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Motility of flagellated bacteria

L. Turner, W. S. Ryu, and H. C. Berg (2000)

H. Berg, Physics Today, Jan 2000; 
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• Physics  questions:

• How fast does a “bacterium” swim in a Newtonian fluid?

• How fast does a “bacterium” swim in a non-Newtonian fluid?

• How does an elastic flagellum interact with a viscous fluid?

• What is the flow field associated with rotating flagella?

• How do adjacent elastic filaments bundle?

• How do adjacent elastic filaments synchronize using hydrodynamic forces?

• How important are non-local viscous interactions?

• “Engineering” questions:

• Can bacteria affect the macroscopic world?

• Can we harness their motion?

• Can we control them?

• etc.

• What next?

Interesting questions
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apologies to Picasso, thanks to Christophe Clanet

Bull #11
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Experimental setup (low-Re swimming helix)

fluids with high viscosity:  
• silicone oil (Newtonian)
• Polybutene+ Polyisobutylene (viscoelastic) 
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Fluidic force on a rotating helix (Newtonian)

Fluidic force per unit length saturates with L>5

infinitely long helix
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Computation of free swimming speed 

1. Resistive force theory
   (no long-range interactions)

when swimming freely, 

2. Slender body theory
   (incl. long range, no thickness effects)

Wednesday, February 23, 2011



Comparison between experiment and theory

: diameter of the cross-section 
of helical fiber
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Polyisobutylene (PIB) suspended in Polybutene (PB)
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• Motivation

– Understand simplified behavior of flexible filaments in viscous flows

– Look at a simpler model for microrobotic propulsion

– Understand previous numerical experiments
• (Manghi, Schlagberger & Netz, PRL 2006)

Filament rotates in two modes:
    constant torque:  M
    constant velocity: ω

Viscous fluid (Re << 1) Elastic filament

Root set at fixed angle, θ

Elastic filament interacting with a viscous flow
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after bifurcationbefore bifurcation(Video Sped up x10)

Shape Bifurcation of an Elastic Rotating Rod
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M
otion around the bifurcation

Reconstructed motion from expt. data
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M
otion around the bifurcation

Reconstructed motion from expt. data
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• Stokes flow (reversible flow)

– Analyze in the rotating frame (steady)

– No forces due to non-inertial frame

• disregard twist
– Only bending stiffness

• resistive force theory:

• Hydrodynamic forces are local

• balance of forces and moments

• Key non-dimensional parameters:

Theory
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Intermediate regime:  MmL/A~ χ1/2 High torque: MmL/A~ χ 1/4

(Qian et al. PRL 2008)

Comparison between theory and experiment
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Hydrodynamic interactions

• Cilia and flagella occur in many biological (and 
engineering) systems.

• Collective motion important for transport 
and motility

• Interesting questions for flagella and cilia:

• synchronization through hydrodynamic 
interactions

• synchronization vs. chaotic motion

• role of compliance

• time-scales for interactions

• effects of multiple filaments

• effects of long range hydrodynamic forces

webmd.com
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Two-paddle model system
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 Two-paddle interactions

a) Rigid shafts – no synchronization

b) Rigid shafts – torque mismatch
– Phase wandering

c) Flexible shafts – synchronization!

(Qian et al, PRE 2009)
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Numerical simulation - Regularized 

Kim & Powers (2004) - rigid helices – no synchronization
Reichert & Stark (2005) - flexible coupling leads to synchronization

(Cortez, 2001)
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Simulation and experiment
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Analytical approach

velocity on ball i, induced by ball j

Sum of forces and moments;  for two balls:

multiple-scale (slow) evolution equation for phase difference:

1/T time constant for synchronization

ignore “far field” term

θ1 θ2

D
(x1, y1) (x2, y2)

x

yR
R

a

a

M1
M2

r1

r2

Niedermeyer et al. 
(Chaos, 2008)

Qian et al. 
(PRE, 2009)

Wednesday, February 23, 2011



• Physics  questions:

• How fast does a “bacterium” swim in a Newtonian fluid?

• How fast does a “bacterium” swim in a non-Newtonian fluid?

• How does an elastic flagellum interact with a viscous fluid?

• What is the flow field associated with rotating flagella?

• How do adjacent elastic filaments bundle?

• How do adjacent elastic filaments synchronize using hydrodynamic forces?

• How important are non-local viscous interactions?

• “Engineering” questions:

• Can bacteria affect the macroscopic world?

• Can we harness their motion?

• Can we control them?

• etc.

• What next?

Interesting questions

Wednesday, February 23, 2011



(Images courtesy of Károlyi György)

Tumble

Run

Motile bacteria as chaotic mixers
• Chaotic advection (Aref 1984)

• Viscous laminar flow

• Random switching of “blinking 
vortices”

• Bacteria have flagella that alternate 
rotation direction randomly

• Cell bodies execute random walk

• Chaotic mixing in zero Re flow?
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Length = 28 mm

InletOutlet

Fluorescence

No Fluorescence

Width = 200 µm

Depth = 40 µm

Mixing using freely swimming bacteria
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Diffusion Equation:

Intensity:
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Intensity 
Gradient:

Theory

Experiment

Amplitude

σ

Similarity Variable:

Theory for standard diffusion.
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• Diffusion of small molecule rises from 20 – 80 um2/s

– Large molecules and 1 um beads show 50x enhancement

• Diffusion faster than standard “Fickian” diffusion

– Introduction of new time scale

● Dead carpet

♦ Tumbly bacteria

■ Wild-type bacteria
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(Kim & Breuer,Phys Fluids 2004)

Enhanced diffusion due to bacteria
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Brownian motion

(Darnton, Turner, Breuer & Berg Biophys J. 2003)

Bacterial carpet motion

Motion (μm) of 0.5μm
fluorescent particles during 

1/30 sec

substrate

fluid

Bacterial carpets and enhanced mixing
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• Pumping arises spontaneously

• Direction determined by “last flush”

• “Crystallization” processChannel floor

(Kim &  Breuer, Small 2008) 

15µm 

~500µm 

Top View

Side View

Width

Height

Bacterial pumps
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• Translates        5 um/s

• Rotation           4.6 deg/s

• Surface area    4350 um2

• Long axis          92 um

• Bacteria            1100

PDMS barge

Glass substrate

Bacterial barges

• Rotation           33 deg/s

• Surface area    1400 um2

• Long axis          65 um

• Bacteria            300
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• Force-free swimming speed measured:

• newtonian fluids

• viscoelastic fluids underway

• Fluids-filament interactions:

• coiling of an elastic filament due to viscous stresses

• Synchronization of adjacent filaments

• hydrodynamic interactions

• elastic compliance necessary

• multiple paddles illustrate signficantly more complex (& 
chaotic) behavior

Summary:
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