pattern as Connes and
Kirchberg-Phillips to prove the following remarkable theorem.

Theorem 3.1. Assume A and B are unital simple separable C∗-algebras with finite decom-
position rank and which satisfy the UCT. If both A and B have a unique trace (or, more
generally, projections separate traces), then A ∼= B if and only if Ell(A) ∼= Ell(B).

The remainder of this paper is devoted to outlining the proof and discussing the future.

3.2. A three-step program. Rather than two steps, like Connes, Kirchberg and Phillips,
Wilhelm took three steps to his classification theorem.

Existing results −→ UHF-stable classification

The first step is to use existing classification results (Lin’s Theorem, actually) to show that
if A and B are as in Theorem 3.1 and have isomorphic Elliott Invariants, then A⊗U ∼= B⊗U ,
where U is a UHF algebra. (See [55].) At first blush, this step appears to be of limited value
since A⊗U has tons of projections – hence can’t be isomorphic A, in general – but it is just
a precursor to the right stable-classification theorem.

UHF-stable classification −→ Z-stable classification

In step two, one has to show that the UHF-stable classification theorem implies A⊗Z ∼=
B⊗Z, where Z is the Jiang-Su algebra – the finite analogue of O∞. This was accomplished
in [54] (with help, in an appendix, from Huaxin Lin).

Z-absorption theorem

Finally, in a show of extraordinary technical strength, Wilhelm showed A ∼= A⊗Z, thereby
completing the proof ([57]).

3.3. Introduction to the Jiang-Su algebra Z. For a supernatural number p we let Mp

denote the corresponding UHF algebra.

Definition 3.2. Given supernatural numbers p and q, define the generalized dimension drop
algebra to be

Zp,q := {f ∈ C([0, 1],Mp ⊗Mq) : f(0) ∈Mp ⊗ 1 and f(1) ∈ 1⊗Mq}.
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It is a fact that Zp,q has a trace-collapsing unital endomorphism, so long as p and q are
relatively prime and infinite. That is, there exists a unital ∗-homomorphism ρ : Zp,q → Zp,q

with the property that the image of the induced map on traces ρ∗ : T(Zp,q) → T(Zp,q) is
a single point. Put another way, the image of ρ lies in some sliver of Zp,q where all traces
restrict to the same thing.

I will not explain how Rørdam and Winter constructed a trace-collapsing endomorphism
(see [41]) because it would be very nice to have a different proof.

Problem 3.3. Assume p and q are relatively prime and construct a trace-collapsing endo-
morphism of Zp,q (without reference to the Jiang-Su algebra).

Though it’s actually a theorem (see [41, Theorem 3.4]), we define the Jiang-Su algebra as
follows.

Definition 3.4. Let ρ : Zp,q → Zp,q be a trace collapsing unital endomorphism. Then the
Jiang-Su algebra is the inductive limit of the (stationary) system

Zp,q
ρ→ Zp,q

ρ→ Zp,q
ρ→ Zp,q → · · · .

One should prove this doesn’t depend on the choice of endomorphism. But we won’t. The
most important facts about the Jiang-Su algebra are summarized below (see [16] and [14]
for proofs).

Theorem 3.5. The following statements are not false.

(1) Z is unital simple and nuclear with no nontrivial projections and a unique trace;
(2) Z ∼= Z ⊗ Z ⊗Z ⊗ · · · ;
(3) every unital endomorphism of Z is approximately inner;
(4) K0(Z) = Z and K1(Z) = 0;9

(5) K0(A ⊗ Z) = K0(A), K1(A ⊗ Z) = K1(A) and T(A ⊗ Z) ∼= T(A ⊗ Z), for every
C∗-algebra A;10

(6) Ell(A⊗Z) ∼= Ell(A) if and only if K0(A) is weakly unperforated.

3.4. Why “UHF-stable classification” might imply “Z-stable classification”. One
of Wilhelm’s most brilliant innovations was the second step in the program outlined above,
because classification becomes significantly easier when you tensor with a UHF algebra (this
often forces real rank zero, for example). Though the technical issues are serious and some-
times subtle, the essence is as follows.

(1) Assume A and B have the property that A ⊗Mp
∼= B ⊗Mp for every supernatural

number p. Then one can hope to show A⊗ Zp,q
∼= B ⊗ Zp,q, because these algebras

are continuous fields with isomorphic fibers.11

(2) Since A⊗Z is the limit of

A⊗Zp,q
idA⊗ρ−→ A⊗Zp,q

idA⊗ρ−→ A⊗Zp,q
idA⊗ρ−→ · · ·

and B ⊗Z is the limit of

B ⊗Zp,q
idB⊗ρ−→ B ⊗Zp,q

idB⊗ρ−→ B ⊗Zp,q
idB⊗ρ−→ · · · ,

9Also, Z is KK-equivalent to C.
10This is just the Kunneth formula for K-theory, together with the general fact that tensoring with a

unique-trace algebra doesn’t change the tracial state space.
11Emphasis on hope; it isn’t true that all continuous fields with isomorphic fibers are isomorphic! cite

Marius’s paper...
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one could hope to use an isomorphism A⊗ Zp,q
∼= B ⊗ Zp,q, together with facts like

“endomorphisms of Z are approximately inner,” to get an approximate intertwining
and deduce A⊗Z ∼= B ⊗Z.

In [54] Wilhelm nearly made this pipe-dream a reality for a large class of algebras with
finite decomposition rank, only requiring some technical support from Lin in [27]. Shortly
thereafter, a cleaner result was established: The Lin-Niu Theorem.

3.5. The Lin-Niu theorem. Following Wilhelm’s original strategy, but overcoming signif-
icant technical difficulties, Lin and Niu proved the following general Z-stable classification
theorem.

Theorem 3.6. [29, Theorem 5.4] Assume A and B are simple, separable, nuclear, unital
C∗-algebras satisfying the UCT and with the property that A⊗Mp and B ⊗Mp are tracially
AF for every supernatural number p.12 If Ell(A) ∼= Ell(B), then A⊗Z ∼= B ⊗Z.

4. Day 9: Proving Winter’s classification theorem

Sorry, but I can’t type up this lecture in its entirety. It contained too many misleading
oversimplifications (read: lies) to commit to paper. ;-) My main goal was to convey the spirit
of the proofs, so rigor was sacrificed at the alter of lucidity. However, here are a few things
worth writing down.

4.1. Step 3: Z-stability is automatic. Just because I described Wilhelm’s work as a
three-step program doesn’t mean that we have to prove things in that order. In fact, the
first step to be completed in complete generality was the third one.

Theorem 4.1. [58] Let A be a simple unital separable C∗-algebra of finite nuclear dimension.
Then A ∼= A⊗Z.

The proof of this fact is a technical monstrosity, as difficult as anything I’ve ever read.
However, I will point out that a crucial ingredient is essentially a C∗-analogue of McDuff’s
celebrated characterization of II1-factors that absorb the hyperfinite II1-factor tensorially.
Though not explicitly stated, the following result can be deduced from [41].

Lemma 4.2. A ∼= A ⊗ Z if and only if for every s ∈ N, there exists an order-zero map
ϕ : Ms → A′ ∩ A∞ (the central sequence algebra) such that (1 − ϕ(1)) - ϕ(e11) in A′ ∩ A∞
(meaning there exist xn ∈ A′ ∩ A∞ such that x∗nϕ(e11)xn → (1− ϕ(1))).

4.2. Step 2: proving classification up to Z-stability. See Theorem 3.6.

4.3. Step 1: proving classification up to UHF-stability. So Theorem 3.1 is reduced
to showing that if dimnuc(A) < ∞ and A has a unique trace, then A ⊗Mp is tracially AF.
To do this we need a couple theorems. See [37] for the following theorem.

Theorem 4.3. If A is simple, unital, nuclear and has a unique trace, then the following
assertions hold.

(1) K0(A⊗Mp) is weakly unperforated;
(2) A⊗Mp has stable rank one;
(3) A⊗Mp has real rank zero (this is the only part that requires a unique trace);

12Actually, one only needs to know this for a pair of relatively prime supernatural numbers whose product
yields the universal UHF algebra; see [29].
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Next we need a result of Lin (see [23]).

Theorem 4.4. Assume C has real rank zero, stable rank one, K0(C) is weakly unperforated
and for every finite F ⊂ C and ε > 0 there exists a finite-dimensional B ⊂ C with unit p
such that

(1) ‖[p, x]‖ < ε for all x ∈ F
(2) d(pxp,B) < ε for all x ∈ F
(3) τ(p) > 1− ε for every τ ∈ T(A).

Then C is tracially AF.

The following exercise is an excellent introduction to an important geometric series argu-
ment.

Exercise 4.5. Assume C has real rank zero, stable rank one, K0(C) is weakly unperforated
and a unique trace τ . Also, assume there exists δ > 0 such that A and all of its hereditary
subalgebras have the following property: for every finite set F and ε > 0 there exists a
finite-dimensional B with unit p such that

(1) ‖[p, x]‖ < ε for all x ∈ F
(2) d(pxp,B) < ε for all x ∈ F
(3) τ(p) > δ (one replaces τ with an appropriately rescaled version when considering

hereditary subalgebras).

Then C is tracially AF.
Put another way, if you have a unique trace and can find a uniform lower bound on the

sizes of the finite-dimensional algebras B, then you can use a geometric series argument to
construct a finite-dimensional algebra that’s large in trace.

Here’s another good exercise that follows from Lemma 2.5 and Proposition 2.6.

Exercise 4.6. If A has finite nuclear dimension and real rank zero, then there exist c.c.p.
maps ϕk : A→ Fk and c.p. maps ψk : Fk → A such that ψk ◦ ϕk → idA pointwise, each Fk is
finite dimensional and there exists a partition 1Fk

= p0 + · · ·+ pn where each pi is a central
projection, ψk|piFk

: piFk → A has order zero and – here’s the point – there are support

∗-homomorphisms π
(k)
i : piFk → A.

We can now sketch the proof of the following result of Winter.

Theorem 4.7. If A is separable simple and unital, has finite decomposition rank and a
unique trace, then A⊗Mp is tracially AF for every infinite supernatural number p.

To prove this, we first note that A ⊗ Mp has real rank zero, stable rank one, weakly
unperforated K-theory and a unique trace τ ; hence we can hope to use Exercise 4.5. Indeed,
Exercise 4.6 provides candidate finite-dimensional subalgebras – the images of the support
homomorphisms. And we can let δ be something like 1

n+1
since 1A ≈ ψk(ϕk(1)) implies that

the trace of at least one of the order-zero blocks has to be bigger than 1
n+1

.
So far this reasoning works fine for finite nuclear dimension and it’s only at the final

stage that we have to use decomposition rank. Namely, we don’t yet know how to arrange
the approximate commutativity required by Exercise 4.5 if one only assumes finite nuclear
dimension; but this can be arranged with finite decomposition rank (see [52]).
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5. Day 10: Applications and Winter’s Program.

5.1. Applications. There is a notion of “slow dimension growth” for ASH algebras, but it
would require defining “recursive subhomogeneous algebras” and this would take us too far
afield (see [45], for example).

Theorem 5.1. [58, Corollary 6.6] Let A and B be simple, unital, ASH algebras with slow
dimension growth and assume that projections separate traces.13 Then A ∼= B if and only if
Ell(A) ∼= Ell(B).

Note that we haven’t assumed finite nuclear dimension. However, our algebras do have
finite nuclear dimension locally, and so the main result of [58] would apply if we knew that
such ASH algebras have the Cuntz semigroup of a Z-stable algebra. Luckily, they do (see
[45]), and hence we deduce that such algebras are Z-stable; i.e., step 3 of the classification
program is done. So, by the Lin-Niu Theorem it suffices to show A ⊗Mp is tracially AF.
But this was accomplished in [54] when Wilhelm proved that local finite decomposition rank
plus Z-stable plus projections separating traces is enough to imply that UHF-amplifications
are tracially AF.

It is possible to formulate the next result as a classification amongst crossed product
algebras, but we’ll state it in terms of ASH algebras instead.

Theorem 5.2. Let (X,α) be a minimal, uniquely ergodic dynamical system with X finite
dimensional. Then, C(X) o Z is an ASH algebra with no dimension growth.14

Here’s a sketch of the proof. First, by [48], C(X) oZ is Z-stable. (This fact only depends
on the finite-dimensionality of X.) Hence, it suffices to prove classification up to UHF-
stability; i.e., it suffices to show (C(X) o Z)⊗ U is TAF (again, by the Lin-Niu Theorem).
But showing that (C(X) o Z)⊗ U is TAF is very similar to [30] (see [48] for details).

5.2. Winter’s Program. I’ll now outline a classification program that has been suggested
by Wilhelm Winter. (Many thanks, Wilhelm, for letting me reproduce it here!)

Since step 3 is complete in breathtaking generality, we only have to consider analogues
of the first two steps. But it turns out that Huaxin Lin has already generalized the Lin-
Niu Theorem to algebras with tracial rank ≤ 1 (these are like TAF algebras, except finite
dimensional algebras are replaced with 1-dimensional homogeneous algebras, see [24]).

Theorem 5.3. [28, Theorem 11.7] Assume A and B are simple, separable, nuclear, unital
C∗-algebras satisfying the UCT and with the property that A⊗Mp and B ⊗Mp have tracial
rank ≤ 1 for every supernatural number p. If Ell(A) ∼= Ell(B), then A⊗Z ∼= B ⊗Z.

For the remainder of these notes, A denotes a simple unital separable C∗-algebra
with finite nuclear dimension.

So, here’s what we have to do.....

(1) First we should find a proof of Theorem 3.1 that only assumes finite nuclear dimen-
sion. As I explained in the last section, decomposition rank is only needed at one
technical point of the proof. And we should correct this.

13I.e., for every pair of distinct traces τ1, τ2, there is a projection p such that τ1(p) 6= τ2(p).
14In fact, the base spaces have dimension bounded by 2.
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(2) It would be nice if A⊗Mp always had the Elliott invariant of something with tracial
rank ≤ 1. But unfortunately it’s K0 group could fail the Riesz interpolation property,
though this is the only problem. So, the next thing we should try to do is assume
K0(A⊗Mp) has the Riesz property, and show that it has tracial rank ≤ 1.

Karen Strung and Wilhelm have made progress on this problem, assuming restric-
tions on the number of traces and that the algebra is ASH. But if the general case
is proved, then we’ve classified all finite-nuclear-dimension algebras whose K-theory
satisfies Riesz interpolation (and the UCT). And that would be awesome.

(3) The final step in the program will be to pass from the 1-dimensional homogeneous
case above, to 1-dimensional subhomogeneous algebras. That is, we will have to
find a class S of 1-dimensional subhomogeneous algebras such that TAS algebras
exhaust the unperforated Elliott invariants (Guihua Gong has already proposed a
candidate for this); and you can generalize [28] to TAS algebras (warning: this
step will require generalizing the classification theorem of [26] before you can even
attempt to generalize [28]); and you can prove the analogue of the previous problem
(i.e., tensoring with a UHF algebra lands one in the TAS class).

Do this, and you’ve completed the classification of simple, unital, finite nuclear
dimensional algebras satisfying the UCT in terms of the Elliott Invariant. Then it’ll
rain champagne – because I’m buying!

5.3. Other problems. Wilhelm also suggested the following problems: Give a direct proof
(without assuming the UCT and appealing to classification results) that locally finite nuclear
dimension and Z-stable implies finite nuclear dimension. Also, compute the decomposition
rank of C(X)⊗U when X is infinite dimensional; this concrete, non-simple example remains
quite mysterious.

We should also continue to search for examples of algebras with local finite nuclear dimen-
sion (e.g., more general cross products) and which have the Cuntz semigroup of a Z-stable
algebras.

I hesitate to mention it, but there is one more problem that I would love to see resolved
(though I don’t recommend it as a thesis problem!). Namely, can we find a “better” invariant
for classifying general nuclear C∗-algebras? Of course “better” isn’t well defined, but here are
a couple litmus tests I would apply. Whatever the new invariant is, it should lead to simpler
proofs of existing classification theorems (meaning it will probably be some huge invariant
carrying tons of structural information). Ideally, it would also treat the purely infinite and
stably finite cases at the same time (though this may be too much to ask for, and I’d happily
overlook a failure of this litmus test). But, this new invariant should still be functorially
equivalent to the Elliott invariant for algebras with finite nuclear dimension. (E.g. in the
stably finite case you may consider the Cuntz semigroup plus K1, or the Thomsen semigroup
plus K1, but these will not do in the purely infinite case.....and I’m really hoping for an
invariant that works equally well in both cases.)
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