
EXERCISES ON RATIONAL CURVES

The following list of exercises will allow you to work through some examples of rational
curves on smooth projective varieties. The exercises are organized according to the most
relevant lecture. They are not organized in order of difficulty; feel free to skip around. Unless
otherwise noted we are always working over the ground field C.

1. Lecture 1

If you like, you can try to prove more carefully some of the assertions from the lecture:

Exercise 1.1. Let X be a smooth projective variety.

(1) Explain why the image of a non-trivial morphism f : P1 → X is a rational curve on
X.

(2) Explain carefully why Mor(P1, X) is an open subscheme of Hilb(P1 ×X).
(3) Explain why Mor(P1, X)α is a finite type scheme for any numerical class α.
(4) Show that the universal family U → Mor(P1, X) is isomorphic to the product P1 ×

Mor(P1, X).
(5) Suppose that Z ⊂ P1 × X is a section corresponding to a morphism f : P1 → X.

Explain why the normal bundle of Z is isomorphic to f ∗TX .

1.1. Curves in projective space. We start with some more calculations concerning curves
in projective space. Suppose that f : P1 → Pn is a degree d morphism with equations
(f0 : f1 : . . . : fd). Using the Euler sequence we obtain a commutative diagram

0 // OP1 //

��

OP1(1)⊕2 //

g��

TP1 //

Tf��

0

0 // f ∗OPn // f ∗OPn(1)⊕n+1 // f ∗TPn // 0

OP1 OP1(d)⊕n+1

where the map g is given by the matrix with entries ∂fi/∂xj. This is also useful for computing
the normal bundle; the cokernel of TP1 → f ∗TX is isomorphic to the cokernel of g.

(While this calculation method is very general, you may prefer to find simpler direct
arguments for the following examples.)

Exercise 1.2. (1) Suppose that f : P1 → Pn is a line. Prove that f ∗TPn ∼= O(2) ⊕
O(1)n−1.

(2) Suppose that f : P1 → Pn is a smooth conic. Compute f ∗TPn .
(3) Suppose that f : P1 → Pn is a twisted cubic (i.e. a rational normal curve of degree

3). Compute f ∗TPn .

Exercise 1.3. Prove that every rational curve on Pn is a free curve.

Exercise 1.4. Consider the Hilbert scheme of conics in Pn. It turns out that the closed
subschemes of Pn with Hilbert polynomial 2t+ 1 are either:
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• smooth conics,
• unions of two lines meeting at a point, or
• planar double lines

(1) Show (or assume) the above assertion.
(2) Deduce that the Hilbert scheme N of conics admits a morphism π : N → G(3, n+1).
(3) Let F denote the tautological rank 3 sheaf on G(3, n + 1). Prove that π : N →

G(3, n+ 1) realizes N as the projective bundle PG(3,n+1)(Sym2F∨).

1.2. Hirzebruch surfaces. Recall that the Hirzebruch surface Fe is the projective bundle
PP1(E) where E = O ⊕ O(−e). We will use π : Fe → P1 to denote the projective bundle
map. The Picard group of Fe is isomorphic to Z2; it is generated by the class F of a fiber of
π and the “rigid” section C0 defined by the surjection E → O(−e). A key property of the
rigid section is that C2

0 = −e.

Exercise 1.5 (Sections). A section of π is a map f : P1 → Fe such that π ◦ f = id. Note
that C will be a section of π if and only if C · F = 1. Thus the numerical class of a section
will have the form C = C0 + bF for some integer b.

Show that Mor(P1,Fe)C0+bF is either empty or an open set of a projective space. For which
values of b is the space empty? How does the dimension of the projective space depend on
b?

Exercise 1.6. More generally, suppose we fix the numerical class aC0 + bF for integers a, b.
Using the universal property of the Proj construction, show that the parameter space of
rational curves is either empty or is an open set of a projective bundle over a projective
space. How does the dimension of Mor(P1,Fe)aC0+bF depend on a and b? Explicitly describe
the projective bundle which is the closure of this space.

1.3. Hypersurfaces. In this section we will analyze the families of rational curves on hy-
persurfaces in Pn. In general this is a difficult task – there are still many open questions
about the properties of rational curves on hypersurfaces. We will focus on curves of low
degree which are more amenable to computations.

We will start by analyzing lines. You may know that a general degree d hypersurface
X ⊂ Pn will contain a line if and only if d ≤ 2n − 3 (see Vakil, “Rising Sea”, Section
11.2.17). We will use a different construction which elucidates the structure of the space of
lines on a low degree hypersurface.

Exercise 1.7. Let X ⊂ Pn be a smooth hypersurface of degree d. Consider the universal
family of lines

U s //

p

��

Pn

G(1, n)

We will use this structure to analyze the lines on X. Note that in this exercise we are not
working with the space of morphisms, but with the Hilbert scheme of lines in X.

(1) Show that

H0(Pn,O(d)) ∼= H0(U , s∗O(d)) ∼= H0(G(1, n), p∗s
∗O(d)).

In particular the hypersurface X defines a global section σX of p∗s
∗O(d).
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(2) Explain why the vanishing locus of σX coincides with the subscheme of G(1, n) that
parametrizes the lines contained in X.

(3) Prove that the sheaf p∗s
∗O(d) is a globally generated locally free sheaf on G(1, n).

Compute the rank of this sheaf. Deduce that when d ≤ 2n− 3 the space of lines on
a general hypersurface X of degree d is a smooth variety of dimension 2n− d− 3.

(4) Prove that the expected dimension of Mor(P1, X)1 is 2n − d. Thus verify that the
family of lines on a general hypersurface has the expected dimension. (The discrep-
ancy of 3 with regards to the calculation in the previous step is to account for the
PGL2-worth of morphisms associated with a single line.)

(5) (For those who know some intersection theory) Prove that the number of lines on a
general cubic surface is 27.

Exercise 1.8. Let X ⊂ Pn be a smooth hypersurface of degree d. Try to repeat the argument
of Exercise 1.7 for rational curves of higher degree. Which aspects of this argument continue
to work well? Which aspects fail?

Exercise 1.9. In this example we will see a dominant family of curves such that no member
is a free curve.

Let K be an algebraically closed field of characteristic 2. Let X denote the Fermat fourfold
of degree 5 defined by the equation

5∑
i=0

x5i = 0.

Prove that the family of lines on X gives a dominant family of curves with larger than the
expected dimension. Conclude that no line on X is a free curve.

Another technique for analyzing rational curves on hypersurfaces is to compute f ∗TX .

Exercise 1.10. Let X be a smooth quadric hypersurface in projective space.

(1) Compute the restricted tangent bundle for a line in X.
(2) Prove that every rational curve on X is a free curve.

Exercise 1.11. Let X be a smooth cubic hypersurface in projective space of dimension ≥ 3.
Prove that every line in X is a smooth point of Mor(P1, X). (Hint: by relating N`/X to
N`/Pn , show that N`/X |` injects into O(1)⊕n−1. On the other hand, we have a lower bound
on h0(`,N`/X |`). Combine these to show that the lowest summand in the restricted tangent
bundle has degree ≥ −1.)

However, not every line in X needs to be a free curve on X. For example, consider the
line ` defined by the equations x2 = x3 = x4 = 0 inside the cubic threefold X defined by
x20x2 + x21x3 + x32 + x33 + x34 = 0. Prove that X is smooth and ` is not a free curve.

1.4. Del Pezzo surfaces. A del Pezzo surface is a smooth projective surface S such that
−KS is ample. Such surfaces are completely classified: aside from P1 × P1, each del Pezzo
surface is a blow-up of P2 at a set of distinct points {p1, . . . , pr} where:

• 0 ≤ r ≤ 8
• No three of the points are contained in a line in P2.
• No six of the points are contained in a conic in P2.

The degree of a del Pezzo surface is (−KS)2.
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Exercise 1.12. Show that if a del Pezzo surface S is the blow-up of P2 at r points then the
degree of S is 9− r.

We will now analyze some rational curves on del Pezzo surfaces. Since −KS is ample, each
curve on S will have positive intersection against −KS. It is easiest to analyze the curves
with low intersection number.

Exercise 1.13. Let S be a del Pezzo surface of degree d ≥ 2. Suppose that C ⊂ S is a
rational curve such that −KS · C = 1.

(1) By applying the Hodge Index Theorem for −KS and C, identify a list of possible
values of C2.

(2) Using adjunction, prove that the arithmetic genus of C is equal to 0. (Hint: the
arithmetic genus must be a non-negative integer.)

(3) Conclude that C is a smooth rational curve satisfying −KS · C = 1 and C2 = −1.
Deduce that C is a (−1)-curve, and in particular, that C cannot deform.

Altogether, we see that when d ≥ 2 the set of rational curves of anticanonical degree 1 is
parametrized by a 0-dimensional subscheme. (What happens when d = 1?)

Exercise 1.14. Let S be a del Pezzo surface of degree d ≥ 3. Suppose that C ⊂ S is a
rational curve such that −KS · C = 3.

(1) By applying the Hodge Index Theorem for −KS and C, identify a list of possible
values of C2.

(2) Using adjunction, prove that the arithmetic genus of C is equal to 0. (Hint: the
arithmetic genus must be a non-negative integer.)

(3) Conclude that C is a smooth rational curve satisfying −KS · C = 1 and C2 = 0.
Deduce that C is a fiber of a morphism f : S → P1.

Altogether, we see that when d ≥ 2 the set of rational curves of anticanonical degree 2 is
parametrized by a union of open subsets of rational curves. (What happens when d ≤ 2?)

1.5. Uniruled varieties.

Exercise 1.15. Suppose our ground field has characteristic 0. Decide which of the following
types of varieties are uniruled:

(1) Grassmannians
(2) Abelian varieties
(3) Toric varieties
(4) K3 surfaces

Does your answer change if the ground field has characteristic p?

2. Lecture 2

2.1. Kodaira dimension and rational curves.

Exercise 2.1. Suppose our ground field has characteristic 0. Show that for any dimension
n and Kodaira dimension k satisfying 0 ≤ k ≤ n there is a smooth projective variety of
dimension n and Kodaira dimension k which does not admit any rational curves.

For what range of Kodaira dimensions can you find a Zariski dense set of rational curves?
(Remember, the definitive answer to this question is still conjectural. Here the goal is to
motivate the conjecture by thinking about which examples you can construct.)
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Exercise 2.2. Let X be a smooth projective variety over an algebraically closed field of

characteristic 0. Recall that the pseudo-effective cone of divisors Eff
1
(X) is the closure of

the cone in N1(X)Z ⊗ R generated by effective Cartier divisors. Boucksom-Demailly-Paŭn-
Peternell proved a fundamental property of the pseudo-effective cone:

Theorem 2.3 (Boucksom-Demailly-Paŭn-Peternell). A Cartier divisor L on X fails to be
pseudo-effective if and only if there is a dominant family of curves C on X satisfying L·C < 0.

This theorem has interesting implications for rational curves.

(1) Using the theorem above, show that a smooth projective variety is uniruled if and
only if KX fails to be pseudo-effective.

(2) Using the Abundance Conjecture for dimension ≤ 3, prove that a smooth projective
variety of dimension ≤ 3 is uniruled if and only if it has Kodaira dimension −∞.

Exercise 2.4. The relationship between uniruledness and Kodaira dimension breaks down
in characteristic p.

Choose positive integers p > n. Fix an algebraically closed field of characteristic p and
consider the product P1 × Pn equipped with the two projection maps π1, π2. Let D =
pπ∗1H + π∗2H.

(1) Show that a general element X of the linear series |D| is a smooth projective variety
with Kodaira dimension n. (Hint: to show that a general element of |D| is smooth,
one option is simply to write down a single example of a smooth hypersurface in |D|.)

(2) Show that the map π2|X : X → Pn is purely inseparable.
(3) Let g : X ′ → Pn be the finite part of the Stein factorization of π2|X . Using properties

of the Frobenius map, show that we have a purely inseparable morphism Pn → X ′.
Deduce that X ′ is uniruled, and thus that X is also uniruled.

2.2. Bend-and-Break.

Exercise 2.5. Let X be a smooth projective variety. Suppose that M ⊂ Mor(P1, X) is
an irreducible component of dimension > 2 dim(X) + 1. Prove that for every point x ∈ X
the rational curves parametrized by M through x deform to a non-integral curve whose
components have smaller degree.

Conclude that if X is uniruled then there is a rational curve of anticanonical degree
≤ dim(X) + 1 through every point of X.

Exercise 2.6. For any positive integer r, give an example of a smooth projective variety X,
a morphism f : P1 → X, and a point p ∈ P1 such that Mor(P1, X; f |p) has dimension r but
the cycles underlying the image of f do not deform to a non-integral curve.

(This shows that we must distinguish between the rational curve case and the g ≥ 1 case
when applying Bend-and-Break.)

Exercise 2.7. Consider the Hirzebruch surface Fe for e ≥ 3. As before let C0 denote the
class of the rigid section and let F denote the class of a fiber of the projective bundle map.
Let α = C0 + eF denote the class of the sections which do not intersect C0.

(1) Show that there is a one-parameter family of rational curves of class C0 +eF through
any 2 general points of Fe.

(2) Show that the only non-integral curves of class C0 + eF consist of the union of C0

with the π-preimage of a degree e divisor on P1.
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This example shows that it is difficult to control the curves resulting from Bend-and-Break.
Even in simple examples, the resulting curves can have many components, components with
very negative normal bundles, etc.

3. Lecture 3

3.1. Fujita invariant.

Exercise 3.1. Let X be a smooth degree d hypersurface in Pn. Compute a(X,H) where H
is the hyperplane class.

Exercise 3.2. For each of the following projective varieties, execute the following steps:

• Compute the Picard group and N1(X)Z.

• Compute the pseudo-effective cone of divisors Eff
1
(X).

• Write an expression which computes a(X,L) for every ample divisor L. (Note that
a(X,L) will be a piecewise linear function on the nef cone.)

(1) Pn × Pm.
(2) A Hirzebruch surface Fe.
(3) The blow-up of Pn at a point.

Exercise 3.3. Let S be a del Pezzo surface and let C be a curve in S.

(1) Suppose that the degree of S is ≥ 2. Show that a(C,−KS) > a(S,−KS) if and only
if C is a (−1)-curve.

(2) Suppose that the degree of S is ≥ 3. Show that a(C,−KS) = a(S,−KS) if and only
if C is a fiber of a morphism f : S → P1.

Exercise 3.4. Suppose that X is a smooth Fano variety of dimension n and that L is an
ample divisor on X. Prove that a(X,L) ≤ n + 1. (Hint: the function Z → Z defined by
d 7→ χ(OX(KX + dL)) is a polynomial function. Consider the values of this function for
1 ≤ d ≤ n+ 1.)

Prove that a(X,L) = n+ 1 if and only if X ∼= Pn and L is the hyperplane class.

3.2. Non-dominant families of rational curves.

Exercise 3.5. Let X be an n-dimensional quadric hypersurface with n ≥ 2.

(1) Prove that a(X,H) = n.
(2) Prove that X does not contain any subvariety Y ⊂ X such that a(Y,H) > a(X,H).

This implies that every family of rational curves on a quadric hypersurface has the expected
dimension.

Exercise 3.6. Let X be an n-dimensional cubic hypersurface with n ≥ 3.

(1) Prove that a(X,H) = n− 1.
(2) Prove that X does not contain any subvariety Y ⊂ X such that a(Y,H) > a(X,H).

This implies that every family of rational curves on a cubic hypersurface has the expected
dimension. (What goes wrong when n = 2?)

Exercise 3.7 (Taken from a note by Christian Schnell). Recall from the lecture that when
X is a Fano variety there is a proper closed subvariety V ⊂ X such that if M ⊂ Mor(P1, X)
is a component that does not parametrize free curves then the curves parametrized by M
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are contained in V . The following example shows that when X is a rational variety which is
not Fano the analogous statement need not be true.

Fix a pencil of elliptic curves in P2 such that every member of the pencil is irreducible. By
blowing up the 9 basepoints of the pencil we obtain a birational model φ : X → P2 equipped
with a morphism π : X → P1 whose fibers are the elliptic curves in our pencil.

(1) Show that N1(X)Z has rank 10 and is generated by the pullback H of the hyperplane
class on P2 and the 9 exceptional curves E1, . . . , E9. Show that the canonical divisor
of X is −3H +

∑9
i=1Ei.

(2) Show that a curve C ⊂ X is a (−1)-curve if and only if it has class bH −
∑
aiEi

where
9∑
i=1

ai = 3b− 1
9∑
i=1

a2i = b2 + 1

In particular show that every (−1)-curve is a section of π.
(3) We have a group action on the sections of π in the following way. Suppose C1, C2

are sections of π. For any smooth fiber F of π, we can apply the group law of F
to the points (C1 ∩ F ) and (C2 ∩ F ) to get a new point of F . We can apply this
operation to every smooth fiber simultaneously and take a closure to obtain a section
C1 ∗ C2 = C3. In this way we can obtain infinitely many (−1)-curves on P2.

Here is an explicit formula. Suppose that C is a (−1)-curve with class bH−
∑
aiEi.

Assume for simplicity that C is not any of the Ej. Prove that C ′ = C ∗Ej has class
determined by the formulas

a′i = b− ai − aj + δij b′ = 2b− 3aj + 1

(Hint: for i 6= j, show that C ′ and Ei will intersect along a fiber F if and only if
φ(C ′ ∩ F ), φ(Ei) and φ(Ej) are collinear in P2.)

3.3. Free curves.

Exercise 3.8. Prove the Movable Bend-and-Break conjecture for a del Pezzo surface X.
(Hint: suppose that M ⊂ Mor(P1, X) is a component parametrizing free curves and that
dim(M) = r. Consider the sublocus in M parametrizing rational curves through r−1 general
points of X. What are the possible outcomes for Bend-and-Break applied to this family?)

Deduce that the monoid of non-pathological components of Mor(P1, X) is finitely gener-
ated.
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