Bacterial Microfluidics: The physics and engineering of flagellated bacterial motility

Kenny Breuer

School of Engineering, Brown University, Providence, RI

In collaboration with:

Tom Powers, Bin Liu, Qian Bian, MinJun Kim, Dave Gagnon

Stuff going on in my lab

Cilia and flagella in viscous fluids

Animal Flight

Wednesday, February 23, 2011

Motility of flagellated bacteria

H. Berg, Physics Today, Jan 2000;

L.Turner, W. S. Ryu, and H. C. Berg (2000)

In "real life": Newtonian and non-Newtonian media

Motility of flagellated bacteria

H. Berg, Physics Today, Jan 2000;

L.Turner, W. S. Ryu, and H. C. Berg (2000)

In "real life": Newtonian and non-Newtonian media

Interesting questions

- Physics questions:
 - How fast does a "bacterium" swim in a Newtonian fluid?
 - How fast does a "bacterium" swim in a non-Newtonian fluid?
 - How does an elastic flagellum interact with a viscous fluid?
 - What is the flow field associated with rotating flagella?
 - How do adjacent elastic filaments bundle?
 - How do adjacent elastic filaments synchronize using hydrodynamic forces?
 - How important are non-local viscous interactions?
- "Engineering" questions:
 - Can bacteria affect the macroscopic world?
 - Can we harness their motion?
 - Can we control them?
 - etc.
- What next?

Bull #11

apologies to Picasso, thanks to Christophe Clanet

Interesting questions

- Physics questions:
 - How fast does a "bacterium" swim in a Newtonian fluid?
 - How fast does a "bacterium" swim in a non-Newtonian fluid?
 - How does an elastic flagellum interact with a viscous fluid?
 - What is the flow field associated with rotating flagella?
 - How do adjacent elastic filaments bundle?
 - How do adjacent elastic filaments synchronize using hydrodynamic forces?
 - How important are non-local viscous interactions?
- "Engineering" questions:
 - Can bacteria affect the macroscopic world?
 - Can we harness their motion?
 - Can we control them?
 - etc.
- What next?

Experimental setup (low-Re swimming helix)

 $\text{Re} \sim 10^{-3}$

fluids with high viscosity:

- silicone oil (Newtonian)
- Polybutene+ Polyisobutylene (viscoelastic)

Fluidic force on a rotating helix (Newtonian)

Fluidic force per unit length saturates with L>5 λ

→infinitely long helix

Wednesday, February 23, 2011

Fluidic force on a rotating helix (Newtonian)

Fluidic force per unit length saturates with L>5 λ

 \rightarrow infinitely long helix

Force-free swimming of a rotating helix (Newtonian)

sensitivity of force ${\rm \sim}10^{-5}{\rm N}$ sensitivity of swimming speed ${\rm \sim}$ 0.3 $\mu{\rm m/s}$

Free swimming speed at different rotation rate

Computation of free swimming speed

I. Resistive force theory (no long-range interactions)

$$f_n = \mu C_n u_n, \quad f_s = \mu C_s u_s,$$

when swimming freely,

$$f_n \sin \theta + f_s \cos \theta = 0$$

$$\downarrow$$

$$\frac{V_F}{\Omega R} = \frac{(C_n/C_s - 1) \sin \theta \cos \theta}{(C_n/C_s - 1) \sin^2 \theta + 1}$$

2. Slender body theory (incl. long range, no thickness effects) $V_{\rm F} = \frac{f}{8\pi\mu} \int_{-\infty}^{\infty} \frac{\varphi \sin \varphi \cos \theta \csc^2 \theta}{(\xi(\varphi, \theta))^{3/2}} d\varphi,$ $\Omega R = \frac{f}{8\pi\mu \sin \theta} \int_{-\infty}^{\infty} \left(\frac{\cos \varphi}{(\xi(\varphi, \theta))^{1/2}} + \frac{\sin^2 \varphi}{(\xi(\varphi, \theta))^{3/2}} \right) d\varphi$

Comparison between experiment and theory

Rotating helix in Viscoelastic fluids

Polyisobutylene (PIB) suspended in Polybutene (PB)

Relaxation time: $\tau = 0.4 \text{ s}$

Rotating helix in Viscoelastic fluids

free swimming speed of rotating helix in viscoelastic fluids

Next: fluid with stronger elasticity

Interesting questions

- Physics questions:
 - How fast does a "bacterium" swim in a Newtonian fluid?
 - How fast does a "bacterium" swim in a non-Newtonian fluid?
 - How does an elastic flagellum interact with a viscous fluid?
 - What is the flow field associated with rotating flagella?
 - How do adjacent elastic filaments bundle?
 - How do adjacent elastic filaments synchronize using hydrodynamic forces?
 - How important are non-local viscous interactions?
- "Engineering" questions:
 - Can bacteria affect the macroscopic world?
 - Can we harness their motion?
 - Can we control them?
 - etc.
- What next?

Elastic filament interacting with a viscous flow

- Motivation
 - Understand simplified behavior of flexible filaments in viscous flows
 - Look at a simpler model for microrobotic propulsion
 - Understand previous numerical experiments
 - (Manghi, Schlagberger & Netz, PRL 2006)

Shape Bifurcation of an Elastic Rotating Rod

Shape Bifurcation of an Elastic Rotating Rod

 $\dot{e} \approx 20^{\circ} - 30^{\circ}$

Reconstructed motion from expt. data

Motion around the bifurcation

Reconstructed motion from expt. data

Motion around the bifurcation

Theory

• Stokes flow (reversible flow)

$$\mu \nabla^2 \mathbf{v} = \nabla p$$
$$\nabla \cdot \mathbf{v} = 0$$

- Analyze in the rotating frame (steady)
- No forces due to non-inertial frame
- disregard twist
 - Only bending stiffness
- resistive force theory:

$$f_n = \mu C_n u_n, \quad f_s = \mu C_s u_s,$$

- Hydrodynamic forces are local
- balance of forces and moments
- Key non-dimensional parameters:

$$\theta, \quad \chi = \frac{\mu \omega L^4}{A} = (L/l_v)^4, \quad M = M_{mot}L/A$$

Comparison between theory and experiment

Interesting questions

- Physics questions:
 - How fast does a "bacterium" swim in a Newtonian fluid?
 - How fast does a "bacterium" swim in a non-Newtonian fluid?
 - How does an elastic flagellum interact with a viscous fluid?
 - What is the flow field associated with rotating flagella?
 - How do adjacent elastic filaments bundle?
 - How do adjacent elastic filaments synchronize using hydrodynamic forces?
 - How important are non-local viscous interactions?
- "Engineering" questions:
 - Can bacteria affect the macroscopic world?
 - Can we harness their motion?
 - Can we control them?
 - etc.
- What next?

Hydrodynamic interactions

- Cilia and flagella occur in many biological (and engineering) systems.
- Collective motion important for transport and motility
- Interesting questions for flagella and cilia:
 - synchronization through hydrodynamic interactions
 - synchronization vs. chaotic motion
 - role of compliance
 - time-scales for interactions
 - effects of multiple filaments
 - effects of long range hydrodynamic forces

webmd.com

Two-paddle model system

Two-paddle interactions

- a) Rigid shafts no synchronization
- b) Rigid shafts torque mismatch
 - Phase wandering
- c) Flexible shafts synchronization!

(Qian et al, PRE 2009)

Numerical simulation - Regularized

$$\mu \nabla^2 \mathbf{v} - \nabla p + \mathbf{F} = 0$$
$$\nabla \cdot \mathbf{v} = 0$$
$$\mathbf{F} = \frac{15\epsilon^4}{8\pi} \frac{1}{(r^2 + \epsilon^2)^{7/2}}$$

(Cortez, 2001)

$$\begin{pmatrix} M_1 \\ M_2 \end{pmatrix} = \begin{pmatrix} A(\theta_1, \theta_2) & B(\theta_1, \theta_2) \\ B(\theta_1, \theta_2) & A(\theta_1, \theta_2) \end{pmatrix} \begin{pmatrix} \dot{\theta_1} \\ \dot{\theta_2} \end{pmatrix}$$

Kim & Powers (2004) - rigid helices – no synchronization Reichert & Stark (2005) - flexible coupling leads to synchronization

Simulation and experiment

Analytical approach

velocity on ball *i*, induced by ball *j*

$$v_i = \frac{F_i}{6\pi\mu a} + \frac{1}{8\pi\mu} \sum_{i\neq j} \left[\frac{F_j}{|r_{ij}|} + \frac{(F_j \cdot r_{ij})r_{ij}}{|r_{ij}|^3} \right]$$
ignore "far field" term
$$a \ll R \ll D$$

 $-\frac{\Delta M}{M_1} + \Delta \dot{\theta} + \frac{9}{8} \frac{a}{D} \Delta \dot{\theta} \cos \Delta \theta + \frac{3}{8} \frac{a}{D} \cos(2\bar{\theta}) = 0$

 $\frac{\Delta M}{M_1} + 2 - 2\dot{\bar{\theta}} - \frac{3}{4}\frac{a}{D}\dot{\bar{\theta}} \left[-3\cos\Delta\theta + \cos(2\bar{\theta}) \right] = 0$

Sum of forces and moments; for two balls:

Niedermeyer et al. (Chaos, 2008)

Qian et al. (PRE, 2009)

multiple-scale (slow) evolution equation for phase difference:

 $(\mu\omega/k\ll 1)$

 $\frac{\langle \Delta \theta \rangle}{dt} = -\frac{9}{2} \frac{M_1}{kR^2} \frac{a}{D} \underbrace{\sin \langle \Delta \theta \rangle + \frac{\Delta M}{M_1}}_{\checkmark}$ I/T time constant for synchronization

Wednesday, February 23, 2011

Interesting questions

- Physics questions:
 - How fast does a "bacterium" swim in a Newtonian fluid?
 - How fast does a "bacterium" swim in a non-Newtonian fluid?
 - How does an elastic flagellum interact with a viscous fluid?
 - What is the flow field associated with rotating flagella?
 - How do adjacent elastic filaments bundle?
 - How do adjacent elastic filaments synchronize using hydrodynamic forces?
 - How important are non-local viscous interactions?
- "Engineering" questions:
 - Can bacteria affect the macroscopic world?
 - Can we harness their motion?
 - Can we control them?
 - etc.
- What next?

Motile bacteria as chaotic mixers

- Chaotic advection (Aref 1984)
 - Viscous laminar flow
 - Random switching of "blinking vortices"
- Bacteria have flagella that alternate rotation direction randomly
 - Cell bodies execute random walk
 - Chaotic mixing in zero Re flow?

Mixing using freely swimming bacteria

Theory for standard diffusion.

Enhanced diffusion due to bacteria

- Diffusion of small molecule rises from 20 80 um²/s
 - Large molecules and I um beads show 50x enhancement
- Diffusion faster than standard "Fickian" diffusion
 - Introduction of new time scale

(Kim & Breuer, Phys Fluids 2004)

Bacterial carpets and enhanced mixing

(Darnton, Turner, Breuer & Berg Biophys J. 2003)

Bacterial pumps

⁽Kim & Breuer, Small 2008)

- Pumping arises spontaneously
- Direction determined by "last flush"
- "Crystallization" process

Bacterial pumps

Top View

Width

⁽Kim & Breuer, Small 2008)

- Pumping arises spontaneously
- Direction determined by "last flush" •
- "Crystallization" process

300

- Rotation 33 deg/s
- Surface area 1400 um²
- Long axis 65 um
- Bacteria

PDMS barge

Glass substrate

- Translates 5 um/s
- Rotation 4.6 deg/s
- Surface area 4350 um²
- Long axis 92 um
- Bacteria 1100

- Rotation 33 deg/s •
- 1400 um² Surface area •
- Long axis •
- Bacteria •
- 65 um

300

- PDMS barge
- **Glass substrate**

- Translates 5 um/s
- 4.6 deg/s Rotation •
- Surface area 4350 um² •
- Long axis **92** um •
- Bacteria 1100 ullet

300

- Rotation 33 deg/s
- Surface area 1400 um²
- Long axis 65 um
- Bacteria

PDMS barge

Glass substrate

- Translates 5 um/s
- Rotation 4.6 deg/s
- Surface area 4350 um²
- Long axis 92 um
- Bacteria 1100

300

- Rotation 33 deg/s
- Surface area 1400 um²
- Long axis 65 um
- Bacteria

Glass substrate

PDMS barge

• Translates 5 um/s

- Rotation 4.6 deg/s
- Surface area 4350 um²
- Long axis 92 um
- Bacteria II00

Summary:

- Force-free swimming speed measured:
 - newtonian fluids
 - viscoelastic fluids underway
- Fluids-filament interactions:
 - coiling of an elastic filament due to viscous stresses
- Synchronization of adjacent filaments
 - hydrodynamic interactions
 - elastic compliance necessary
 - multiple paddles illustrate significantly more complex (& chaotic) behavior

- Acknowledgements: Tom Powers, Bin Liu, Min Jun Kim, Qian Bian, Dave Gagnon
- Support: NSF